22.01.2015 Views

Risk Analysis of Sea Traffic in the Area around Bornholm, 2008. - VTT

Risk Analysis of Sea Traffic in the Area around Bornholm, 2008. - VTT

Risk Analysis of Sea Traffic in the Area around Bornholm, 2008. - VTT

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Søfartsstyrelsen<br />

<strong>Risk</strong> <strong>Analysis</strong> <strong>of</strong> <strong>Sea</strong><br />

<strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong><br />

<strong>Bornholm</strong><br />

January 2008


COWI A/S<br />

Parallelvej 2<br />

DK-2800 Kongens Lyngby<br />

Denmark<br />

Tel +45 45 97 22 11<br />

Fax +45 45 97 22 12<br />

www.cowi.com<br />

Søfartsstyrelsen<br />

<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong><br />

<strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

January 2008<br />

Report no. P-65775-002<br />

Issue no. 0<br />

Date <strong>of</strong> issue 25.01.2008<br />

Prepared<br />

Checked<br />

Approved<br />

ALBL<br />

IBK<br />

IBK


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

2<br />

Table <strong>of</strong> Contents<br />

1 Summary 4<br />

2 Background 7<br />

2.1 Motivation 7<br />

2.2 Target group 7<br />

2.3 <strong>Risk</strong> concept 7<br />

2.4 Work group 8<br />

2.5 Procedure 9<br />

3 Limits <strong>of</strong> <strong>the</strong> <strong>Analysis</strong> 11<br />

3.1 Scope 11<br />

3.2 Geographical limits 12<br />

4 Data and Methods 14<br />

4.1 Ship data 14<br />

4.2 Ship traffic data 14<br />

4.3 Ship accident data 18<br />

4.4 Geographic <strong>in</strong>formation 19<br />

4.5 Collision model 19<br />

4.6 Ground<strong>in</strong>g model 23<br />

4.7 Direct cost model 25<br />

5 Retrospective <strong>Risk</strong> Assessment <strong>of</strong> <strong>the</strong> <strong>Bornholm</strong><br />

Gat <strong>Traffic</strong> Separation Scheme 27<br />

5.1 Hazard identification (FSA step 1) 27<br />

5.2 <strong>Risk</strong> control options (FSA step 3) 27<br />

5.3 Comparative risk assessment (FSA step 2 and 4) 27<br />

5.4 Discussion and recommendations (FSA step 5) 40<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

3<br />

6 Prospective <strong>Risk</strong> Assessment <strong>of</strong> Route<br />

Specifications for <strong>Traffic</strong> to and from <strong>the</strong> Gdańsk<br />

Bay 41<br />

6.1 Hazard identification (FSA Step 1) 41<br />

6.2 <strong>Risk</strong> control options (FSA Step 3) 41<br />

6.3 Comparative risk assessment (FSA Step 2) 42<br />

6.4 Cost-benefit assessment (FSA step 4) 49<br />

6.5 Sensitivity analysis 50<br />

6.6 Discussion and recommendations (FSA step 5) 55<br />

7 References 57<br />

Table <strong>of</strong> Appendices<br />

Appendix A: Collision Model 58<br />

Appendix B: Ground<strong>in</strong>g Model 71<br />

Appendix C: Ship Operation Costs and Externalities 78<br />

Appendix D: Enlarged Figures 80<br />

Appendix E: Curricula Vitae 101<br />

Appendix F: Hazard Identification 113<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

4<br />

Aim<br />

1 Summary<br />

The present study has two objectives. Firstly, it assesses <strong>the</strong> effect <strong>of</strong> traffic<br />

separation scheme that was <strong>in</strong>troduced <strong>in</strong> <strong>the</strong> <strong>Bornholm</strong>sgat <strong>in</strong> 2006. Apart<br />

from separat<strong>in</strong>g <strong>the</strong> traffic <strong>in</strong>to two separate lanes, it also alters <strong>the</strong> route geometry.<br />

Secondly, <strong>the</strong> study <strong>in</strong>vestigates <strong>the</strong> effect <strong>of</strong> a possible future traffic diversion<br />

that would concern vessels pass<strong>in</strong>g <strong>Bornholm</strong> on <strong>the</strong>ir way to and from <strong>the</strong><br />

Gdańsk Bay. The concept at question is to move medium draught vessels (7-10<br />

m) sail<strong>in</strong>g <strong>in</strong> <strong>the</strong> shallow waters <strong>of</strong>f <strong>Bornholm</strong>’s south coast fur<strong>the</strong>r away from<br />

<strong>the</strong> coast and to restrict all large draught vessels (>10 m) to <strong>the</strong> area north-east<br />

<strong>of</strong> <strong>Bornholm</strong>.<br />

These two changes are assessed with respect to <strong>the</strong>ir costs and benefits.<br />

Methods and<br />

procedure<br />

To this purpose, <strong>the</strong> risk <strong>of</strong> ship accidents is calculated for <strong>the</strong> situation before<br />

and after a sea route change and successively compared. This requires knowledge<br />

about <strong>the</strong> expected frequency and <strong>the</strong> consequences <strong>of</strong> several accident<br />

types, <strong>in</strong>clud<strong>in</strong>g collisions (<strong>in</strong> head-on, cross<strong>in</strong>g and overtak<strong>in</strong>g situations) as<br />

well as ground<strong>in</strong>gs (due to imprecise navigation or due to lack<strong>in</strong>g attention).<br />

The frequency <strong>of</strong> each <strong>of</strong> this accident types is calculated by mak<strong>in</strong>g use <strong>of</strong><br />

state-<strong>of</strong>-<strong>the</strong>-art accident models based on <strong>the</strong> physical conditions lead<strong>in</strong>g to an<br />

accident. The required <strong>in</strong>put data orig<strong>in</strong>ate from AIS ship movement records<br />

cover<strong>in</strong>g every s<strong>in</strong>gle ship movement. Data from Lloyd’s Register add <strong>the</strong> necessary<br />

<strong>in</strong>formation about <strong>the</strong> physical properties <strong>of</strong> each s<strong>in</strong>gle vessel. This<br />

comb<strong>in</strong>ation <strong>of</strong> models and data leads to an extensive coverage <strong>of</strong> all parts <strong>in</strong><br />

<strong>the</strong> study area.<br />

Comb<strong>in</strong><strong>in</strong>g accident frequencies <strong>of</strong> each accident type with <strong>the</strong> correspond<strong>in</strong>g<br />

consequences yields a risk image <strong>of</strong> <strong>the</strong> study area. Modelled consequences are<br />

<strong>in</strong>clude loss <strong>of</strong> life, loss <strong>of</strong> assets (ship damage, ship loss, loss <strong>of</strong> revenue, loss<br />

<strong>of</strong> cargo) and clean-up costs after oil spillage. Convert<strong>in</strong>g risk, i.e. frequency<br />

time consequences <strong>in</strong>to monetary units (expected costs), provide means <strong>of</strong> comparison<br />

and is a prerequisite for cost-benefit analysis.<br />

In <strong>the</strong> cost-benefit analysis, expected costs are comb<strong>in</strong>ed with direct costs, such<br />

as ship operation costs and externalities because <strong>of</strong> exhaust fumes.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

5<br />

In <strong>the</strong> process <strong>of</strong> <strong>the</strong> study, two workshops were held, <strong>the</strong> first <strong>in</strong> order to <strong>in</strong>dentify<br />

<strong>the</strong> relevant hazards, <strong>the</strong> second <strong>in</strong> order to validate and discuss <strong>the</strong> results.<br />

The conclusions <strong>of</strong> <strong>the</strong> second workshop served as feedback <strong>in</strong> order to<br />

ref<strong>in</strong>e <strong>the</strong> risk model.<br />

Results: <strong>Bornholm</strong>sgat<br />

The <strong>in</strong>troduction <strong>of</strong> <strong>the</strong> traffic separation scheme <strong>in</strong> <strong>the</strong> <strong>Bornholm</strong>sgat has had a<br />

clear effect upon navigational risk. When compar<strong>in</strong>g <strong>the</strong> situation <strong>in</strong> 2005 and<br />

that <strong>in</strong> 2006, it appears that expected accident costs fell from DKK 29.0 million<br />

(€3.9 million) to DKK 18.3 million (€2.5 million) per year. This corresponds to<br />

a decrease by DKK 10.7 million per year or 37 percent.<br />

The largest part <strong>of</strong> this effect is due to a strong reduction <strong>in</strong> head-on collision<br />

risk. This is an obvious effect <strong>of</strong> <strong>the</strong> traffic separation which provides one sail<strong>in</strong>g<br />

lane for each traffic direction. Besides, cross<strong>in</strong>g collisions were reduced,<br />

although it can be expected that <strong>the</strong> actual reduction is even greater. The new<br />

traffic separation scheme forces traffic from Øresund and from Kadetrenden to<br />

merge <strong>in</strong> a designated cautionary area, which makes o<strong>the</strong>r ships’ behaviour<br />

more predictable. However, this effect is not <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> physically-based<br />

collision model. Ground<strong>in</strong>gs are equally reduced, but <strong>the</strong>ir contribution to total<br />

risk is limited due to <strong>the</strong>ir comparatively small consequences.<br />

Accident costs are dom<strong>in</strong>ated by clean-up costs due to oil spillage. This dom<strong>in</strong>ance<br />

is clear <strong>in</strong> <strong>the</strong> <strong>Bornholm</strong>sgat itself, where oil tankers are a significant<br />

traffic contribution, while be<strong>in</strong>g weak <strong>in</strong> <strong>the</strong> rema<strong>in</strong><strong>in</strong>g waters surround<strong>in</strong>g<br />

<strong>Bornholm</strong>.<br />

As a result, it can be said that <strong>the</strong> <strong>in</strong>troduction <strong>of</strong> <strong>the</strong> traffic separation scheme<br />

has reduced navigational risk significantly.<br />

Results: Gdańsk<br />

Bay traffic<br />

As mentioned, it was conceived to divert vessels sail<strong>in</strong>g to and from Gdańsk,<br />

Kal<strong>in</strong><strong>in</strong>grad and Klaipėda to different routes, <strong>in</strong> dependence <strong>of</strong> <strong>the</strong>ir respective<br />

draught. The correspond<strong>in</strong>g traffic volume is low compared to that <strong>in</strong> <strong>the</strong> <strong>Bornholm</strong>sgat,<br />

which means that <strong>the</strong> absolute accident risk reduction is relatively<br />

low, too. Accident costs can be expected to drop from DKK 2.34 million to<br />

DKK 2.19 million per year, <strong>in</strong> <strong>the</strong> areas north-east and south <strong>of</strong> <strong>Bornholm</strong>,<br />

where <strong>the</strong> traffic diversion would be implemented. This corresponds to a drop<br />

by 6 percent.<br />

When <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> heavily frequented, but only marg<strong>in</strong>ally affected <strong>Bornholm</strong>sgat<br />

<strong>in</strong> <strong>the</strong> consideration, total expected accident costs fall from currently<br />

DKK 18.3 million (€2.47 million) to DKK 18.0 million (€2.42 million) per<br />

year. This decrease by DKK 285,000 (€38,000) per year corresponds to a reduction<br />

by 2%.<br />

However, <strong>the</strong>se numbers reflect only <strong>the</strong> accident costs, while ignor<strong>in</strong>g direct<br />

costs, i.e. ship operation costs and externalities. They, too, are <strong>in</strong>fluenced because<br />

ships would on average be forced to take slightly longer routes than presently.<br />

These costs would rise by DKK 4.00 million (€537.000) per year, which<br />

clearly outbalances <strong>the</strong> reduction <strong>in</strong> accident costs. Out <strong>of</strong> <strong>the</strong>se 4 millions,<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

6<br />

more than 50 percent are due to damages caused by additional ship exhaust<br />

fumes.<br />

The proposed measure appears unfavourable, unless <strong>the</strong> scope is limited to accident<br />

costs alone. In that case, <strong>the</strong>re is s slight benefit.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

7<br />

2 Background<br />

2.1 Motivation<br />

In 2006, a new traffic separation scheme was <strong>in</strong>troduced <strong>in</strong> <strong>the</strong> waters between<br />

<strong>the</strong> Danish island <strong>of</strong> <strong>Bornholm</strong> and <strong>the</strong> Swedish ma<strong>in</strong>land (also known as <strong>Bornholm</strong>sgat).<br />

This scheme assigns separate lanes to each traffic direction and<br />

regulates <strong>the</strong> route geometry. The <strong>Bornholm</strong>sgat is used by <strong>the</strong> predom<strong>in</strong>ant<br />

part <strong>of</strong> all traffic between <strong>the</strong> Baltic <strong>Sea</strong> and <strong>the</strong> North <strong>Sea</strong> and is <strong>the</strong>refore<br />

heavily frequented.<br />

The first motivation <strong>of</strong> this report is to compare <strong>the</strong> situation before and after<br />

<strong>the</strong> <strong>in</strong>troduction <strong>of</strong> <strong>the</strong> traffic separation scheme. To this purpose, a comparative<br />

assessment is to <strong>in</strong>vestigate <strong>the</strong> change <strong>in</strong> risk. The focus is on risk to human<br />

life, environment and assets due to ship accidents.<br />

Fur<strong>the</strong>rmore, <strong>the</strong>re is an ongo<strong>in</strong>g issue concern<strong>in</strong>g <strong>the</strong> less <strong>in</strong>tensive, but never<strong>the</strong>less<br />

significant traffic from <strong>the</strong> Sou<strong>the</strong>ast Baltic <strong>Sea</strong>. This traffic orig<strong>in</strong>ates<br />

ma<strong>in</strong>ly from <strong>the</strong> ports <strong>of</strong> Gdańsk, Kal<strong>in</strong><strong>in</strong>grad and Klaipėda. In case <strong>of</strong> an oil<br />

spillage, sensitive ecosystems and recreational areas <strong>in</strong> Denmark, Sweden and<br />

Poland would possibly be affected.<br />

Here, <strong>the</strong> motivation is to evaluate <strong>the</strong> sensibility <strong>of</strong> a possible future traffic diversion.<br />

Aga<strong>in</strong>, a comparative risk assessment is to <strong>in</strong>vestigate <strong>the</strong> effect upon<br />

risk. In this case, <strong>the</strong> status quo needs to be compared to <strong>the</strong> situation that could<br />

be expected <strong>in</strong> <strong>the</strong> future after an eventual sea route has been <strong>in</strong>troduced.<br />

2.2 Target group<br />

The study aims to provide decision support to <strong>the</strong> Danish Maritime Authority<br />

(Søfartsstyrelsen), to <strong>the</strong> Royal Danish Adm<strong>in</strong>istration <strong>of</strong> Navigation and Hydrography<br />

(Farvandsvæsenet) and to <strong>the</strong> <strong>in</strong>volved Baltic <strong>Sea</strong> country authorities<br />

represented <strong>in</strong> <strong>the</strong> Hels<strong>in</strong>ki Commission (HELCOM).<br />

2.3 <strong>Risk</strong> concept<br />

In <strong>the</strong> present study, risk is understood accord<strong>in</strong>g to its classical def<strong>in</strong>ition <strong>in</strong><br />

decision <strong>the</strong>ory:<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

8<br />

<strong>Risk</strong> = Probability <strong>of</strong> unwanted event × Consequences <strong>of</strong> unwanted event<br />

If all consequences are converted <strong>in</strong>to monetary units, <strong>the</strong>n “risk” signifies <strong>the</strong><br />

same as “expected costs/expected benefits”.<br />

2.4 Work group<br />

All members <strong>of</strong> <strong>the</strong> work group are briefly <strong>in</strong>troduced <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g. Their<br />

