05.11.2012 Views

Model Organisms in Drug Discovery

Model Organisms in Drug Discovery

Model Organisms in Drug Discovery

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

REFERENCES 39<br />

Uetz, P., Giot, L., Cagney, G., Mansfield, T. A., Judson, R. S., Knight, J. R., Lockshon,<br />

D., et al. (2000). A comprehensive analysis of prote<strong>in</strong>–prote<strong>in</strong> <strong>in</strong>teractions <strong>in</strong><br />

Saccharomyces cerevisiae [process citation]. Nature 403, 623–627.<br />

Uren, A. G., O’Rourke, K., Arav<strong>in</strong>d, L. A., Pisabarro, M. T., Seshagiri, S., Koon<strong>in</strong>, E. V.<br />

and Dixit, V. M. (2000). Identification of paracaspases and metacaspases: two ancient<br />

families of caspase-like prote<strong>in</strong>s, one of which plays a key role <strong>in</strong> MALT lymphoma.<br />

Mol. Cell 6, 961–967.<br />

Wiederrecht, G., Brizuela, L., Elliston, K., Sigal, N. H. and Siekierka, J. J. (1991). FKB1<br />

encodes a nonessential FK 506-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> <strong>in</strong> Saccharomyces cerevisiae and conta<strong>in</strong>s<br />

regions suggest<strong>in</strong>g homology to the cyclophil<strong>in</strong>s. Proc. Natl. Acad. Sci. USA 88, 1029–<br />

1033.<br />

Wilson, W. A., Wang, Z. and Roach, P. J. (2002). Systematic identification of the genes<br />

affect<strong>in</strong>g glycogen storage <strong>in</strong> the yeast Saccharomyces cerevisiae. Mol. Cell. Proteom. 1,<br />

232–242.<br />

W<strong>in</strong>zeler, E. A., Shoemaker, D. D., Astromoff, A., Liang, H., Anderson, K., Andre, B.,<br />

Bangham, R., et al. (1999). Functional characterization of the S. cerevisiae genome by<br />

gene deletion and parallel analysis. Science 285, 901–906.<br />

Wood, V., Gwilliam, R., Rajandream, M. A., Lyne, M., Lyne, R., Stewart, A., Sgouros, J.,<br />

et al. (2002). The genome sequence of Schizosaccharomyces pombe. Nature 415, 871–880.<br />

Zhang, H., Cowan-Jacob, S. W., Simonen, M., Greenhalf, W., Heim, J. and Meyhack, B.<br />

(2000). Structural basis of BFL-1 for its <strong>in</strong>teraction with BAX and its anti-apoptotic<br />

action <strong>in</strong> mammalian and yeast cells. J. Biol. Chem. 275, 11092–11099.<br />

Zhong, H. and Neubig, R. R. (2001). Regulator of G prote<strong>in</strong> signal<strong>in</strong>g prote<strong>in</strong>s: novel<br />

multifunctional drug targets. J. Pharmacol. Exp. Ther. 297, 837–845.<br />

Zhu, H. and Snyder, M. (2002). ‘Omic’ approaches for unravel<strong>in</strong>g signal<strong>in</strong>g networks.<br />

Curr. Op<strong>in</strong>. Cell Biol. 14, 173–179.<br />

Zhu, H., Klemic, J. F., Chang, S., Bertone, P., Casamayor, A., Klemic, K. G., Smith, D., et<br />

al. (2000). Analysis of yeast prote<strong>in</strong> k<strong>in</strong>ases us<strong>in</strong>g prote<strong>in</strong> chips. Nat. Genet. 26, 283–289.<br />

Zhu, H., Bilg<strong>in</strong>, M., Bangham, R., Hall, D., Casamayor, A., Bertone, P., Lan, N., Jansen,<br />

R., Bidl<strong>in</strong>gmaier, S., Houfek, T., et al. (2001). Global analysis of prote<strong>in</strong> activities us<strong>in</strong>g<br />

proteome chips. Science 293, 2101–2105.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!