05.11.2012 Views

Model Organisms in Drug Discovery

Model Organisms in Drug Discovery

Model Organisms in Drug Discovery

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

REFERENCES 35<br />

Guthrie, C. and F<strong>in</strong>k, G. R., eds. (1991). Guide to Yeast Genetics and Molecular Biology.<br />

San Diego: Academic Press.<br />

Gutk<strong>in</strong>d, J. S. (1998). The pathways connect<strong>in</strong>g G prote<strong>in</strong>-coupled receptors to the nucleus<br />

through divergent mitogen-activated prote<strong>in</strong> k<strong>in</strong>ase cascades. J. Biol. Chem. 273, 1839–<br />

1842.<br />

Gutk<strong>in</strong>d, J. S. (2000). Regulation of mitogen-activated prote<strong>in</strong> k<strong>in</strong>ase signal<strong>in</strong>g networks<br />

by G prote<strong>in</strong>-coupled receptors. Sci. STKE 2000, RE1.<br />

Harris, K., Lamson, R. E., Nelson, B., Hughes, T. R., Marton, M. J., Roberts, C. J.,<br />

Boone, C., et al. (2001). Role of scaffolds <strong>in</strong> MAP k<strong>in</strong>ase pathway specificity revealed by<br />

custom design of pathway-dedicated signal<strong>in</strong>g prote<strong>in</strong>s. Curr. Biol. 11, 1815–1824.<br />

H<strong>in</strong>z, W., Grun<strong>in</strong>ger, S., De Pover, A. and Chiesi, M. (1999). Properties of the human long<br />

and short isoforms of the uncoupl<strong>in</strong>g prote<strong>in</strong>-3 expressed <strong>in</strong> yeast cells. FEBS Lett. 462,<br />

411–415.<br />

Ho, Y., Gruhler, A., Heilbut, A., Bader, G. D., Moore, L., Adams, S. L., Millar, A., et al.<br />

(2002). Systematic identification of prote<strong>in</strong> complexes <strong>in</strong> Saccharomyces cerevisiae by<br />

mass spectrometry. Nature 415, 180–183.<br />

Honey, S., Schneider, B. L., Schieltz, D. M., Yates, J. R. and Futcher, B. (2001). A novel<br />

multiple aff<strong>in</strong>ity purification tag and its use <strong>in</strong> identification of prote<strong>in</strong>s associated with a<br />

cycl<strong>in</strong>-CDK complex. Nucleic Acids Res. 29, E24.<br />

Horiguchi, T. and Tanida, S. (1995). Rescue of Schizosaccharomyces pombe from<br />

camptothec<strong>in</strong>-mediated death by a DNA topoisomerase I <strong>in</strong>hibitor, TAN-1518 A.<br />

Biochem. Pharmacol. 49, 1395–1401.<br />

Hughes, T. R., Marton, M. J., Jones, A. R., Roberts, C. J., Stoughton, R., Armour, C. D.,<br />

Bennett, H. A., et al. (2000). Functional discovery via a compendium of expression<br />

profiles. Cell 102, 109–126.<br />

Ideker, T., Thorsson, V., Ranish, J. A., Christmas, R., Buhler, J., Eng, J. K., Bumgarner,<br />

R., et al. (2001). Integrated genomic and proteomic analyses of a systematically<br />

perturbed metabolic network. Science 292, 929–934.<br />

Ito, T., Tashiro, K., Muta, S., Ozawa, R., Chiba, T., Nishizawa, M., Yamamoto, K., et al.<br />

(2000). Toward a prote<strong>in</strong>–prote<strong>in</strong> <strong>in</strong>teraction map of the budd<strong>in</strong>g yeast: a comprehensive<br />

system to exam<strong>in</strong>e two-hybrid <strong>in</strong>teractions <strong>in</strong> all possible comb<strong>in</strong>ations between the yeast<br />

prote<strong>in</strong>s. Proc. Natl. Acad. Sci. USA 97, 1143–1147.<br />

Ketchum, K. A., Jo<strong>in</strong>er, W. J., Sellers, A. J., Kaczmarek, L. K. and Goldste<strong>in</strong>, S. A. (1995).<br />

A new family of outwardly rectify<strong>in</strong>g potassium channel prote<strong>in</strong>s with two pore doma<strong>in</strong>s<br />

<strong>in</strong> tandem. Nature 376, 690–695.<br />

Kolt<strong>in</strong>, Y., Faucette, L., Bergsma, D. J., Levy, M. A., Cafferkey, R., Koser, P. L., Johnson,<br />

R. K., et al. (1991). Rapamyc<strong>in</strong> sensitivity <strong>in</strong> Saccharomyces cerevisiae is mediated by a<br />

peptidyl–prolyl cis–trans isomerase related to human FK506-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>. Mol. Cell.<br />

Biol. 11, 1718–1723.<br />

Koser, P. L., Sylvester, D., Livi, G. P. and Bergsma, D. J. (1990). A second cyclophil<strong>in</strong>related<br />

gene <strong>in</strong> Saccharomyces cerevisiae. Nucleic Acids Res. 18, 1643.<br />

Koser, P. L., Bergsma, D. J., Cafferkey, R., Eng, W. K., McLaughl<strong>in</strong>, M. M., Ferrara, A.,<br />

Silverman, C., et al. (1991). The CYP2 gene of Saccharomyces cerevisiae encodes a<br />

cyclospor<strong>in</strong> A-sensitive peptidyl–prolyl cis–trans isomerase with an N-term<strong>in</strong>al signal<br />

sequence. Gene 108, 73–80.<br />

Kroll, E. S., Hyland, K. M., Hieter, P. and Li, J. J. (1996). Establish<strong>in</strong>g genetic <strong>in</strong>teractions<br />

by a synthetic dosage lethality phenotype. Genetics 143, 95–102.<br />

Kultz, D. and Burg, M. (1998). Evolution of osmotic stress signal<strong>in</strong>g via MAP k<strong>in</strong>ase<br />

cascades. J. Exp. Biol. 201, 3015–3021.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!