CVs can be found <strong>in</strong> <strong>the</strong> appendix.<br />

2.4.1 Consultant (COWI A/S)<br />

Table 1<br />

Consultant personnel<br />

Function<br />

Project manager<br />

Key personnel<br />

Name<br />

Inger B. Kroon<br />

Albrecht Lentz<br />

Henrik Gluver<br />

Specialist<br />

External specialist<br />

Lene Schepper<br />

Pr<strong>of</strong>. Peter Friis Hansen, DTU<br />

2.4.2 Client (Søfartsstyrelsen)<br />

The Client, Danish Maritime Authority (Søfartsstyrelsen) is represented by<br />

Aron F. Sørensen.<br />

2.4.3 Participants <strong>of</strong> Workshop I (Hazard identification)<br />

Workshop I was held at Hotel Griffen, Rønne, <strong>Bornholm</strong> on 6-7 June 2007.<br />

The follow<strong>in</strong>g persons participated:<br />

Table 2<br />

Participant<br />

F<strong>in</strong>n Wessel<br />

Participants <strong>of</strong> Workshop I<br />

Position<br />

Pilot<br />

Johnny Vang Nielsen<br />

Kurt Bruun-Villadsen<br />

Frank Kiel Rasmussen<br />

Henrik Hammer Jensen<br />

Henrik Balle<br />

Aron F. Sørensen<br />

Flag capta<strong>in</strong>, <strong>Bornholm</strong>strafikken A/S<br />

Chief <strong>of</strong>ficer, M/F Ask, Scandl<strong>in</strong>es<br />

Naval capta<strong>in</strong>, <strong>Bornholm</strong>s Mar<strong>in</strong>edistrikt<br />

Vice chairman, <strong>Bornholm</strong>s og Christiansøs<br />

Fiskeriforen<strong>in</strong>g<br />

Chairman, Tejn Yacht Club<br />

Special consulent, Danish Maritime Authority<br />

(Søfartsstyrelsen)<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

9<br />

Michael Skov<br />

Peter Friis Hansen<br />

Inger B. Kroon<br />

Lene Schepper<br />

Albrecht Lentz<br />

Inspektoratschef, Royal Danish Adm<strong>in</strong>istration<br />

<strong>of</strong> Navigation and Hydrography (Farvandsvæsenet)<br />

Pr<strong>of</strong>essor, Technical University <strong>of</strong> Denmark<br />

Consultant, COWI A/S<br />

Consultant COWI A/S<br />

Consultant COWI A/S<br />

S<strong>in</strong>ce Workshop I was a workshop <strong>in</strong> <strong>the</strong> sense <strong>of</strong> /IMO FSA/, Appendix E<br />

conta<strong>in</strong>s m<strong>in</strong>i-CVs <strong>of</strong> <strong>the</strong> mentioned persons.<br />

2.4.4 Participants <strong>of</strong> Workshop II (Result validation)<br />

Workshop II was held at Søfartsstyrelsen <strong>in</strong> Copenhagen on 6 November 2007.<br />

The follow<strong>in</strong>g persons participated:<br />

Table 3<br />

Participants <strong>of</strong> Workshop II<br />

Participant<br />

Elo Jacobsen<br />

Max Ellegaard<br />

Ulf Lejdebr<strong>in</strong>k<br />

Pernilla Bergstedt<br />

Carsten Glen Jensen<br />

Aron F. Sørensen<br />

Michael Skov<br />

Inger B. Kroon<br />

Albrecht Lentz<br />

Position<br />

<strong>Bornholm</strong>s Mar<strong>in</strong>edistrikt<br />

<strong>Bornholm</strong>s Mar<strong>in</strong>edistrikt<br />

Sjöfarts<strong>in</strong>spektionen<br />

Sjöfartsverket<br />

Danish Maritime Authority (Søfartsstyrelsen)<br />

Special consulent, Danish Maritime Authority<br />

(Søfartsstyrelsen)<br />

Inspektoratschef, Royal Danish Adm<strong>in</strong>istration<br />

<strong>of</strong> Navigation and Hydrography (Farvandsvæsenet)<br />

Consultant, COWI A/S<br />

Consultant COWI A/S<br />

Workshop II was not a workshop <strong>in</strong> <strong>the</strong> sense <strong>of</strong> /IMO FSA/. Therefore, no<br />

CVs are provided.<br />

2.5 Procedure<br />

The procedure is based on IMO’s Guidel<strong>in</strong>es for formal safety assessment<br />

(FSA) /IMO FSA/, as displayed <strong>in</strong> Figure 1.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

10<br />

Figure 1<br />

Flow chart <strong>of</strong> <strong>the</strong> FSA methodology /IMO FSA/<br />

This concept lead to <strong>the</strong> follow<strong>in</strong>g succession <strong>of</strong> work steps dur<strong>in</strong>g <strong>the</strong> project:<br />

Table 4<br />

Work flow<br />

IMO FSA system Description Work group<br />

Step 1 Hazard identification Workshop I<br />

Step 3 <strong>Risk</strong> control options 1 Client + Consultant<br />

Step 2 <strong>Risk</strong> assessment Consultant<br />

Step 4 Cost-benefit assessment Consultant<br />

- Result validation and discussion<br />

Repeat step 3<br />

Adjustment <strong>of</strong> risk control options<br />

Workshop II<br />

Repeat step 2<br />

Repeat step 4<br />

Step 5<br />

Adjustment <strong>of</strong> risk assessment<br />

Adjustment <strong>of</strong> cost-benefit assessment<br />

Decision-mak<strong>in</strong>g recommendations<br />

Consultant<br />

1 <strong>Risk</strong> control options were predef<strong>in</strong>ed to a large degree.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

11<br />

3 Limits <strong>of</strong> <strong>the</strong> <strong>Analysis</strong><br />

3.1 Scope<br />

3.1.1 Accidents<br />

The scope is limited to those types <strong>of</strong> ship accidents that are directly dependent<br />

on <strong>the</strong> local situation and that can be expected to be affected by a change <strong>in</strong> <strong>the</strong><br />

sea route system. This is typically <strong>the</strong> case for collisions and ground<strong>in</strong>gs, while<br />

not be<strong>in</strong>g <strong>the</strong> case for fires on board, system failure and similar events.<br />

Parallel collisions<br />

Cross<strong>in</strong>g collisions<br />

Powered ground<strong>in</strong>gs<br />

Drift ground<strong>in</strong>gs<br />

Accidents <strong>in</strong>volv<strong>in</strong>g<br />

small vessels<br />

This collision type concerns all ships that are sail<strong>in</strong>g on a parallel or almost<br />

parallel course, as it can be observed along sea routes. There are two types <strong>of</strong><br />

parallel collisions, i.e. head-on and overtak<strong>in</strong>g collisions.<br />

All o<strong>the</strong>r collisions between two mov<strong>in</strong>g vessels are classified as cross<strong>in</strong>g<br />

collisions.<br />

If a ship runs aground or ashore despite <strong>of</strong> fully operational propulsion and<br />

rudder systems, <strong>the</strong> event is referred to as powered ground<strong>in</strong>g. The study differentiates<br />

between two types <strong>of</strong> powered ground<strong>in</strong>gs: Those that are due to<br />

imprecise navigation and those that occur if bridge personnel are unable to follow<br />

<strong>the</strong>ir duty over a prolonged period, lead<strong>in</strong>g to a head-on collision with a<br />

ground or coast. This second ground<strong>in</strong>g type is typically due to alcohol, sleep,<br />

sudden disease or various distractions. A failure <strong>of</strong> <strong>in</strong>formation systems may<br />

equally have an effect here.<br />

This ground<strong>in</strong>g type occurs due to w<strong>in</strong>d and wave action after system failure on<br />

board <strong>of</strong> <strong>the</strong> vessel. It is critical mostly <strong>in</strong> very narrow navigational channels,<br />

such as Øresund, where a ship drifts aground after a comparatively short time.<br />

This cannot be compared to <strong>the</strong> area <strong>around</strong> <strong>Bornholm</strong>, where <strong>the</strong>re is much<br />

more space. Drift ground<strong>in</strong>gs are <strong>the</strong>refore not <strong>in</strong>vestigated <strong>in</strong> <strong>the</strong> study.<br />

The above models are based on traffic data obta<strong>in</strong>ed through <strong>the</strong> Automatic<br />

Identification System (AIS). Only ships with 300 gross tons and more are<br />

obliged to use AIS devices, although some m<strong>in</strong>or ships also do. Available data<br />

is <strong>the</strong>refore much more limited for small vessels, which ma<strong>in</strong>ly <strong>in</strong>clude fish<strong>in</strong>g<br />

boats and yachts (see traffic data description <strong>in</strong> chapter 4.2).<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

12<br />

Small vessels are only considered <strong>in</strong> as far as <strong>the</strong>y directly <strong>in</strong>teract with major<br />

vessels, i.e. where small and major vessels collide. Ground<strong>in</strong>gs <strong>of</strong> small vessels<br />

are not <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> study.<br />

3.1.2 Consequences<br />

All consequences are converted <strong>in</strong>to monetary units (Danish currency, DKK) <strong>in</strong><br />

order to provide a common means <strong>of</strong> comparison for <strong>the</strong> cost-benefit assessment.<br />

Loss <strong>of</strong> life<br />

Cleanup costs<br />

Loss <strong>of</strong> assets<br />

Not accidentrelated<br />

costs<br />

Loss <strong>of</strong> life is converted <strong>in</strong>to monetary units by us<strong>in</strong>g <strong>the</strong> so-called value <strong>of</strong> a<br />

statistical life (VSL). Every person has a limited will<strong>in</strong>gness to pay for a possible<br />

prolongation <strong>of</strong> his own life or that <strong>of</strong> a fellow member <strong>of</strong> society by a<br />

small time span. Extrapolat<strong>in</strong>g <strong>the</strong> will<strong>in</strong>gness to pay from this time span to <strong>the</strong><br />

duration <strong>of</strong> an average life yields <strong>the</strong> VSL.<br />

These <strong>in</strong>clude <strong>the</strong> costs occurr<strong>in</strong>g due to cleanup after spillage <strong>of</strong> bunker oil or<br />

an oil tanker’s cargo.<br />

Ship owners and <strong>the</strong>ir <strong>in</strong>surers face an array <strong>of</strong> different costs <strong>in</strong> <strong>the</strong> wake <strong>of</strong> an<br />

accident. These can <strong>in</strong>clude repair costs and loss <strong>of</strong> <strong>in</strong>come dur<strong>in</strong>g repair (if <strong>the</strong><br />

ship was not lost), replacement <strong>of</strong> <strong>the</strong> ship (if it sank or suffered constructive<br />

total loss) as well as loss <strong>of</strong> cargo.<br />

A change <strong>in</strong> sea routes will typically lead to a change <strong>in</strong> sail<strong>in</strong>g distances. This<br />

<strong>in</strong>fluences fuel and capital costs- Fur<strong>the</strong>rmore, additional eng<strong>in</strong>e exhaust fumes<br />

will heighten societal and environmental damage.<br />

3.2 Geographical limits<br />

The study is limited to <strong>the</strong> area <strong>around</strong> <strong>Bornholm</strong> and can be divided <strong>in</strong>to three<br />

major areas <strong>of</strong> <strong>in</strong>terest (see Figure 2). Its eastern part is more or less conf<strong>in</strong>ed to<br />

<strong>the</strong> limits <strong>of</strong> Denmark’s exclusive economic zone (EEZ). In <strong>the</strong> west, it reaches<br />

<strong>in</strong>to <strong>the</strong> German and Swedish EEZs <strong>in</strong> order to fully cover <strong>the</strong> effect <strong>of</strong> actual<br />

and (possibly) future changes <strong>in</strong> <strong>the</strong> sea route system.<br />

<strong>Bornholm</strong>sgat<br />

The waters between <strong>Bornholm</strong> and <strong>the</strong> Swedish ma<strong>in</strong>land is known as<br />

<strong>Bornholm</strong>sgat. This is <strong>the</strong> area where <strong>the</strong> ma<strong>in</strong> traffic between North <strong>Sea</strong> and<br />

Baltic <strong>Sea</strong> runs. In <strong>the</strong> context <strong>of</strong> this study, <strong>the</strong> <strong>Bornholm</strong>sgat is understood <strong>in</strong><br />

a wider sense, such that it <strong>in</strong>cludes <strong>the</strong> merg<strong>in</strong>g po<strong>in</strong>ts with traffic sail<strong>in</strong>g nor<strong>the</strong>ast<br />

and south <strong>of</strong> <strong>Bornholm</strong> (see below).<br />

North-east <strong>of</strong> <strong>Bornholm</strong> These waters are frequented by ships sail<strong>in</strong>g between <strong>the</strong> Sou<strong>the</strong>ast Baltic <strong>Sea</strong><br />

(ma<strong>in</strong>ly Gdańsk/Kal<strong>in</strong><strong>in</strong>grad/Klaipėda) and <strong>the</strong> North <strong>Sea</strong> via <strong>Bornholm</strong>sgat.<br />

South <strong>of</strong> <strong>Bornholm</strong><br />

These waters are frequented by ships sail<strong>in</strong>g between <strong>the</strong> Sou<strong>the</strong>ast Baltic <strong>Sea</strong><br />

(ma<strong>in</strong>ly Gdańsk/Kal<strong>in</strong><strong>in</strong>grad/Klaipėda) and <strong>the</strong> North <strong>Sea</strong>, but avoid<strong>in</strong>g <strong>Bornholm</strong>sgat.<br />

This route is more direct for many ships, but is not preferable for<br />

ships with a large draught.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

13<br />

The study area is <strong>the</strong>refore slightly larger than Denmark’s exclusive economic<br />

zone (EEZ) <strong>around</strong> <strong>Bornholm</strong>.<br />

Accident rates will equally be calculated and illustrated for some surround<strong>in</strong>g<br />

areas outside <strong>the</strong> geographical boundaries <strong>in</strong> order to give a more coherent picture.<br />

However, <strong>the</strong>y will not be part <strong>of</strong> <strong>the</strong> aggregated results.<br />

Figure 2<br />

Geographical limits <strong>of</strong> <strong>the</strong> study (sea map from /KMS/)<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

14<br />

4 Data and Methods<br />

4.1 Ship data<br />

Lloyd’s register conta<strong>in</strong>s key data for all sea-go<strong>in</strong>g, self-propelled merchant<br />

ships larger than 100 gross tons. These data <strong>in</strong>clude a vessel’s dimensions, displacement,<br />

gross tonnage, dead weight tonnage, vessel type, speed, age, various<br />

constructive properties (bulb, ice class etc.) and many more.<br />

In <strong>the</strong> register, ships can be identified by <strong>the</strong>ir IMO number, <strong>the</strong>ir past and present<br />

names or <strong>the</strong>ir call sign.<br />

4.2 Ship traffic data<br />

The primary<br />

<strong>in</strong>tent <strong>of</strong> AIS<br />

4.2.1 AIS data<br />

Automatic Information System (AIS) is a system that allows ships and coast<br />

stations to keep track <strong>of</strong> all vessels <strong>in</strong> an area <strong>in</strong> order to avoid collisions. Every<br />

AIS user can see <strong>the</strong> name, IMO number, position, speed, course and o<strong>the</strong>r <strong>in</strong>formation<br />

for every o<strong>the</strong>r AIS-equipped ship with<strong>in</strong> a certa<strong>in</strong> geographical<br />

range.<br />

The International Maritime Organization (IMO) prescribes AIS devices on<br />

board <strong>of</strong> all vessels <strong>of</strong> 300 gross tons and larger. Many vessels below this limit<br />

are equally equipped with AIS.<br />

AIS as data<br />

m<strong>in</strong><strong>in</strong>g tool<br />

AIS can also be used <strong>in</strong> order to record every s<strong>in</strong>gle ship movement <strong>in</strong> an area<br />

dur<strong>in</strong>g an extended period. The Technical University <strong>of</strong> Denmark (DTU) has<br />

processed <strong>the</strong> AIS data for <strong>the</strong> study area for <strong>the</strong> two periods 01.07.2005-<br />

