05.01.2015 Views

Computer Tools for Bifurcation Analysis: General Approach with

Computer Tools for Bifurcation Analysis: General Approach with

Computer Tools for Bifurcation Analysis: General Approach with

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1002 L. M. Pismen & B. Y. Rubinstein<br />

k 1 , k 2 is written as:<br />

∂ 1 a 1 =2a(k 1 ∇ 1 )a 1 + σa 1R 1<br />

1+σ , (78)<br />

and may be simplified by setting R 1 =0.<br />

It appears that the term describing the mode–<br />

mode interaction in the Ginzburg–Landau equation<br />

in our case does not depend on the value of the angle<br />

between mode wavevectors and is given by c 3, 4 =<br />

−2/b; the self-interaction coefficient c 3, 5 = −1/b.<br />

Two out of three diffusional coefficients in the second<br />

amplitude equation are not zeros:<br />

c 3, 1, 1 = − ia σ ;<br />

c 4a 2<br />

3, 1, 2 = −<br />

(1 + σ)(1 + σ − iΩ) .<br />

(79)<br />

Finally the amplitude equation may be written in<br />

the <strong>for</strong>m:<br />

σ<br />

∂ 2 a 1 = −<br />

b(1 + σ) (2|a 2| 2 + |a 1 | 2 )a 1<br />

−<br />

−<br />

4a 2<br />

(1 + σ)(1 + σ − iΩ) (k 1∇ 1 ) 2 a 1<br />

ia<br />

1+σ (∇ 1∇ 1 )a 1 + σR 2<br />

(1 + σ) a 1 . (80)<br />

5. Amplitude Equations <strong>for</strong><br />

Convective Problems<br />

5.1. Convective instabilities<br />

The convective problems are characterized by the<br />

presence of the additional convective term in<br />

Eq. (52) and can be written in the following <strong>for</strong>m<br />

[Rovinsky & Menzinger, 1992, 1993]:<br />

∂<br />

u(r, t)=D(∇·∇)u(r,t)+εV(n·∇)u(r,t)<br />

∂t<br />

+f(u(r,t),R), (81)<br />

where n denotes a constant vector determining the<br />

direction of flow and the matrix V sets the velocities<br />

values; it is assumed that the velocities are<br />

of the order ε. Then <strong>for</strong> the Turing instability<br />

one must call the function <strong>Bifurcation</strong>Theory as<br />

follows:<br />

<strong>Bifurcation</strong>Theory[<br />

DD.(Nabla[r].Nabla[r])**u + f[u,R] +<br />

eps V.({1,0}.Nabla[r])**u -<br />

Nabla[t]**u == 0,<br />

u, R, t, {r,2},{r,1},{U,Ut},<br />

{{a1,0}, {a2, alpha}}, c, eps, 2, k, 0]<br />

Here the velocity direction is chosen parallel to the<br />

x-axis. Note that the small parameter of expansion<br />

eps in this case appears explicitly in the operator<br />

equation describing the problem. The result produced<br />

may be written as:<br />

∂ 1 a 1 = c 2, 1, 1<br />

c 2, 2<br />

(ik 1 ∇ 1 )a 1 + c 2, 3<br />

c 2, 2<br />

a 1 + c 2, 3(R 1 )<br />

c 2, 2<br />

a 1 ,<br />

∂ 2 a 1 = c 3, 4<br />

c 3, 3<br />

|a 2 | 2 a 1 + c 3, 5<br />

c 3, 3<br />

|a 1 | 2 a 1 + c 3, 6<br />

c 3, 3<br />

a 1<br />

+ c 3, 6(R 1 , R 2 )<br />

c 3, 3<br />

a 1 + c 3, 1, 1<br />

c 3, 3<br />

(∇ 1 ∇ 1 )a 1<br />

+ c 3, 1, 2<br />

c 3, 3<br />

(ik 1 ∇ 1 ) 2 a 1 + c 3, 2, 1<br />

c 3, 3<br />

(ik 1 ∇ 1 )a 1<br />

(82)<br />

+ c 3, 2, 1(R 1 )<br />

c 3, 3<br />

(ik 1 ∇ 1 )a 1 + c 3, 2, 2<br />

c 3, 3<br />

(n∇ 1 )a 1 .<br />

It can be noted that the set of equations is very<br />

similar to Eq. (65) <strong>with</strong> the addition of some terms.<br />

Here we write the expressions <strong>for</strong> the coefficients<br />

which are changed or added comparing <strong>with</strong> coefficients<br />

of (65). The additional linear term in the<br />

first equation is due to the velocity matrix V and<br />

its coefficient is given by:<br />

c 2, 3 = ikU † VU .<br />

Similarly, there are two linear terms in the second<br />

equation, their coefficients now depend on V:<br />

c 3, 6 = k 2 U † VR(f u − k 2 D)VU − k 2 (U † VR(f u − k 2 D)VU)(U † VU)/(U † U) ,<br />

c 3, 6 (R 1 , R 2 )=(U † R(f u −k 2 D)f uR UR 1 )(U † f uR UR 1 )/(U † U)+U † f uR UR 2<br />

− U † f uR R(f u − k 2 D)f uR UR 1 R 1 + U † f uRR UR 1 R 1 /2<br />

(83)<br />

− ikU † VR(f u − k 2 D)f uR UR 1 + ik(U † VR(f u − k 2 D)f uR UR 1 )(U † VU)/(U † U)<br />

+ ik(U † VR(f u − k 2 D)VU)(U † f uR UR 1 )/(U † U) − ikU † f uR R(f u − k 2 D)VUR 1 .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!