31.12.2005 and 01.07.2006-31.12.2006. The <strong>in</strong>troduction <strong>of</strong> <strong>the</strong> traffic separation<br />

scheme <strong>in</strong> <strong>the</strong> <strong>Bornholm</strong>sgat falls <strong>in</strong> between <strong>the</strong> two measurement periods.<br />

The effect <strong>of</strong> <strong>the</strong> new traffic separation scheme can be clearly seen by<br />

compar<strong>in</strong>g Figure 3 (before) and Figure 4 (after). The two-lane traffic pattern is<br />

very well visible <strong>in</strong> <strong>the</strong> 2006 picture.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

15<br />

Figure 3 Plot <strong>of</strong> all AIS traffic data from July-December 2005<br />

Figure 4 Plot <strong>of</strong> all AIS traffic data from July-December 2006<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

16<br />

Data preparation<br />

In order to use <strong>the</strong> AIS data <strong>in</strong> a collision and ground<strong>in</strong>g risk analysis, <strong>the</strong>y<br />

require fur<strong>the</strong>r preparation. A helpful approach is to def<strong>in</strong>e some virtual l<strong>in</strong>es<br />

and count all vessels that cross <strong>the</strong>m, toge<strong>the</strong>r with IMO number, speed, course<br />

over ground, <strong>the</strong> precise location <strong>of</strong> <strong>the</strong> cross<strong>in</strong>g and o<strong>the</strong>r <strong>in</strong>formation.<br />

COWI def<strong>in</strong>ed a number <strong>of</strong> those cross<strong>in</strong>g l<strong>in</strong>es, which were chosen <strong>in</strong> order to<br />

reflect <strong>the</strong> traffic patterns <strong>in</strong> a suit<strong>in</strong>g way (see Figure 5 and Figure 6). Subsequently,<br />

Technical University <strong>of</strong> Denmark (DTU) generated cross<strong>in</strong>g statistics<br />

for each <strong>of</strong> <strong>the</strong>se l<strong>in</strong>es. These statistics are <strong>the</strong> basics <strong>of</strong> all subsequent modell<strong>in</strong>g,<br />

as described <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g chapters.<br />

Figure 5<br />

Cross<strong>in</strong>g l<strong>in</strong>es, 2005 case<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

17<br />

Figure 6<br />

Cross<strong>in</strong>g l<strong>in</strong>es, 2006 case<br />

4.2.2 O<strong>the</strong>r data<br />

AIS data are not available for m<strong>in</strong>or ships, most specifically fish<strong>in</strong>g ships and<br />

yachts. Instead, data have been collected from o<strong>the</strong>r sources, such as ports and<br />

authorities.<br />

Fish<strong>in</strong>g boats<br />

The Danish Fish<strong>in</strong>g Directorate (Fiskeridirektoratet) keeps record <strong>of</strong> fish<strong>in</strong>g<br />

boats call<strong>in</strong>g at Danish ports. Their data <strong>in</strong>clude <strong>in</strong>formation about <strong>the</strong> orig<strong>in</strong> <strong>of</strong><br />

<strong>the</strong> journey, date <strong>of</strong> arrival, gross tonnage and vessel length.<br />

The HazID workshop provided valuable <strong>in</strong>formation about <strong>the</strong> most frequented<br />

fish<strong>in</strong>g grounds <strong>in</strong> <strong>the</strong> <strong>Bornholm</strong> area.<br />

Yachts<br />

This group <strong>of</strong> boats <strong>in</strong>cludes both motor and sail<strong>in</strong>g yachts.<br />

The operator <strong>of</strong> Nørrekås yacht harbour <strong>in</strong> Rønne provided a rough number <strong>of</strong><br />

yacht visits both for Nørrekås and <strong>the</strong> nearby commercial port <strong>of</strong> Rønne. Detailed<br />

statistics are available for Nexø.<br />

As far as all o<strong>the</strong>r yacht harbours <strong>in</strong> <strong>Bornholm</strong> and Christiansø are concerned,<br />

<strong>in</strong>formation is limited to <strong>the</strong> number <strong>of</strong> boat places (total/permanent/guests).<br />

S<strong>in</strong>ce <strong>the</strong> relation between visits and places is known for Rønne and Nexø, this<br />

can be used as a very rough estimate <strong>of</strong> traffic <strong>in</strong> <strong>the</strong> respective harbours, <strong>in</strong><br />

comb<strong>in</strong>ation with o<strong>the</strong>r numbers.<br />

These <strong>in</strong>clude estimates on <strong>the</strong> total number <strong>of</strong> visits to <strong>Bornholm</strong>/Christiansø<br />

as well as <strong>the</strong> police’s immigration statistics, which conta<strong>in</strong> <strong>the</strong> date and port <strong>of</strong><br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

18<br />

arrival for all yachts arriv<strong>in</strong>g from outside <strong>the</strong> Schengen area. At <strong>the</strong> time <strong>of</strong><br />

data collection, <strong>the</strong> “new” EU countries, such as Poland and <strong>the</strong> Baltic states,<br />

were not member <strong>of</strong> <strong>the</strong> Schengen group yet.<br />

O<strong>the</strong>r ships<br />

Rønne port authority provided statistics about <strong>the</strong> date <strong>of</strong> arrival and <strong>the</strong> size <strong>of</strong><br />

all vessels below 300 gross tons (AIS not compulsory) call<strong>in</strong>g at <strong>the</strong>ir port.<br />

Nexø port authority provided statistics <strong>of</strong> <strong>the</strong> total gross tonnage that has been<br />

shipped through <strong>the</strong> port as well as <strong>the</strong> total number <strong>of</strong> visits.<br />

4.3 Ship accident data<br />

Pr<strong>in</strong>cipally, accident rates are modelled by means <strong>of</strong> <strong>the</strong> collision and ground<strong>in</strong>g<br />

models <strong>in</strong>troduced <strong>in</strong> sections 4.5 and 4.6 below. However, it is helpful to<br />

compare with empirical ship accident data. These data have been collected <strong>in</strong><br />

an applicable form dur<strong>in</strong>g a relatively short period <strong>of</strong> time (10-15 years) compared<br />

to <strong>the</strong> observed accident rate (<strong>of</strong>ten less than one per year for major vessels<br />

<strong>in</strong> <strong>the</strong> area). Therefore, it is not possible to establish an empirical approach<br />

based on <strong>the</strong>se scarce records.<br />

However, <strong>the</strong> accident data are useful when verify<strong>in</strong>g <strong>the</strong> collision and ground<strong>in</strong>g<br />

model described fur<strong>the</strong>r below.<br />

Enlarged figure<br />

<strong>in</strong> Appendix D<br />

Figure 7 Ship accidents observed 1993-2006<br />

Figure 7 gives a graphical presentation <strong>of</strong> <strong>the</strong> accident data obta<strong>in</strong>ed for DMA<br />

and Sjöfartsverket. Swedish data only <strong>in</strong>clude collisions and ground<strong>in</strong>gs. The<br />

data depicted is from <strong>the</strong> period 1993-2006 and only data for which a geo-<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

19<br />

graphical position is given is <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> figure. However, descriptions below<br />

<strong>in</strong>clude all accidents irrespective <strong>of</strong> whe<strong>the</strong>r precise location is specified.<br />

For fur<strong>the</strong>r analysis only accident data collected from 1997 can be considered<br />

reliable. Data <strong>in</strong> DMAs accident statistics from 1993-1996 seems not to be<br />

complete, which has also been concluded <strong>in</strong> previous studies, and have not be<br />

<strong>in</strong>cluded <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g.<br />

4.3.1 Collisions<br />

In <strong>the</strong> area <strong>around</strong> <strong>Bornholm</strong> hav<strong>in</strong>g <strong>in</strong>terest for present study (largely 13°30' to<br />

15°50' and 54°40' to 55°30') <strong>the</strong>re has <strong>in</strong> a 10 year period (1997-2006) been 16<br />

collisions registered by Danish authorities and 3 by Swedish authorities. One<br />

accident is covered by both sets <strong>of</strong> statistics result<strong>in</strong>g <strong>in</strong> 18 collisions <strong>in</strong> 10<br />

years.<br />

Of <strong>the</strong>se 18 collisions, 6 are for sure not <strong>of</strong> <strong>in</strong>terest for this study, s<strong>in</strong>ce <strong>the</strong>se<br />

are collisions between vessels both under 300GT and this also seems to be <strong>the</strong><br />

case for an o<strong>the</strong>r 5 collisions. Thus, 7 <strong>of</strong> <strong>the</strong> 18 collisions <strong>in</strong>volve one or two<br />

vessels <strong>of</strong> 300GT or more. 5 <strong>of</strong> <strong>the</strong>se 7 collisions <strong>in</strong>volve fish<strong>in</strong>g vessels, 1 is<br />

<strong>the</strong> severe collision between <strong>the</strong> bulk carrier Fu Shan Hai and <strong>the</strong> conta<strong>in</strong>er ship<br />

Gdynia <strong>in</strong> 2003, which resulted <strong>in</strong> oil spill, and <strong>the</strong> last collision does not have<br />

sufficient description for fur<strong>the</strong>r conclusions.<br />

4.3.2 Ground<strong>in</strong>gs<br />

In <strong>the</strong> area <strong>around</strong> <strong>Bornholm</strong> hav<strong>in</strong>g <strong>in</strong>terest for present study (largely 13°30' to<br />

15°50' and 54°40' to 55°30') <strong>the</strong>re has <strong>in</strong> a 10 year period (1997-2006) been<br />

<strong>around</strong> 10 ground<strong>in</strong>gs registered by Danish authorities and 2 by Swedish authorities.<br />

However 5 <strong>of</strong> <strong>the</strong> 10 Danish registered ground<strong>in</strong>gs are ground<strong>in</strong>g by<br />

fish<strong>in</strong>g vessels below 300GT. Swedish authorities have registered 2 ground<strong>in</strong>gs<br />

<strong>in</strong> <strong>the</strong> area <strong>of</strong> <strong>in</strong>terest, however, 1 <strong>of</strong> <strong>the</strong>se is a small fish<strong>in</strong>g vessel result<strong>in</strong>g <strong>in</strong><br />

1 ground<strong>in</strong>g <strong>of</strong> <strong>in</strong>terest west <strong>of</strong> Sandhammaren. In a 10 year period 6 relevant<br />

ground<strong>in</strong>gs have this been registered.<br />

4.4 Geographic <strong>in</strong>formation<br />

Geographical <strong>in</strong>formation is obta<strong>in</strong>ed from Kort- & Matrikelstyrelsens<br />

“Levende Søkort” (“liv<strong>in</strong>g sea map”) /KMS/.<br />

4.5 Collision model<br />

The collision model describes <strong>the</strong> yearly rate <strong>of</strong> ship-ship collisions as well as<br />

<strong>the</strong> consequences <strong>of</strong> such events. A detailed description <strong>of</strong> <strong>the</strong> methods and assumptions<br />

is given <strong>in</strong> Appendix A.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

20<br />

4.5.1 Parallel collision frequency<br />

When two ships collide while sail<strong>in</strong>g on <strong>the</strong> same route, this is referred to as<br />

parallel collision. There are two basic cases:<br />

• Head-on collisions between two ships head<strong>in</strong>g <strong>in</strong> opposed directions<br />

• Overtak<strong>in</strong>g collisions between two ships head<strong>in</strong>g <strong>in</strong> <strong>the</strong> same direction<br />

These two cases are illustrated <strong>in</strong> Figure 8.<br />

V2, L2, B2<br />

µ, σ<br />

V2, L2, B2<br />

µ, σ<br />

µ, σ<br />

µ, σ<br />

V 1, L 1, B 1<br />

V 1, L 1, B 1<br />

Route length, L<br />

Route length, L<br />

Figure 8<br />

Head-on and overtak<strong>in</strong>g collisions<br />

Parallel collision frequencies depend on<br />

• <strong>the</strong> length <strong>of</strong> <strong>the</strong> route segment<br />

• <strong>the</strong> traffic <strong>in</strong>tensity <strong>in</strong> each <strong>of</strong> <strong>the</strong> two directions<br />

• width and speed <strong>of</strong> <strong>the</strong> ships<br />

• <strong>the</strong> deviation <strong>of</strong> <strong>the</strong> ships from <strong>the</strong> route axis<br />

• causation probability P C , i.e. <strong>the</strong> probability that none <strong>of</strong> <strong>the</strong> ships bound<br />

for collision undertakes successful evasive action.<br />

The ship and traffic data described earlier <strong>in</strong> this chapter provide this k<strong>in</strong>d <strong>of</strong><br />

<strong>in</strong>formation.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

21<br />

4.5.2 Cross<strong>in</strong>g collision frequency<br />

Any ship-ship collision that does not <strong>in</strong>volve two ships sail<strong>in</strong>g on <strong>the</strong> same<br />

route is classified as cross<strong>in</strong>g collision.<br />

In a first step, it has to be clarified, whe<strong>the</strong>r two ships can <strong>the</strong>oretically collide.<br />

This is only <strong>the</strong> case, if <strong>the</strong>ir traces <strong>in</strong>tersect. Essentially, <strong>the</strong>re are two basic<br />

k<strong>in</strong>ds <strong>of</strong> cross<strong>in</strong>gs: X-cross<strong>in</strong>gs (full <strong>in</strong>tersection) and Y-cross<strong>in</strong>gs (merg<strong>in</strong>g<br />

traffic):<br />

Figure 9<br />

X-type cross<strong>in</strong>g<br />

Figure 10<br />

Y-type cross<strong>in</strong>g with and without <strong>in</strong>tersection<br />

For X-cross<strong>in</strong>gs, basic prerequisite for collision is given <strong>in</strong> every s<strong>in</strong>gle cross<strong>in</strong>g<br />

event. For Y-cross<strong>in</strong>gs, this applies only to one out <strong>of</strong> two cross<strong>in</strong>g events<br />

on average.<br />

All o<strong>the</strong>r, more complex cross<strong>in</strong>g types, such as two-lane Y-cross<strong>in</strong>gs or<br />

roundabouts can be modelled as an array <strong>of</strong> several X- and Y-cross<strong>in</strong>gs (see<br />

Appendix A).<br />

On this basis, collision frequency is calculated based on<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

22<br />

• <strong>the</strong> traffic <strong>in</strong>tensity <strong>in</strong> each <strong>of</strong> <strong>the</strong> two directions<br />

• width, length and speed <strong>of</strong> <strong>the</strong> ships<br />

• <strong>the</strong> cross<strong>in</strong>g angle<br />

• causation probability P C , i.e. <strong>the</strong> probability that none <strong>of</strong> <strong>the</strong> ships bound<br />

for collision undertakes successful evasive action.<br />

4.5.3 Collision consequences<br />

Dur<strong>in</strong>g an earlier COWI project deal<strong>in</strong>g with oil and chemical spillage /COWI<br />

2007/, Erik Sonne Ravn and Peter Friis Hansen from DTU developed a simulation<br />

program for <strong>the</strong> consequences <strong>of</strong> ship-ship collisions.<br />

It simulates <strong>the</strong> consequences <strong>of</strong> a collision<br />

• between a large number <strong>of</strong> ship types and ship sizes<br />

• for different collision angles<br />

• for loaded and unloaded ships<br />

• with and without double hull<br />

• with and without bunker protection<br />

• <strong>in</strong> dependency <strong>of</strong> <strong>the</strong> geometry <strong>of</strong> <strong>the</strong> respective ship, i.e. number and location<br />

<strong>of</strong> compartments, location <strong>of</strong> bunker etc.<br />

In <strong>the</strong> orig<strong>in</strong>al version, <strong>the</strong>se consequences <strong>in</strong>cluded<br />

• loss <strong>of</strong> cargo <strong>in</strong> percent (for tankers and bulk carriers)<br />

• loss <strong>of</strong> bunker oil <strong>in</strong> percent (for all ship types)<br />

The program was extended for <strong>the</strong> present study <strong>in</strong> order to also yield<br />

• <strong>the</strong> diameter <strong>of</strong> <strong>the</strong> penetration hole <strong>in</strong> <strong>the</strong> hull <strong>of</strong> <strong>the</strong> struck ship<br />

• <strong>the</strong> probability <strong>of</strong> shipwreck (s<strong>in</strong>k<strong>in</strong>g)<br />

The simulation results are also used as a basis for determ<strong>in</strong><strong>in</strong>g<br />

• <strong>the</strong> expected number <strong>of</strong> lives lost<br />

• <strong>the</strong> loss <strong>of</strong> earn<strong>in</strong>gs while a damaged ship is be<strong>in</strong>g repaired<br />

Appendix A provides a more extensive description <strong>of</strong> <strong>the</strong> model.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


Sandhammeren<br />

Svartgrund<br />

<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

23<br />

4.6 Ground<strong>in</strong>g model<br />

The ground<strong>in</strong>g model describes <strong>the</strong> yearly rate <strong>of</strong> ships runn<strong>in</strong>g aground or<br />

ashore as well as <strong>the</strong> consequences <strong>of</strong> such events. A detailed description <strong>of</strong> <strong>the</strong><br />

methods and assumptions is given <strong>in</strong> Appendix B.<br />

4.6.1 Modell<strong>in</strong>g <strong>of</strong> <strong>the</strong> grounds<br />

Seen from a ship, an island does not appear as a more or less round object as<br />

from <strong>the</strong> air, but as a l<strong>in</strong>e on <strong>the</strong> horizon. In geometrical terms, this l<strong>in</strong>e is called<br />

a projection. If <strong>the</strong> course <strong>of</strong> <strong>the</strong> ship aims at a po<strong>in</strong>t <strong>in</strong>side <strong>the</strong> projection,<br />

<strong>the</strong> ship will run ashore, provided it cont<strong>in</strong>ues on a straight course.<br />

The same thought is valid for sub-sea grounds, even if <strong>the</strong>y are <strong>in</strong>visible. The<br />

only condition is that <strong>the</strong> ship draught is greater than <strong>the</strong> water depth at <strong>the</strong><br />

ground location. Therefore, a simple way <strong>of</strong> modell<strong>in</strong>g grounds is to determ<strong>in</strong>e<br />

<strong>the</strong>ir projections with respect to <strong>the</strong> relevant sea routes, as it is done <strong>in</strong> Figure<br />

11.<br />

Davids<br />

Banke<br />

Adler-<br />

grund<br />

Figure 11<br />

Ground projections (with green boarder l<strong>in</strong>es)<br />

If a ground is relevant for two sea routes, <strong>the</strong>n <strong>the</strong>re are two ground projections<br />

form<strong>in</strong>g a cross.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

24<br />

4.6.2 Modell<strong>in</strong>g <strong>of</strong> <strong>the</strong> ships<br />

When analys<strong>in</strong>g <strong>the</strong> ground<strong>in</strong>g probability, <strong>the</strong> relevant characteristic <strong>of</strong> a ship<br />

is its draught. In pr<strong>in</strong>ciple, <strong>the</strong> actual draught <strong>of</strong> a ship is transmitted via its AIS<br />

device. However, this piece <strong>of</strong> <strong>in</strong>formation was partly not reliable and partly<br />

not available for this study. Therefore, it was decided to use maximum draught<br />

<strong>in</strong>stead. Lloyd’s Register conta<strong>in</strong>s this type <strong>of</strong> <strong>in</strong>formation for every s<strong>in</strong>gle ship.<br />

Of course, this means that <strong>the</strong> ground<strong>in</strong>g risk will be systematically overestimated<br />

<strong>in</strong> <strong>the</strong> analysis, i.e. <strong>the</strong> model is quite conservative <strong>in</strong> this respect.<br />

4.6.3 Ground<strong>in</strong>g frequency<br />

The present study dist<strong>in</strong>guished two basic types <strong>of</strong> ground<strong>in</strong>gs. One is due to<br />

imprecise navigation (Figure 12). The o<strong>the</strong>r one occurs, when bridge personnel<br />

is lack<strong>in</strong>g attention due to alcohol, sleep<strong>in</strong>ess and o<strong>the</strong>r distractions. Failure <strong>of</strong><br />

bridge <strong>in</strong>formation systems can have <strong>the</strong> same effect (Figure 13).<br />

Figure 12<br />

Ground<strong>in</strong>g due to imprecise navigation<br />

turn<strong>in</strong>g<br />

po<strong>in</strong>t<br />

--- sea route ---<br />

Figure 13<br />

Ground<strong>in</strong>g due to missed turn<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

25<br />

In both accident modes, <strong>the</strong> same parameters determ<strong>in</strong>e <strong>the</strong> ground<strong>in</strong>g probability:<br />

• ground depth and vessel draught<br />

• location <strong>of</strong> vessel and ground<br />

• distribution <strong>of</strong> <strong>the</strong> vessel course (i.e. <strong>the</strong> weight <strong>of</strong> <strong>the</strong> different arrows <strong>in</strong><br />

Figure 12)<br />

In addition, missed-turn ground<strong>in</strong>gs depend on<br />

• <strong>the</strong> distance between turn<strong>in</strong>g po<strong>in</strong>t and ground<br />

• <strong>the</strong> frequency, at which bridge personnel checks ship position and course<br />

Appendix B provides a more detailed description.<br />

4.6.4 Ground<strong>in</strong>g consequences<br />

The consequence model for ground<strong>in</strong>gs is based on a previous project /COWI<br />

2007/. The model provides an estimate for <strong>the</strong> spillage <strong>of</strong> cargo (oil tankers)<br />

and <strong>of</strong> bunker oil (all ship types) based on a statistical approach.<br />

Fur<strong>the</strong>rmore, some relations describ<strong>in</strong>g <strong>the</strong> probability and extent <strong>of</strong> ship damage<br />

as well as <strong>the</strong> expected number <strong>of</strong> lives lost were needed for <strong>the</strong> risk assessment.<br />

These modell<strong>in</strong>g aspects are fur<strong>the</strong>r expla<strong>in</strong>ed <strong>in</strong> Appendix B.<br />

4.7 Direct cost model<br />

Accident costs occur with some uncerta<strong>in</strong>ty, because accidents are uncerta<strong>in</strong>.<br />

Therefore <strong>the</strong>y are referred to expected costs. Expected costs are opposed to<br />

direct costs, i.e. costs that will occur with certa<strong>in</strong>ty.<br />

In <strong>the</strong> case <strong>of</strong> traffic re-rout<strong>in</strong>g, such direct costs (or benefits) arise ma<strong>in</strong>ly because<br />

<strong>of</strong> <strong>the</strong> difference <strong>in</strong> route lengths, lead<strong>in</strong>g to different sail<strong>in</strong>g durations<br />

between po<strong>in</strong>t A and po<strong>in</strong>t B. Among o<strong>the</strong>rs, this affects<br />

• fuel consumption costs<br />

• capital costs for own<strong>in</strong>g and runn<strong>in</strong>g <strong>the</strong> ship<br />

• external costs, i.e. damage due to ship eng<strong>in</strong>e exhaust fumes<br />

Appendix C quantifies <strong>the</strong>se factors <strong>in</strong> DKK per kilometre for a number <strong>of</strong> ship<br />

types and sizes. The numbers are based on ship trad<strong>in</strong>g data from /Clarksons<br />

2007/ and environmental data from /Transportm<strong>in</strong>/.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

26<br />

Apart from <strong>the</strong> mentioned costs, o<strong>the</strong>r factors can contribute <strong>in</strong> case <strong>of</strong> a traffic<br />

re-rout<strong>in</strong>g. These are caused by sea map edit<strong>in</strong>g, buoy <strong>in</strong>stallation etc.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

27<br />

5 Retrospective <strong>Risk</strong> Assessment <strong>of</strong> <strong>the</strong><br />

<strong>Bornholm</strong> Gat <strong>Traffic</strong> Separation Scheme<br />

5.1 Hazard identification (FSA step 1)<br />

The hazard identification was performed dur<strong>in</strong>g Workshop I. Its result is displayed<br />

as a list <strong>in</strong> Appendix F.<br />

It is common to rank hazards <strong>in</strong> a qualitative way <strong>in</strong> order to determ<strong>in</strong>e, which<br />

<strong>of</strong> <strong>the</strong>m deserve quantitative <strong>in</strong>vestigation. However, it turned out that all significant<br />

hazards are covered by <strong>the</strong> accident models considered <strong>in</strong> <strong>the</strong> present<br />

study (compare chapter 4). Therefore, rank<strong>in</strong>g is regarded as be<strong>in</strong>g futile <strong>in</strong> <strong>the</strong><br />

present context.<br />

5.2 <strong>Risk</strong> control options (FSA step 3)<br />

The risk control measure, i.e. <strong>the</strong> <strong>in</strong>troduction <strong>of</strong> a traffic separation scheme <strong>in</strong><br />

<strong>the</strong> <strong>Bornholm</strong>sgat has been <strong>in</strong>troduced prior to this analysis. The present analysis<br />

is meant to assess its effectiveness <strong>in</strong> terms <strong>of</strong> safety and cost-benefit effects.<br />

5.3 Comparative risk assessment (FSA step 2 and 4)<br />

This section compares <strong>the</strong> situation <strong>in</strong> July-December 2005 (no traffic separation)<br />

to <strong>the</strong> situation <strong>in</strong> July-December 2006 (traffic separation scheme implemented).<br />

All numbers are based on <strong>the</strong> number <strong>of</strong> accidents expected for <strong>the</strong><br />

observed traffic patterns.<br />

These frequencies are relatively small, i.e. less than one event per year for <strong>the</strong><br />

different accident types. Therefore, compar<strong>in</strong>g with <strong>the</strong> actual events dur<strong>in</strong>g<br />

July-December 2005 and July-December 2006 is not an option.<br />

In /IMO FSA/, risk assessment and cost-benefit assessment are regarded as two<br />

separate steps. This is necessary, because accident costs (expected costs) are<br />

usually not <strong>the</strong> only costs. A risk-reduction measure usually also leads to direct<br />

costs that occur <strong>in</strong>dependently <strong>of</strong> any accident, such as implementation costs,<br />

changes <strong>in</strong> ship operation costs due to shorter/longer routes etc.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

28<br />

However, direct costs are not relevant for <strong>the</strong> retrospective view upon <strong>the</strong> <strong>in</strong>troduction<br />

<strong>of</strong> <strong>the</strong> traffic separation scheme <strong>in</strong> 2006. When accident costs are <strong>the</strong><br />

only cost/benefit contribution, it becomes mean<strong>in</strong>gless to differentiate between<br />

a comparative risk assessment (us<strong>in</strong>g monetary units) and a cost-benefit assessment.<br />

Results for 2005<br />

traffic data<br />

5.3.1 Effect upon expected accident frequency<br />

Table 5 provides a concentrated overview over <strong>the</strong> results obta<strong>in</strong>ed for <strong>the</strong> traffic<br />

pattern observed <strong>in</strong> 2005. A more visual illustration is given <strong>in</strong> Figure 14<br />

and <strong>the</strong> follow<strong>in</strong>g 2 .<br />

Table 5<br />

Accident frequencies expected for 2005 traffic data<br />

<strong>Area</strong><br />

Parallel<br />

collisions<br />

Cross<strong>in</strong>g<br />

collisions<br />

Imprecision<br />

ground<strong>in</strong>gs<br />

Missed-turn<br />

ground<strong>in</strong>gs<br />

Total<br />

<strong>Bornholm</strong>sgat 0.135 0.200 0.190 0.000 0.525<br />

NE <strong>of</strong> <strong>Bornholm</strong> 0.001 0.010 0.087 0.000 0.098<br />

S <strong>of</strong> <strong>Bornholm</strong> 0.006 0.033 0.192 0.000 0.232<br />

All 0.142 0.243 0.469 0.000 0.855<br />

Little surpris<strong>in</strong>gly, <strong>the</strong> largest share <strong>of</strong> all accidents is expected <strong>in</strong> <strong>the</strong> <strong>Bornholm</strong>sgat,<br />

where sea traffic is heaviest. The contribution <strong>of</strong> parallel collisions,<br />

cross<strong>in</strong>g collisions and ground<strong>in</strong>gs due to imprecise navigation is <strong>in</strong> about balanced<br />

<strong>the</strong>re. Parallel collisions are made up <strong>of</strong> head-on collisions and overtak<strong>in</strong>g<br />

collisions <strong>in</strong> equal shares (Figure 14).<br />

This is not <strong>the</strong> case for <strong>the</strong> areas north-east and south <strong>of</strong> <strong>Bornholm</strong>. There, parallel<br />

collisions < cross<strong>in</strong>g collisions < imprecision ground<strong>in</strong>gs is <strong>the</strong> case, each<br />

time with about one order <strong>of</strong> magnitude <strong>in</strong> between. Figure 14 and <strong>the</strong> follow<strong>in</strong>g<br />

illustrate that traffic <strong>in</strong> this area is not only weaker, but also much less concentrated<br />

when compar<strong>in</strong>g with <strong>the</strong> <strong>Bornholm</strong>sgat. Parallel collisions are much<br />

more likely if traffic for concentrated traffic. With cross<strong>in</strong>g collisions, <strong>the</strong>re is<br />

no such dependency (see also Appendix A for an explanation <strong>of</strong> <strong>the</strong> collision<br />

models). Ground<strong>in</strong>g is by far <strong>the</strong> most significant contribution to accident frequency<br />

<strong>in</strong> <strong>the</strong>se waters.<br />

Missed-turn ground<strong>in</strong>gs do not appear at all <strong>in</strong> any <strong>of</strong> <strong>the</strong> simulations. This is<br />

due to <strong>the</strong> model that was chosen, which is <strong>the</strong> only scientifically approved<br />

model available at <strong>the</strong> moment. However, it is designed for much narrower<br />

straits and <strong>the</strong>refore does not describe <strong>the</strong> present situation sufficiently well<br />

(discussion <strong>in</strong> Appendix B). In fact, a number <strong>of</strong> this type <strong>of</strong> accident have been<br />

observed <strong>in</strong> <strong>the</strong> <strong>Bornholm</strong>sgat.<br />

2 Note that <strong>the</strong> figures also <strong>in</strong>clude results ly<strong>in</strong>g outside <strong>the</strong> geographical limits <strong>of</strong> <strong>the</strong> study<br />

area, unlike <strong>the</strong> <strong>in</strong>formation <strong>in</strong> <strong>the</strong> tables (see Figure 2 for description <strong>of</strong> <strong>the</strong> study area).<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

29<br />

Collisions <strong>in</strong>volv<strong>in</strong>g small vessels amount to 5.8% <strong>of</strong> accidents. The majority<br />

<strong>of</strong> <strong>the</strong>se accidents concern fish<strong>in</strong>g boats (5.6%), whereas only a small part <strong>in</strong>volves<br />

sail<strong>in</strong>g and motor yachts (0.2%).<br />

Results for 2006<br />

traffic data<br />

Table 6 conta<strong>in</strong>s <strong>the</strong> basic accident frequencies for <strong>the</strong> traffic pattern recorded<br />

<strong>in</strong> 2006. These numbers are illustrated by Figure 15 and <strong>the</strong> follow<strong>in</strong>g.<br />

Table 6<br />

Accident frequencies expected for 2006 traffic data<br />

<strong>Area</strong><br />

Parallel<br />

collisions<br />

Cross<strong>in</strong>g<br />

collisions<br />

Imprecision<br />

ground<strong>in</strong>gs<br />

Missed-turn<br />

ground<strong>in</strong>gs<br />

Total<br />

<strong>Bornholm</strong>sgat 0.120 0.204 0.169 0.000 0.493<br />

NE <strong>of</strong> <strong>Bornholm</strong> 0.001 0.009 0.088 0.000 0.098<br />

S <strong>of</strong> <strong>Bornholm</strong> 0.009 0.035 0.195 0.000 0.239<br />

All 0.130 0.248 0.452 0.000 0.830<br />

Judg<strong>in</strong>g by Table 6, <strong>the</strong> relative contribution <strong>of</strong> <strong>the</strong> different areas and accident<br />

types is <strong>in</strong> about <strong>the</strong> same as for 2005. Amongst o<strong>the</strong>rs, this is also <strong>the</strong> case for<br />

parallel collisions. Yet, Figure 15 reveals that parallel collisions are dom<strong>in</strong>ated<br />

by overtak<strong>in</strong>g collisions, whereas head-on collisions contribute only a small<br />

percentage.<br />

Small vessels contribute <strong>in</strong> a similar way as <strong>in</strong> 2005: A share <strong>of</strong> 4.9% <strong>of</strong> all accidents<br />

is due to collisions with fish<strong>in</strong>g boats, 0.2% are due collisions with<br />

yachts.<br />

Comparison <strong>of</strong><br />

2005 and 2006<br />

Judg<strong>in</strong>g by <strong>the</strong> overview <strong>in</strong> Table 7, <strong>the</strong> total accident frequency estimate<br />

changes only little between 2005 and 2006 traffic data. A reduction by 3% is<br />

not strong enough to be called significant. The result depends upon each s<strong>in</strong>gle<br />

ship passage and it has to be considered that no ship sails precisely <strong>the</strong> same<br />

way twice. <strong>Traffic</strong> volume was practically <strong>the</strong> same <strong>in</strong> <strong>the</strong> two years.<br />

Table 7 Change <strong>in</strong> expected accident frequencies from 2005 to 2006<br />

<strong>Area</strong><br />

Parallel<br />

collisions<br />

Cross<strong>in</strong>g<br />

collisions<br />

Imprecision<br />

ground<strong>in</strong>gs<br />

Missed-turn<br />

ground<strong>in</strong>gs<br />

Total<br />

<strong>Bornholm</strong>sgat -11% 2% -11% - -6%<br />

NE <strong>of</strong> <strong>Bornholm</strong> -39% -2% +1% - +0%<br />

S <strong>of</strong> <strong>Bornholm</strong> +47% +5% +1% - +3%<br />

All -9% 2% -4% - -3%<br />

However, <strong>the</strong>re are significant differences with respect to <strong>the</strong> share <strong>of</strong> <strong>the</strong> different<br />

accident types, which is more than relevant, consider<strong>in</strong>g that different<br />

accident types have different consequences (which will prove to have a great<br />

effect <strong>in</strong> section 5.3.2).<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

30<br />

The most strik<strong>in</strong>g change concerns parallel collisions, which are sub-divided<br />

<strong>in</strong>to head-on and overtak<strong>in</strong>g collisions. Even although parallel collisions became<br />

only 11% less likely, <strong>the</strong>re is a strong descent <strong>in</strong> (dangerous) head-on collisions<br />

toge<strong>the</strong>r with an <strong>in</strong>crease <strong>in</strong> (not so dangerous) overtak<strong>in</strong>g collisions.<br />

This change is a direct consequence <strong>of</strong> <strong>the</strong> traffic separation. In fact, <strong>the</strong> <strong>in</strong>crease<br />

<strong>in</strong> overtak<strong>in</strong>g collisions does probably not correspond to <strong>the</strong> real situation,<br />

but is due to <strong>the</strong> nature <strong>of</strong> <strong>the</strong> geometrical collision model (see Appendix<br />

A). The shift between head-on and overtak<strong>in</strong>g collisions can be clearly seen<br />

when compar<strong>in</strong>g Figure 14 and Figure 15.<br />

Parallel collisions have changed drastically both north-east and south <strong>of</strong> <strong>Bornholm</strong>.<br />

This change can <strong>in</strong> part be expla<strong>in</strong>ed by a relocation <strong>of</strong> traffic to/from <strong>the</strong><br />

Gdańsk Bay from north-east to south <strong>around</strong> <strong>Bornholm</strong>. This relocation is a<br />

consequence <strong>of</strong> <strong>the</strong> traffic separation scheme, because ships arriv<strong>in</strong>g from <strong>the</strong><br />

east are brought to merge with <strong>the</strong> ma<strong>in</strong> <strong>Bornholm</strong>sgat traffic <strong>in</strong> a different<br />

way.<br />

However, <strong>the</strong> low absolute probabilities <strong>of</strong> parallel collisions and <strong>the</strong> low ship<br />

passage frequency appear to be part <strong>of</strong> <strong>the</strong> reasons <strong>of</strong> <strong>the</strong> strong relative change:<br />

Every s<strong>in</strong>gle ship has a strong <strong>in</strong>fluence upon <strong>the</strong> result, especially when ships<br />

on route traffic do not sail <strong>in</strong> a clear sea system, but follow <strong>the</strong> route <strong>in</strong> a more<br />

or less random pattern.<br />

Cross<strong>in</strong>g collisions rema<strong>in</strong> more or less unchanged. Compar<strong>in</strong>g Figure 16 and<br />

Figure 17 may give a less clear image, because <strong>the</strong> pictograms are arranged <strong>in</strong> a<br />

different way <strong>in</strong> order to depict <strong>the</strong> differ<strong>in</strong>g traffic patterns correctly. However,<br />

Table 7 shows that <strong>the</strong> numbers are basically unchanged.<br />

Of course, one would expect less dangerous cross<strong>in</strong>g situation consider<strong>in</strong>g that<br />

<strong>the</strong> traffic patterns have become more easily predictable for traffic participants.<br />

This, however, is not covered by <strong>the</strong> model, which is <strong>of</strong> a mostly geometrical<br />

character.<br />

Expected ground<strong>in</strong>g frequency equally decreased for <strong>the</strong> 2006 traffic data case.<br />

This illustrates <strong>the</strong> effect <strong>of</strong> <strong>the</strong> new S-shaped sea route. It avoids two grounds,<br />

Sandhammaren and Davids Banke (illustrated <strong>in</strong> Figure 11). This, however,<br />

only leads to a clear effect <strong>in</strong> <strong>the</strong> case <strong>of</strong> Sandhammeren.<br />

Collisions with small vessels are affected, too. Collisions between major vessels<br />

and fish<strong>in</strong>g boats sank by 14%, whereas similar accidents with yachts rose<br />

by 6% due to <strong>the</strong> new traffic separation system. This <strong>in</strong>crease is not due to <strong>the</strong><br />

traffic separation scheme, but basically due to <strong>in</strong>creased ferry and fast ferry<br />

traffic to and from Rønne port (accord<strong>in</strong>g to AIS records). However, <strong>the</strong> absolute<br />

contribution <strong>of</strong> yachts can be neglected compared to that <strong>of</strong> fish<strong>in</strong>g boats.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

31<br />

Enlarged figure<br />

<strong>in</strong> Appendix D<br />

Figure 14<br />

Expected frequency <strong>of</strong> parallel collisions for 2005 traffic data<br />

Enlarged figure<br />

<strong>in</strong> Appendix D<br />

Figure 15<br />

Expected frequency <strong>of</strong> parallel collisions for 2006 traffic data<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

32<br />

Enlarged figure<br />

<strong>in</strong> Appendix D<br />

Figure 16<br />

Expected frequency <strong>of</strong> cross<strong>in</strong>g collisions for 2005 traffic data<br />

Enlarged figure<br />

<strong>in</strong> Appendix D<br />

Figure 17<br />

Expected frequency <strong>of</strong> cross<strong>in</strong>g collisions for 2006 traffic data<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

33<br />

Enlarged figure<br />

<strong>in</strong> Appendix D<br />

Figure 18 Expected frequency <strong>of</strong> ground<strong>in</strong>gs due to imprecise navigation for 2005<br />

traffic data<br />

Enlarged figure<br />

<strong>in</strong> Appendix D<br />

Figure 19 Expected frequency <strong>of</strong> ground<strong>in</strong>gs due to imprecise navigation for 2005<br />

traffic data<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

34<br />

5.3.2 Effect upon risk (cost-benefit assessment)<br />

Comb<strong>in</strong><strong>in</strong>g <strong>the</strong> accident frequencies from <strong>the</strong> previous section with <strong>the</strong> accident<br />

consequences yields risk. This study covers a number <strong>of</strong> different consequences<br />

that can be measured <strong>in</strong> different units, such as number <strong>of</strong> lives lost, damaged<br />

ship hull area, repair time or amount <strong>of</strong> oil spilt, as described <strong>in</strong> chapters 3<br />

and 4.<br />

All <strong>the</strong>se consequences and units are converted <strong>in</strong>to a monetary measure. If<br />

consequences are expressed <strong>in</strong> monetary units, <strong>the</strong>n risk means expected cost/<br />

expected benefit.<br />

The results will be grouped <strong>in</strong>to two classes <strong>in</strong> order to provide a better overview:<br />

• Clean-up costs <strong>in</strong>clude all direct costs orig<strong>in</strong>at<strong>in</strong>g from an oil spill. This<br />

concerns spillage from oil tankers as well as from <strong>the</strong> bunker tanks <strong>of</strong> ord<strong>in</strong>ary<br />

ships<br />

• Loss <strong>of</strong> assets <strong>in</strong>clude all o<strong>the</strong>r costs concern<strong>in</strong>g <strong>the</strong> ship owner and crew,<br />

such as repair costs, loss <strong>of</strong> bus<strong>in</strong>ess dur<strong>in</strong>g repair, total ship loss, loss <strong>of</strong><br />

cargo and loss <strong>of</strong> life<br />

Results for 2005<br />

traffic data<br />

A look at Table 8 shows that cross<strong>in</strong>g collisions account for approx. 60% <strong>of</strong> all<br />

consequences, whereas parallel collisions contribute 30% and ground<strong>in</strong>gs 10%.<br />

This distribution differs somewhat from <strong>the</strong> accident frequencies <strong>in</strong> Table 5. In<br />

particular, it appears that ground<strong>in</strong>gs have only comparatively small consequences,<br />

despite <strong>of</strong> <strong>the</strong>ir relatively high frequency.<br />

Table 8<br />

Expected accident costs [DKK] for 2005 traffic data – by accident type<br />

<strong>Area</strong><br />

Parallel<br />

collisions<br />

Cross<strong>in</strong>g<br />

collisions<br />

Imprecision<br />

ground<strong>in</strong>gs<br />

Missed-turn<br />

ground<strong>in</strong>gs<br />

Total<br />

<strong>Bornholm</strong>sgat 8,812,000 15,747,000 2,205,000 0 26,764,000<br />

NE <strong>of</strong> <strong>Bornholm</strong> 122,000 266,000 303,000 0 692,000<br />

S <strong>of</strong> <strong>Bornholm</strong> 200,000 811,000 549,000 0 1,560,000<br />

All 9,135,000 16,823,000 3,057,000 0 29,015,000<br />

Two tendencies are predom<strong>in</strong>ant <strong>in</strong> Table 9, where <strong>the</strong> results are displayed by<br />

consequence type: The highest risk occurs <strong>in</strong> <strong>the</strong> <strong>Bornholm</strong>sgat (where traffic is<br />

strongest) and <strong>the</strong> dom<strong>in</strong>at<strong>in</strong>g consequence type is clean-up costs. A comb<strong>in</strong>ation<br />

<strong>of</strong> both, i.e. clean-up costs <strong>in</strong> <strong>the</strong> <strong>Bornholm</strong>sgat, stands <strong>the</strong>refore for<br />

approx. 75% <strong>of</strong> all expected costs. These results are equally illustrated <strong>in</strong><br />

Figure 20 and Figure 22 3 .<br />

3 Note that <strong>the</strong> figures also <strong>in</strong>clude results ly<strong>in</strong>g outside <strong>the</strong> geographical limits <strong>of</strong> <strong>the</strong> study<br />

area, unlike <strong>the</strong> <strong>in</strong>formation <strong>in</strong> <strong>the</strong> tables (see Figure 2 for description <strong>of</strong> <strong>the</strong> study area).<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

35<br />

As stated <strong>in</strong> Section 6.3.1, missed-turn ground<strong>in</strong>gs do not appear at all <strong>in</strong> any <strong>of</strong><br />

<strong>the</strong> simulations. This is due to <strong>the</strong> model that was chosen, which is <strong>the</strong> only scientifically<br />

approved model available at <strong>the</strong> moment. However, it is designed for<br />

much narrower straits and <strong>the</strong>refore does not describe <strong>the</strong> present situation sufficiently<br />

well (discussion <strong>in</strong> Appendix B). In fact, a number <strong>of</strong> this type <strong>of</strong> accident<br />

have been observed <strong>in</strong> <strong>the</strong> <strong>Bornholm</strong>sgat.<br />

Table 9<br />

Expected accident costs [DKK] for 2005 traffic data<br />

– by consequence type<br />

<strong>Area</strong> Loss <strong>of</strong> life & assets Clean-up costs Total<br />

<strong>Bornholm</strong>sgat 4,916,000 21,848,000 26,764,000<br />

NE <strong>of</strong> <strong>Bornholm</strong> 256,000 436,000 692,000<br />

S <strong>of</strong> <strong>Bornholm</strong> 641,000 919,000 1,560,000<br />

All 5,812,000 23,203,000 29,015,000<br />

Fur<strong>the</strong>rmore, an <strong>in</strong>terest<strong>in</strong>g comparison can be made between consequence<br />

types <strong>in</strong> <strong>the</strong> <strong>Bornholm</strong>sgat on one side and <strong>the</strong> area north-east/south <strong>of</strong> <strong>Bornholm</strong><br />

on <strong>the</strong> o<strong>the</strong>r side: The relation between loss <strong>of</strong> life & assets and clean-up<br />

costs is 1:4.5 <strong>in</strong> <strong>the</strong> <strong>Bornholm</strong>sgat, whereas it is 1:1.5 north-east/south <strong>of</strong> <strong>Bornholm</strong>.<br />

In o<strong>the</strong>r words, <strong>the</strong> contribution <strong>of</strong> clean-up costs is grossly disproportional<br />

only <strong>in</strong> <strong>the</strong> <strong>Bornholm</strong>sgat.<br />

Apparently, oil tankers make up a higher share <strong>of</strong> traffic <strong>in</strong> <strong>the</strong> <strong>Bornholm</strong>sgat<br />

than elsewhere, result<strong>in</strong>g <strong>in</strong> a larger than average spill per accident. This is little<br />

surpris<strong>in</strong>g, given that <strong>the</strong>re is more water depth <strong>the</strong>re. Besides, <strong>Bornholm</strong>sgat is<br />

a part <strong>of</strong> <strong>the</strong> shortest connection between <strong>the</strong> Russian oil harbour <strong>of</strong> Primorsk<br />

and <strong>the</strong> entrance to <strong>the</strong> Baltic <strong>Sea</strong>.<br />

The risk contribution <strong>of</strong> small vessels is practically <strong>the</strong> same as <strong>the</strong>ir contribution<br />

to accident frequencies. Collisions with fish<strong>in</strong>g boats are responsible for<br />

5.4% or DKK 1.15 million per year, collisions with sail<strong>in</strong>g and motor yachts<br />

for 0.6% or DKK 987,000 per year.<br />

Results for 2006<br />

traffic data<br />

Accord<strong>in</strong>g to <strong>the</strong> results <strong>in</strong> Table 10, cross<strong>in</strong>g collisions are responsible for almost<br />

80% <strong>of</strong> <strong>the</strong> expected damage. Compar<strong>in</strong>g <strong>the</strong> weight <strong>of</strong> expected accident<br />

costs (Figure 21 and Figure 23) with that <strong>of</strong> expected accident frequencies<br />

(Figure 15 and Figure 17) shows that parallel collisions have only little effect<br />

despite <strong>of</strong> <strong>the</strong>ir high frequency. However, most parallel collisions are <strong>of</strong> <strong>the</strong><br />

overtak<strong>in</strong>g collision type, clearly outnumber<strong>in</strong>g <strong>the</strong> much more hazardous<br />

head-on collision type.<br />

Collisions with fish<strong>in</strong>g boats contribute 4.0% or DKK 0.99 million per year to<br />

<strong>the</strong> results. For yachts, <strong>the</strong> contribution amounts to 0.3 % or DKK 105,000 per<br />

year.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

36<br />

Table 10<br />

Expected accident costs [DKK] for 2006 traffic data – by accident type<br />

<strong>Area</strong><br />

Parallel<br />

collisions<br />

Cross<strong>in</strong>g<br />

collisions<br />

Imprecision<br />

ground<strong>in</strong>gs<br />

Missed-turn<br />

ground<strong>in</strong>gs<br />

Total<br />

<strong>Bornholm</strong>sgat 1,440,000 12,396,000 2,100,000 0 15,937,000<br />

NE <strong>of</strong> <strong>Bornholm</strong> 81,000 251,000 329,000 0 661,000<br />

S <strong>of</strong> <strong>Bornholm</strong> 275,000 847,000 563,000 0 1,684,000<br />

All 1,796,000 13,493,000 2,992,000 0 18,281,000<br />

Table 11<br />

Expected accident costs [DKK] for 2006 traffic data<br />

– by consequence type<br />

<strong>Area</strong> Loss <strong>of</strong> life & assets Clean-up costs Total<br />

<strong>Bornholm</strong>sgat 3,528,000 12,409,000 15,937,000<br />

NE <strong>of</strong> <strong>Bornholm</strong> 263,000 398,000 661,000<br />

S <strong>of</strong> <strong>Bornholm</strong> 724,000 960,000 1,684,000<br />

All 4,514,000 13,767,000 18,281,000<br />

Comparison <strong>of</strong><br />

2005 and 2006<br />

As illustrated <strong>in</strong> <strong>the</strong> tables below, <strong>the</strong> <strong>in</strong>troduction <strong>of</strong> <strong>the</strong> traffic separation<br />

scheme <strong>in</strong> 2006 leads to a risk reduction by 37%. The largest contribution orig<strong>in</strong>ates<br />

from <strong>the</strong> decrease <strong>of</strong> parallel collision risk <strong>in</strong> <strong>the</strong> <strong>Bornholm</strong>sgat. This effect<br />

is remarkable, consider<strong>in</strong>g that <strong>the</strong> frequency <strong>of</strong> parallel collisions did not<br />

change between <strong>the</strong> two traffic cases. However, <strong>the</strong> balance between <strong>the</strong> two<br />

parallel collisions types – head-on and overtak<strong>in</strong>g collisions – changed fundamentally.<br />

This fact has already been discussed above <strong>in</strong> section 5.3.1, but its effect only<br />

becomes apparent <strong>in</strong> <strong>the</strong> face <strong>of</strong> <strong>the</strong> risk numbers <strong>in</strong> Table 12 and Table 13. Little<br />

surpris<strong>in</strong>gly, head-on collisions are much more dangerous than overtak<strong>in</strong>g<br />

collisions. The underly<strong>in</strong>g modell<strong>in</strong>g assumptions can be read <strong>in</strong> Appendix A.<br />

Table 12<br />

Change <strong>in</strong> expected accident costs from 2005 to 2006 – by accident type<br />

<strong>Area</strong><br />

Parallel<br />

collisions<br />

Cross<strong>in</strong>g<br />

collisions<br />

Imprecision<br />

ground<strong>in</strong>gs<br />

Missed-turn<br />

ground<strong>in</strong>gs<br />

Total<br />

<strong>Bornholm</strong>sgat -84% -21% -5% - -40%<br />

NE <strong>of</strong> <strong>Bornholm</strong> -35% -6% +9% - -5%<br />

S <strong>of</strong> <strong>Bornholm</strong> +38% +4% +2% - +8%<br />

All -80% -20% -2% - -37%<br />

The consequences <strong>of</strong> parallel collisions are equally affected <strong>in</strong> <strong>the</strong> areas nor<strong>the</strong>ast<br />

and south <strong>of</strong> <strong>Bornholm</strong>. However, <strong>the</strong>se changes are proportional to <strong>the</strong><br />

changes <strong>in</strong> parallel collisions frequencies (Table 7). As stated above <strong>in</strong> section<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

37<br />

5.3.1, <strong>the</strong>se variations are partly due to a relocation <strong>of</strong> traffic from <strong>the</strong> nor<strong>the</strong>ast<br />

to <strong>the</strong> south and partly due low number <strong>of</strong> ships <strong>in</strong> this areas, which attributes<br />

high statistical weight to <strong>the</strong> behaviour <strong>of</strong> each s<strong>in</strong>gle vessel. Besides, <strong>the</strong><br />

absolute contribution <strong>of</strong> parallel collision risk is comparatively small when relat<strong>in</strong>g<br />

to <strong>the</strong> total risk.<br />

Ano<strong>the</strong>r significant change concerns cross<strong>in</strong>g collision risk <strong>in</strong> <strong>the</strong> <strong>Bornholm</strong>sgat.<br />

As with parallel collisions, this is remarkable, consider<strong>in</strong>g that <strong>the</strong> expected<br />

frequency <strong>of</strong> cross<strong>in</strong>g collisions did not change. Most likely, <strong>the</strong> changed route<br />

geometry reduced <strong>the</strong> average collisions angle and <strong>the</strong>refore <strong>the</strong> severity <strong>of</strong> <strong>the</strong><br />

consequences.<br />

Ground<strong>in</strong>g risk changes <strong>in</strong> l<strong>in</strong>e with ground<strong>in</strong>g frequency. This change is most<br />

significant <strong>in</strong> <strong>the</strong> <strong>Bornholm</strong>sgat, where absolute risk values are highest. Here,<br />

<strong>the</strong> effect is mostly due to <strong>the</strong> S-shape <strong>of</strong> <strong>the</strong> new traffic separation scheme,<br />

lead<strong>in</strong>g <strong>around</strong> <strong>the</strong> two grounds Sandhammeren and Davids Banke (illustrated<br />

<strong>in</strong> Figure 11). The drop <strong>in</strong> risk is due to <strong>the</strong> effect at Sandhammeren only.<br />

Table 13 Change <strong>in</strong> expected accident costs from 2005 to 2006<br />

– by consequence type<br />

<strong>Area</strong> Loss <strong>of</strong> life & assets Clean-up costs Total<br />

<strong>Bornholm</strong>sgat -28% -43% -40%<br />

NE <strong>of</strong> <strong>Bornholm</strong> +3% -9% -5%<br />

S <strong>of</strong> <strong>Bornholm</strong> +13% +5% +8%<br />

All -22% -41% -37%<br />

Accord<strong>in</strong>g to Table 13, expected clean-up costs fell more strongly than expected<br />

loss <strong>of</strong> assets. This effect is most prounounced <strong>in</strong> <strong>the</strong> <strong>Bornholm</strong>sgat,<br />

where most <strong>of</strong> <strong>the</strong> large oil tankers sail (i.e. from Primorsk to <strong>the</strong> North <strong>Sea</strong>).<br />

The risk <strong>of</strong> accidents <strong>in</strong>volv<strong>in</strong>g small ships is reduced by 13%.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

38<br />

Enlarged figure<br />

<strong>in</strong> Appendix D<br />

Figure 20<br />

Expected yearly loss <strong>of</strong> assets (<strong>in</strong>clud<strong>in</strong>g loss <strong>of</strong> life) for 2005 traffic<br />

data<br />

Enlarged figure<br />

<strong>in</strong> Appendix D<br />

Figure 21<br />

Expected yearly loss <strong>of</strong> assets (<strong>in</strong>clud<strong>in</strong>g loss <strong>of</strong> life) for 2006 traffic<br />

data<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

39<br />

Enlarged figure<br />

<strong>in</strong> Appendix D<br />

Figure 22<br />

Expected yearly clean-up costs for 2005 traffic data<br />

Enlarged figure<br />

<strong>in</strong> Appendix D<br />

Figure 23<br />

Expected yearly clean-up costs for 2006 traffic data<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

40<br />

5.4 Discussion and recommendations (FSA step 5)<br />

Accord<strong>in</strong>g to <strong>the</strong> analysis, <strong>the</strong> expected accident costs are reduced from DKK<br />

29.0 million (€3.9 million) to DKK 18.3 million (€2.5 million) per year due to<br />

<strong>the</strong> <strong>in</strong>troduction <strong>of</strong> <strong>the</strong> new traffic separation scheme <strong>in</strong> <strong>the</strong> <strong>Bornholm</strong>sgat. This<br />

corresponds to a reduction by 37%.<br />

The drop <strong>in</strong> risk is mostly due to <strong>the</strong> separated lanes, lead<strong>in</strong>g to a radical reduction<br />

<strong>of</strong> <strong>the</strong> expected head-on collision frequency by 84%. As a consequence,<br />

cross<strong>in</strong>g collisions now rema<strong>in</strong> as <strong>the</strong> only major risk contributor, despite <strong>of</strong><br />

equally hav<strong>in</strong>g been reduced. The shape <strong>of</strong> <strong>the</strong> traffic scheme has had a positive<br />

effect upon ground<strong>in</strong>g risk. However, <strong>the</strong> latter change is small, both <strong>in</strong> relative<br />

and <strong>in</strong> absolute terms.<br />

In reality, <strong>the</strong> effect <strong>of</strong> <strong>the</strong> traffic separation scheme can be expected to be even<br />

greater than <strong>in</strong>dicated by <strong>the</strong> analysis. The analysis is mostly based upon different<br />

geometrical models, which take human behaviour only <strong>in</strong>to account <strong>in</strong> a<br />

general way. Therefore, <strong>the</strong> psychological effect <strong>of</strong> a more clear traffic pattern<br />

with designated precautionary areas is not <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> cross<strong>in</strong>g collision<br />

analysis. As far as parallel collisions are concerned, only <strong>the</strong> overtak<strong>in</strong>g component<br />

is comb<strong>in</strong>ed with a risk reduction factor, which was deemed conservative<br />

by Workshop II participants. It accounts for <strong>the</strong> fact that ships follow each<br />

o<strong>the</strong>r at view<strong>in</strong>g distance over a long period before potentially collid<strong>in</strong>g. Besides<br />

<strong>the</strong>y do so <strong>in</strong> full conscience <strong>of</strong> sail<strong>in</strong>g on a highly frequented route.<br />

Judg<strong>in</strong>g by <strong>the</strong> results, it appears that <strong>the</strong> decision to <strong>in</strong>troduce a traffic separation<br />

scheme <strong>in</strong> 2006 was clearly favourable with respect to risk, i.e. expected<br />

ship accident costs.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

41<br />

6 Prospective <strong>Risk</strong> Assessment <strong>of</strong> Route<br />

Specifications for <strong>Traffic</strong> to and from <strong>the</strong><br />

Gdańsk Bay<br />

6.1 Hazard identification (FSA Step 1)<br />

The hazard identification was performed dur<strong>in</strong>g Workshop I. Its result is displayed<br />

as a list <strong>in</strong> Appendix F.<br />

It is common to rank hazards <strong>in</strong> a qualitative way <strong>in</strong> order to determ<strong>in</strong>e, which<br />

<strong>of</strong> <strong>the</strong>m deserve quantitative <strong>in</strong>vestigation. However, it turned out that all significant<br />

hazards are covered by <strong>the</strong> accident models considered <strong>in</strong> <strong>the</strong> present<br />

study (compare chapter 4). Therefore, rank<strong>in</strong>g is regarded as be<strong>in</strong>g futile <strong>in</strong> <strong>the</strong><br />

present context.<br />

6.2 <strong>Risk</strong> control options (FSA Step 3)<br />

6.2.1 Description <strong>of</strong> <strong>the</strong> risk control measures<br />

Danish Maritime Authority asked for assess<strong>in</strong>g <strong>the</strong> effect <strong>of</strong> a possible vessel<br />

draught limitation <strong>in</strong> <strong>the</strong> area north-east and south <strong>of</strong> <strong>Bornholm</strong>. This affects<br />

ma<strong>in</strong>ly traffic related to <strong>the</strong> ports <strong>of</strong> Gdańsk, Kal<strong>in</strong><strong>in</strong>grad and Klaipėda. The<br />

limitations are meant to<br />

• take all ships sail<strong>in</strong>g north-east <strong>of</strong> Adlergrund with a draught between 7<br />

and 10 m and divert <strong>the</strong>m to <strong>the</strong> area south <strong>of</strong> Adlergrund (both located<br />

south <strong>of</strong> <strong>Bornholm</strong>, as illustrated <strong>in</strong> Figure 11)<br />

• take all ships sail<strong>in</strong>g south <strong>of</strong> <strong>Bornholm</strong> with a draught above 10 m and<br />

divert <strong>the</strong>m to <strong>the</strong> area north-east <strong>of</strong> <strong>Bornholm</strong>.<br />

The geographical arrangement is illustrated <strong>in</strong> Figure 2 at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

report.<br />

6.2.2 Modell<strong>in</strong>g <strong>of</strong> <strong>the</strong> risk control measures<br />

As a first step, <strong>the</strong> above-described risk control measures need to be <strong>in</strong>tegrated<br />

<strong>in</strong>to <strong>the</strong> model. This is done by tak<strong>in</strong>g <strong>the</strong> observed traffic and rearrang<strong>in</strong>g it<br />

accord<strong>in</strong>g to <strong>the</strong> traffic diversion described above.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

42<br />

In pr<strong>in</strong>ciple, this means that all ships that are go<strong>in</strong>g to be diverted are deleted<br />

from <strong>the</strong>ir present routes <strong>in</strong> <strong>the</strong> traffic data base and added to <strong>the</strong>ir alternative<br />

routes. In <strong>the</strong> course <strong>of</strong> this process it is assumed that <strong>the</strong> additional ships will<br />

behave <strong>the</strong> same way as those ships that have previously been sail<strong>in</strong>g on <strong>the</strong><br />

alternative route. This concerns ma<strong>in</strong>ly <strong>the</strong>ir distribution over <strong>the</strong> width <strong>of</strong> a<br />

route and differs between ships <strong>of</strong> different draught.<br />

6.3 Comparative risk assessment (FSA Step 2)<br />

This section compares <strong>the</strong> actually observed situation <strong>in</strong> July-December 2006<br />

(traffic separation scheme implemented) to <strong>the</strong> situation that can be expected if<br />

<strong>the</strong> above-described measures are implemented. All numbers are based on <strong>the</strong><br />

number <strong>of</strong> accidents expected for <strong>the</strong> observed traffic patterns.<br />

These frequencies are very small, i.e. less than one event per year for <strong>the</strong> different<br />

accident types. Therefore, compar<strong>in</strong>g with <strong>the</strong> actual events dur<strong>in</strong>g July-<br />

December 2006 is not an option.<br />

Results for observed<br />

2006 traffic<br />

6.3.1 Effect upon expected accident frequency<br />

The results for <strong>the</strong>se traffic data are illustrated and described <strong>in</strong> <strong>the</strong> retrospective<br />

analysis <strong>of</strong> <strong>Bornholm</strong>sgat, section 5.3.1. Table 6 is reproduced <strong>in</strong> order to<br />

facilitate comparison:<br />

Table 14<br />

Accident frequencies expected for observed 2006 traffic data<br />

<strong>Area</strong><br />

Parallel<br />

collisions<br />

Cross<strong>in</strong>g<br />

collisions<br />

Imprecision<br />

ground<strong>in</strong>gs<br />

Missed-turn<br />

ground<strong>in</strong>gs<br />

Total<br />

<strong>Bornholm</strong>sgat 0.120 0.204 0.169 0.000 0.493<br />

NE <strong>of</strong> <strong>Bornholm</strong> 0.001 0.009 0.088 0.000 0.098<br />

S <strong>of</strong> <strong>Bornholm</strong> 0.009 0.035 0.195 0.000 0.239<br />

All 0.130 0.248 0.452 0.000 0.830<br />

Results for redistributed<br />

2006 traffic<br />

Table 15 provides an overview over <strong>the</strong> situation expected after <strong>the</strong> <strong>in</strong>troduction<br />

<strong>of</strong> a traffic diversion. It is equally illustrated <strong>in</strong> Figure 24 and follow<strong>in</strong>g 4 .<br />

W<br />

hen regard<strong>in</strong>g <strong>the</strong> areas that are dom<strong>in</strong>ated by traffic to/from <strong>the</strong> Gdańsk Bay,<br />

i.e. <strong>the</strong> areas north-east and south <strong>of</strong> <strong>Bornholm</strong>, it appears that parallel collisions<br />

< cross<strong>in</strong>g collisions < ground<strong>in</strong>gs is <strong>the</strong> case. The relative difference between<br />

<strong>the</strong>se accident types is more pronounced <strong>in</strong> <strong>the</strong> north-east, where traffic<br />

is weaker. This is little surpris<strong>in</strong>g, given that ground<strong>in</strong>g frequency is l<strong>in</strong>ear dependent<br />

upon traffic <strong>in</strong>tensity, whereas parallel and cross<strong>in</strong>g collisions frequencies<br />

are quadratic functions.<br />

4 Note that <strong>the</strong> figures also <strong>in</strong>clude results ly<strong>in</strong>g outside <strong>the</strong> geographical limits <strong>of</strong> <strong>the</strong> study<br />

area, unlike <strong>the</strong> <strong>in</strong>formation <strong>in</strong> <strong>the</strong> tables (see Figure 2 for description <strong>of</strong> <strong>the</strong> study area).<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

43<br />

Table 15<br />

Accident frequencies expected for redistributed 2006 traffic data<br />

<strong>Area</strong><br />

Parallel<br />

collisions<br />

Cross<strong>in</strong>g<br />

collisions<br />

Imprecision<br />

ground<strong>in</strong>gs<br />

Missed-turn<br />

ground<strong>in</strong>gs<br />

Total<br />

<strong>Bornholm</strong>sgat 0.118 0.204 0.175 0.000 0.497<br />

NE <strong>of</strong> <strong>Bornholm</strong> 0.001 0.010 0.094 0.000 0.105<br />

S <strong>of</strong> <strong>Bornholm</strong> 0.009 0.032 0.169 0.000 0.209<br />

All 0.128 0.245 0.438 0.000 0.811<br />

Comparison <strong>of</strong><br />

<strong>the</strong> two cases<br />

As expected, divert<strong>in</strong>g large vessels from south <strong>of</strong> <strong>Bornholm</strong> to north-east <strong>of</strong><br />

<strong>Bornholm</strong> reduces accident frequencies <strong>in</strong> <strong>the</strong> former area while augment<strong>in</strong>g<br />

<strong>the</strong>m <strong>in</strong> <strong>the</strong> latter (Table 16).<br />

The same effect is occurs for medium-draught vessels sail<strong>in</strong>g south <strong>of</strong> <strong>Bornholm</strong>.<br />

They rema<strong>in</strong> <strong>in</strong> <strong>the</strong> south, but are forced to pass Adlergrund shallow on<br />

<strong>the</strong> south side <strong>in</strong>stead <strong>of</strong> <strong>the</strong> north side (compare ground locations <strong>in</strong> Figure<br />

11). This, too, is reflected by <strong>the</strong> accident numbers, as can be seen when compar<strong>in</strong>g<br />

<strong>the</strong> status quo (Figure 15 and follow<strong>in</strong>g) to <strong>the</strong> redistributed situation<br />

(Figure 24 and follow<strong>in</strong>g).<br />

Table 16<br />

Change <strong>in</strong> expected accident frequencies <strong>in</strong> case <strong>of</strong> a traffic diversion<br />

<strong>Area</strong><br />

Parallel<br />

collisions<br />

Cross<strong>in</strong>g<br />

collisions<br />

Imprecision<br />

ground<strong>in</strong>gs<br />

Missed-turn<br />

ground<strong>in</strong>gs<br />

Total<br />

<strong>Bornholm</strong>sgat -1% +0% +4% - +1%<br />

NE <strong>of</strong> <strong>Bornholm</strong> +17% +4% +7% - +7%<br />

S <strong>of</strong> <strong>Bornholm</strong> -3% -10% -14% - -13%<br />

All -1% -1% -3% - -2%<br />

The total is effect well noticeable, s<strong>in</strong>ce accident frequencies drop by 13%<br />

south <strong>of</strong> <strong>Bornholm</strong> while ris<strong>in</strong>g by 7% <strong>in</strong> <strong>the</strong> north-east. In total, this corresponds<br />

to a drop by 7% for accidents related to traffic to/from <strong>the</strong> Gdańsk Bay.<br />

This shows that <strong>the</strong> proposed traffic diversion does not simply redistribute accidents,<br />

but actually reduces <strong>the</strong>m on an overall level.<br />

The effect gets a little diluted when <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> numbers for <strong>Bornholm</strong>sgat,<br />

which have a very high weight due to <strong>the</strong> much more heavy traffic (reduction<br />

by 2%, see Table 16).<br />

When regard<strong>in</strong>g <strong>the</strong> effect upon parallel collisions, it might appear that accident<br />

frequencies grew disproportionally north-east <strong>of</strong> <strong>Bornholm</strong> (+17%) with respect<br />

to <strong>the</strong> reduction south <strong>of</strong> <strong>Bornholm</strong> (-3%). However, it has to be seen that<br />

absolute frequencies are almost one decade lower <strong>in</strong> <strong>the</strong> north-east, such that<br />

percental changes automatically look more significant than <strong>the</strong> change actually<br />

is.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

44<br />

Enlarged figure<br />

<strong>in</strong> Appendix D<br />

Figure 24<br />

Expected frequency <strong>of</strong> parallel collisions for redistributed traffic<br />

Enlarged figure<br />

<strong>in</strong> Appendix D<br />

Figure 25<br />

Expected frequency <strong>of</strong> cross<strong>in</strong>g collisions for redistributed traffic<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

45<br />

Enlarged figure<br />

<strong>in</strong> Appendix D<br />

Figure 26<br />

Expected frequency <strong>of</strong> ground<strong>in</strong>gs due to imprecise navigation for redistributed<br />

traffic<br />

There is a slight reduction <strong>in</strong> collisions with fish<strong>in</strong>g boats (-1.6%) and an even<br />

more slight <strong>in</strong>crease <strong>in</strong> collisions with yachts (+0.4%). This is hardly relevant,<br />

consider<strong>in</strong>g that fish<strong>in</strong>g boats contribute only 5% to all accident and yachts less<br />

than 1%.<br />

6.3.2 Effect upon expected accident costs<br />

Comb<strong>in</strong><strong>in</strong>g <strong>the</strong> accident frequencies from <strong>the</strong> previous section with <strong>the</strong> accident<br />

consequences yields risk. This study covers a number <strong>of</strong> different consequences<br />

that can measured <strong>in</strong> different units, such as number <strong>of</strong> lives lost, damaged ship<br />

hull area, repair time or amount <strong>of</strong> spilt oil, as described <strong>in</strong> chapters 3 and 4.<br />

All <strong>the</strong>se consequences and units are converted <strong>in</strong>to money. If consequences are<br />

expressed <strong>in</strong> monetary units, <strong>the</strong>n risk means <strong>the</strong> same expected cost/expected<br />

benefit. These results will be used <strong>in</strong> <strong>the</strong> cost-benefit analysis <strong>in</strong> section 6.4.<br />

Results for observed<br />

2006 traffic<br />

The results for <strong>the</strong>se traffic data are illustrated and described <strong>in</strong> <strong>the</strong> retrospective<br />

analysis <strong>of</strong> <strong>Bornholm</strong>sgat, section 5.3.2..<br />

Table 10 and Table 11 are reproduced <strong>in</strong> order to facilitate comparison:<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

46<br />

Table 17<br />

Expected accident costs [DKK] for observed 2006 traffic data<br />

– by accident type<br />

<strong>Area</strong><br />

Parallel<br />

collisions<br />

Cross<strong>in</strong>g<br />

collisions<br />

Imprecision<br />

ground<strong>in</strong>gs<br />

Missed-turn<br />

ground<strong>in</strong>gs<br />

Total<br />

<strong>Bornholm</strong>sgat 1,440,000 12,396,000 2,100,000 0 15,937,000<br />

NE <strong>of</strong> <strong>Bornholm</strong> 81,000 251,000 329,000 0 661,000<br />

S <strong>of</strong> <strong>Bornholm</strong> 275,000 847,000 563,000 0 1,684,000<br />

All 1,796,000 13,493,000 2,992,000 0 18,281,000<br />

Table 18<br />

Expected accident costs [DKK] for observed 2006 traffic data<br />

– by consequence type<br />

<strong>Area</strong> Loss <strong>of</strong> life & assets Clean-up costs Total<br />

<strong>Bornholm</strong>sgat 3,528,000 12,409,000 15,937,000<br />

NE <strong>of</strong> <strong>Bornholm</strong> 263,000 398,000 661,000<br />

S <strong>of</strong> <strong>Bornholm</strong> 724,000 960,000 1,684,000<br />

All 4,514,000 13,767,000 18,281,000<br />

Ship operation costs (<strong>in</strong>clud<strong>in</strong>g externalities) result from add<strong>in</strong>g <strong>the</strong> operation<br />

costs <strong>of</strong> all ships sail<strong>in</strong>g on <strong>the</strong> different routes that run north-east <strong>of</strong> and south<br />

<strong>of</strong> <strong>Bornholm</strong>. These routes reunite at some po<strong>in</strong>t <strong>in</strong> <strong>the</strong> east (<strong>of</strong>f <strong>the</strong> Polish<br />

coast) and at some po<strong>in</strong>t <strong>in</strong> <strong>the</strong> west (between Germany and Sweden). There,<br />

<strong>the</strong>y redistribute <strong>in</strong>to new routes (Kadetrenden and Øresund routes <strong>in</strong> <strong>the</strong> west,<br />

Gdańsk/Kal<strong>in</strong><strong>in</strong>grad route and Klaipėda route <strong>in</strong> <strong>the</strong> east).<br />

Between <strong>the</strong>se redistribution po<strong>in</strong>ts, which are located 170-180 nm from each<br />

o<strong>the</strong>r (depend<strong>in</strong>g on <strong>the</strong> chosen route), ship operation costs (<strong>in</strong>clud<strong>in</strong>g externalities)<br />

amount to DKK 794,500,000 per year. The correspond<strong>in</strong>g traffic volume<br />

amounted to approx. 6400 vessel passages <strong>in</strong> 2006, when count<strong>in</strong>g all ships<br />

sail<strong>in</strong>g to and from Gdańsk/Kal<strong>in</strong><strong>in</strong>grad/Klaipėda.<br />

Results for redistributed<br />

2006 traffic<br />

Table 19 and Table 20 provide an overview over <strong>the</strong> situation expected after <strong>the</strong><br />

<strong>in</strong>troduction <strong>of</strong> a traffic diversion. It is equally illustrated <strong>in</strong> Figure 27 and<br />

Figure 28 5 .<br />

Although ground<strong>in</strong>g is <strong>the</strong> accident type with <strong>the</strong> highest frequency <strong>in</strong> <strong>the</strong> areas<br />

north-east and south <strong>of</strong> <strong>Bornholm</strong> (Table 15), its contribution to expected accident<br />

costs is smaller than that <strong>of</strong> cross<strong>in</strong>g collisions <strong>in</strong> <strong>the</strong> area to <strong>the</strong> south<br />

(Table 19). In <strong>the</strong> north-east, <strong>the</strong> ground<strong>in</strong>g contribution is only little higher<br />

than that from cross<strong>in</strong>g collisions, even although <strong>the</strong> frequency is 10 times as<br />

5 Note that <strong>the</strong> figures also <strong>in</strong>clude results ly<strong>in</strong>g outside <strong>the</strong> geographical limits <strong>of</strong> <strong>the</strong> study<br />

area, unlike <strong>the</strong> <strong>in</strong>formation <strong>in</strong> <strong>the</strong> tables (see Figure 2 for description <strong>of</strong> <strong>the</strong> study area).<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

47<br />

high. In o<strong>the</strong>r terms, ground<strong>in</strong>g consequences are simply much less severe than<br />

collision consequences.<br />

Table 19<br />

Expected accident costs [DKK] for redistributed 2006 traffic data<br />

– by accident type<br />

<strong>Area</strong><br />

Parallel<br />

collisions<br />

Cross<strong>in</strong>g<br />

collisions<br />

Imprecision<br />

ground<strong>in</strong>gs<br />

Missed-turn<br />

ground<strong>in</strong>gs<br />

Total<br />

<strong>Bornholm</strong>sgat 1,390,000 12,272,000 2,144,000 0 15,807,000<br />

NE <strong>of</strong> <strong>Bornholm</strong> 99,000 260,000 364,000 0 722,000<br />

S <strong>of</strong> <strong>Bornholm</strong> 258,000 744,000 465,000 0 1,467,000<br />

All 1,747,000 13,276,000 2,973,000 0 17,996,000<br />

Table 20<br />

Expected accident costs [DKK] for redistributed 2006 traffic data<br />

– by consequence type<br />

<strong>Area</strong> Loss <strong>of</strong> life & assets Clean-up costs Total<br />

<strong>Bornholm</strong>sgat 3,539,000 12,268,000 15,807,000<br />

NE <strong>of</strong> <strong>Bornholm</strong> 286,000 436,000 722,000<br />

S <strong>of</strong> <strong>Bornholm</strong> 640,000 827,000 1,467,000<br />

All 4,465,000 13,531,000 17,996,000<br />

Ships sail<strong>in</strong>g to and from Gdańsk/Kal<strong>in</strong><strong>in</strong>grad/Klaipėda would face operation<br />

costs <strong>of</strong> DKK 798,500,000 per year <strong>in</strong>clud<strong>in</strong>g externalities.<br />

Comparison <strong>of</strong><br />

accident costs<br />

When regard<strong>in</strong>g <strong>the</strong> area north-east and south <strong>of</strong> <strong>Bornholm</strong>, i.e. <strong>the</strong>re where<br />

traffic from Gdańsk/Kal<strong>in</strong><strong>in</strong>grad/Klaipėda is dom<strong>in</strong>at<strong>in</strong>g, <strong>the</strong> follow<strong>in</strong>g picture<br />

emerges: Expected accident costs rose <strong>in</strong> <strong>the</strong> north-east and fell <strong>in</strong> <strong>the</strong> south. In<br />

total, this amounts to a net reduction <strong>in</strong> expected costs, which fell from DKK<br />

2.34 million (€0.31 million) to DKK 2.19 (€0.29 million) per year, correspond<strong>in</strong>g<br />

to -6.5%. This result is composed <strong>of</strong> a risk reduction <strong>in</strong> <strong>the</strong> south and a less<br />

strong risk <strong>in</strong>crease <strong>in</strong> <strong>the</strong> north-east.<br />

Includ<strong>in</strong>g <strong>Bornholm</strong>sgat dilutes <strong>the</strong> result because <strong>of</strong> <strong>the</strong> much higher traffic<br />

volume <strong>in</strong> this area (-2%, see Table 21).<br />

With<strong>in</strong> <strong>the</strong> area predom<strong>in</strong>antly affected by Gdańsk Bay traffic (north-east and<br />

south <strong>of</strong> <strong>Bornholm</strong>), <strong>the</strong> total risk from parallel collisions rema<strong>in</strong>s basically unchanged.<br />

There is, however a clear net risk reduction <strong>in</strong> this area as far as cross<strong>in</strong>g<br />

collisions and ground<strong>in</strong>gs are concerned.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

48<br />

Table 21<br />

Change <strong>in</strong> expected accident costs <strong>in</strong> case <strong>of</strong> a traffic diversion<br />

– by accident type<br />

<strong>Area</strong><br />

Parallel<br />

collisions<br />

Cross<strong>in</strong>g<br />

collisions<br />

Imprecision<br />

ground<strong>in</strong>gs<br />

Missed-turn<br />

ground<strong>in</strong>gs<br />

Total<br />

<strong>Bornholm</strong>sgat -4% -1% +2% - -1%<br />

NE <strong>of</strong> <strong>Bornholm</strong> +23% +4% +10% - +9%<br />

S <strong>of</strong> <strong>Bornholm</strong> -6% -12% -17% - -13%<br />

All -3% -2% -1% - -2%<br />

Table 22<br />

Change <strong>in</strong> expected accident costs <strong>in</strong> case <strong>of</strong> a traffic diversion<br />

– by consequence type<br />

<strong>Area</strong> Loss <strong>of</strong> life & assets Clean-up costs Total<br />

<strong>Bornholm</strong>sgat +0% -1% -1%<br />

NE <strong>of</strong> <strong>Bornholm</strong> +9% +10% +9%<br />

S <strong>of</strong> <strong>Bornholm</strong> -12% -14% -13%<br />

All -1% -2% -2%<br />

Loss <strong>of</strong> assets and clean-up costs are <strong>in</strong> <strong>the</strong> same order <strong>of</strong> magnitude <strong>in</strong> <strong>the</strong> areas<br />

north-east and south <strong>of</strong> <strong>Bornholm</strong> (Table 20) and change <strong>in</strong> about <strong>the</strong> same<br />

way <strong>in</strong> both areas, if a traffic diversion is <strong>in</strong>troduced Table 22).<br />

Enlarged figure<br />

<strong>in</strong> Appendix D<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

49<br />

Figure 27<br />

Expected yearly loss <strong>of</strong> assets (<strong>in</strong>clud<strong>in</strong>g loss <strong>of</strong> life) for 2005 traffic<br />

data<br />

Enlarged figure<br />

<strong>in</strong> Appendix D<br />

Figure 28<br />

Expected yearly clean-up costs for redistributed traffic<br />

As far as collisions with small vessels are concerned, <strong>the</strong> situation is <strong>the</strong> same<br />

as for accident frequencies: There is a slight reduction <strong>in</strong> collisions with fish<strong>in</strong>g<br />

boats (-1.6%) and an even more slight <strong>in</strong>crease <strong>in</strong> collisions with yachts<br />

(+0.4%). Besides, fish<strong>in</strong>g boats contribute only 5% to total risk and yachts less<br />

than 1%.<br />

6.4 Cost-benefit assessment (FSA step 4)<br />

Costs and benefits can occur <strong>in</strong> two ways:<br />

• as expected costs/benefits, i.e. as a result <strong>of</strong> uncerta<strong>in</strong> events, such as ship<br />

accidents.<br />

• as direct costs/benefits, i.e. as a result <strong>of</strong> scheduled events, such as operat<strong>in</strong>g<br />

a ship (fuel, capital <strong>in</strong>vestment, external damage due to ship eng<strong>in</strong>e exhaust<br />

fumes, see section 4.7).<br />

In fact, <strong>the</strong> step from a comparative risk assessment towards a cost-benefit<br />

analysis is relatively small, consider<strong>in</strong>g that expected costs and benefits have<br />

already been analysed <strong>in</strong> section 6.3.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

50<br />

In Table 23 direct costs are added. Apparently, <strong>the</strong> picture is different than <strong>in</strong><br />

<strong>the</strong> case <strong>of</strong> <strong>the</strong> comparative risk analysis: Although direct costs rise only little<br />

<strong>in</strong> relative terms (+0.5%), this has a very strong effect <strong>in</strong> absolute terms. Table<br />

23 shows that operation cost <strong>in</strong>clud<strong>in</strong>g externalities rises by almost DKK 4 million<br />

per year due to <strong>the</strong> conceived traffic diversion. This clearly outbalances <strong>the</strong><br />

accident risk reduction <strong>of</strong> DKK 285,000 per year.<br />

Table 23<br />

Change <strong>in</strong> total costs <strong>in</strong> case <strong>of</strong> a traffic diversion. Values <strong>in</strong> DKK<br />

per year<br />

<strong>Area</strong> Orig<strong>in</strong>al traffic Redistributed traffic Balance<br />

Loss <strong>of</strong> life & assets 4,514,000 4,465,000 -49,000<br />

Clean-up costs 13,767,000 13,531,000 -236,000<br />

Operation costs &<br />

externalities<br />

794,518,000 798,477,000 +3,959,000<br />

All 812,799,000 816,473,000 +3,674,000<br />

The <strong>in</strong>crease <strong>in</strong> operational costs and externalities is a direct consequence <strong>of</strong> <strong>the</strong><br />

proposed re-rout<strong>in</strong>g. A large part <strong>of</strong> <strong>the</strong> traffic is directed away from <strong>the</strong> shortest<br />

route, which runs north <strong>of</strong> Adlergrund (south <strong>of</strong> <strong>Bornholm</strong>, see Figure 11).<br />

Here, all medium and large draught vessels are affected. Fur<strong>the</strong>rmore, medium<br />

draught vessels are moved from <strong>the</strong> area south <strong>of</strong> Adlergrund (south <strong>of</strong> <strong>Bornholm</strong>)<br />

to <strong>the</strong> routes runn<strong>in</strong>g north-east <strong>of</strong> <strong>Bornholm</strong>, which equally corresponds<br />

to e few extra miles.<br />

The tables <strong>in</strong> Appendix C show that operation costs and externalities are distributed<br />

roughly <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g way: Externalities contribute 50-65%,<br />

whereas 20-30% are due to fuel costs and 15-20% are due to capital costs, depend<strong>in</strong>g<br />

on ship type and size.<br />

6.5 Sensitivity analysis<br />

In <strong>the</strong> future it can be expected that <strong>the</strong> large vessel traffic will <strong>in</strong>crease between<br />

<strong>the</strong> Gdańsk/Kal<strong>in</strong><strong>in</strong>grad/Klaipėda and <strong>the</strong> entrance <strong>of</strong> <strong>the</strong> Baltic <strong>Sea</strong>.<br />

Therefore, it was decided to perform a sensitivity analysis compar<strong>in</strong>g<br />

• <strong>the</strong> case where <strong>the</strong> traffic from 2006 is redistributed accord<strong>in</strong>g to <strong>the</strong> vessel<br />

draught limitations from section 6.2.<br />

• and <strong>the</strong> case where <strong>the</strong> redistributed traffic conta<strong>in</strong>s 30% more large ships<br />

(draught > 10 m) than <strong>in</strong> 2006.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

51<br />

Results for redistributed<br />

& <strong>in</strong>creased<br />

traffic<br />

Table 24 and follow<strong>in</strong>g present <strong>the</strong> expected accident frequencies and costs after<br />

an <strong>in</strong>crease <strong>in</strong> large ships sail<strong>in</strong>g to/from <strong>the</strong> Gdańsk Bay. These numbers<br />

are equally illustrated by Figure 29 onwards 6 .<br />

Table 24<br />

Accident frequencies expected for redistributed and <strong>in</strong>creased<br />

2006 traffic data<br />

<strong>Area</strong><br />

Parallel<br />

collisions<br />

Cross<strong>in</strong>g<br />

collisions<br />

Imprecision<br />

ground<strong>in</strong>gs<br />

Missed-turn<br />

ground<strong>in</strong>gs<br />

Total<br />

<strong>Bornholm</strong>sgat 0.118 0.206 0.179 0.000 0.503<br />

NE <strong>of</strong> <strong>Bornholm</strong> 0.001 0.010 0.101 0.000 0.112<br />

S <strong>of</strong> <strong>Bornholm</strong> 0.009 0.032 0.169 0.000 0.209<br />

All 0.128 0.248 0.448 0.000 0.824<br />

Table 25<br />

Expected accident costs [DKK] for redistributed and <strong>in</strong>creased<br />

2006 traffic data – by accident type<br />

<strong>Area</strong><br />

Parallel<br />

collisions<br />

Cross<strong>in</strong>g<br />

collisions<br />

Imprecision<br />

ground<strong>in</strong>gs<br />

Missed-turn<br />

ground<strong>in</strong>gs<br />

Total<br />

<strong>Bornholm</strong>sgat 1,391,000 12,544,000 2,167,000 0 16,102,000<br />

NE <strong>of</strong> <strong>Bornholm</strong> 120,000 276,000 415,000 0 810,000<br />

S <strong>of</strong> <strong>Bornholm</strong> 258,000 744,000 465,000 0 1,467,000<br />

All 1,769,000 13,565,000 3,047,000 0 18,381,000<br />

Table 26<br />

Expected accident costs [DKK] for redistributed and <strong>in</strong>creased<br />

2006 traffic data – by consequence type<br />

<strong>Area</strong> Loss <strong>of</strong> assets Clean-up costs Total<br />

<strong>Bornholm</strong>sgat 3,582,000 12,520,000 16,102,000<br />

NE <strong>of</strong> <strong>Bornholm</strong> 313,000 497,000 810,000<br />

S <strong>of</strong> <strong>Bornholm</strong> 640,000 827,000 1,467,000<br />

All 4,536,000 13,845,000 18,381,000<br />

Comparison between<br />

orig<strong>in</strong>al and <strong>in</strong>creased<br />

traffic volume<br />

Accord<strong>in</strong>g to <strong>the</strong> traffic diversion scheme under <strong>in</strong>vestigation, all large ships<br />

>10 m draught sail<strong>in</strong>g to/from <strong>the</strong> Gdańsk Bay would be forced to sail nor<strong>the</strong>ast<br />

<strong>around</strong> <strong>Bornholm</strong>. Therefore, <strong>the</strong> ma<strong>in</strong> effect <strong>of</strong> an <strong>in</strong>crease <strong>in</strong> this type <strong>of</strong><br />

6 Note that <strong>the</strong> figures also <strong>in</strong>clude results ly<strong>in</strong>g outside <strong>the</strong> geographical limits <strong>of</strong> <strong>the</strong> study<br />

area, unlike <strong>the</strong> <strong>in</strong>formation <strong>in</strong> <strong>the</strong> tables (see Figure 2 for description <strong>of</strong> <strong>the</strong> study area).<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

52<br />

traffic can be seen <strong>in</strong> <strong>the</strong> area north-east <strong>of</strong> <strong>Bornholm</strong>: Total accident frequency<br />

<strong>in</strong>creases by 7% <strong>in</strong> this area, while risk (expected cost) <strong>in</strong>creases even by 12%,<br />

i.e. from DKK 722,000 (€97,000) to DKK 810,000 (€109,000) per year.<br />

The fact that risk <strong>in</strong>creases more strongly than <strong>the</strong> accident frequency means<br />

that <strong>the</strong> average cost per accident has risen. This is clearly because <strong>the</strong> additional<br />

accidents all <strong>in</strong>volve large ships >10 m draught, which naturally leads to<br />

above-<strong>the</strong>-average consequences.<br />

Not surpris<strong>in</strong>gly, an <strong>in</strong>crease <strong>in</strong> traffic >10 m draught does not affect <strong>the</strong> area<br />

south <strong>of</strong> <strong>Bornholm</strong>, which is exempted from this type <strong>of</strong> traffic due to <strong>the</strong> proposed<br />

traffic diversion.<br />

Table 27<br />

Change <strong>in</strong> expected accident frequencies <strong>in</strong> case <strong>of</strong> a traffic <strong>in</strong>crease<br />

<strong>Area</strong><br />

Parallel<br />

collisions<br />

Cross<strong>in</strong>g<br />

collisions<br />

Imprecision<br />

ground<strong>in</strong>gs<br />

Missed-turn<br />

ground<strong>in</strong>gs<br />

<strong>Bornholm</strong>sgat 0% 1% 2% - 1%<br />

NE <strong>of</strong> <strong>Bornholm</strong> 11% 5% 7% - 7%<br />

S <strong>of</strong> <strong>Bornholm</strong> 0% 0% 0% - 0%<br />

All 0% 1% 2% - 2%<br />

Total<br />

Table 28<br />

Change <strong>in</strong> expected accident costs <strong>in</strong> case <strong>of</strong> a traffic <strong>in</strong>crease<br />

– by accident type<br />

<strong>Area</strong><br />

Parallel<br />

collisions<br />

Cross<strong>in</strong>g<br />

collisions<br />

Imprecision<br />

ground<strong>in</strong>gs<br />

Missed-turn<br />

ground<strong>in</strong>gs<br />

<strong>Bornholm</strong>sgat 0% 2% 1% - 2%<br />

Total<br />

NE <strong>of</strong> <strong>Bornholm</strong> 20% 6% 14% - 12%<br />

S <strong>of</strong> <strong>Bornholm</strong> 0% 0% 0% - 0%<br />

All 1% 2% 2% - 2%<br />

Table 29<br />

Change <strong>in</strong> expected accident costs <strong>in</strong> case <strong>of</strong> a traffic <strong>in</strong>crease<br />

– by consequence type<br />

<strong>Area</strong> Loss <strong>of</strong> assets Clean-up costs Total<br />

<strong>Bornholm</strong>sgat 1% 2% 2%<br />

NE <strong>of</strong> <strong>Bornholm</strong> 9% 14% 12%<br />

S <strong>of</strong> <strong>Bornholm</strong> 0% 0% 0%<br />

All 2% 2% 2%<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

53<br />

Enlarged figure<br />

<strong>in</strong> Appendix D<br />

Figure 29<br />

Expected frequency <strong>of</strong> parallel collisions for redistributed traffic and<br />

30% more vessels with >10 m draught<br />

Enlarged figure<br />

<strong>in</strong> Appendix D<br />

Figure 30<br />

Expected frequency <strong>of</strong> cross<strong>in</strong>g collisions for redistributed traffic and<br />

30% more vessels with >10 m draught<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

54<br />

Enlarged figure<br />

<strong>in</strong> Appendix D<br />

Figure 31<br />

Expected frequency <strong>of</strong> ground<strong>in</strong>gs due to imprecise navigation for redistributed<br />

traffic and 30% more vessels with >10 m draught<br />

Enlarged figure<br />

<strong>in</strong> Appendix D<br />

Figure 32<br />

Expected yearly loss <strong>of</strong> assets (<strong>in</strong>clud<strong>in</strong>g loss <strong>of</strong> life) for redistributed<br />

traffic and 30% more vessels with >10 m draught<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

55<br />

Enlarged figure<br />

<strong>in</strong> Appendix D<br />

Figure 33 Expected yearly clean-up costs for redistributed traffic and 30%<br />

more vessels with >10 m draught<br />

Overall result<br />

6.6 Discussion and recommendations (FSA step 5)<br />

A diversion <strong>of</strong> traffic sail<strong>in</strong>g to and from Gdańsk/Kal<strong>in</strong><strong>in</strong>grad/Klaipėda <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>itially described way would have a risk reduc<strong>in</strong>g effect. If <strong>the</strong> traffic diversion<br />

is implemented, yearly accident costs can be expected to drop from currently<br />

DKK 2.34 million to DKK 2.19 <strong>in</strong> <strong>the</strong> ma<strong>in</strong>ly affected areas north-east/south <strong>of</strong><br />

<strong>Bornholm</strong>, correspond<strong>in</strong>g to a reduction by 6.5%.<br />

When <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> heavily frequented, but only marg<strong>in</strong>ally affected <strong>Bornholm</strong>sgat<br />

<strong>in</strong> <strong>the</strong> consideration, total expected accident costs fall from currently<br />

DKK 18.3 million (€2.47 million) to DKK 18.0 million (€2.42 million) per<br />

year. This decrease by DKK 285,000 (€38,000) per year corresponds to a reduction<br />

by 2%.<br />

However, ship operation costs <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> external effects <strong>of</strong> exhaust fumes<br />

would rise by 0.4%, which might appear little <strong>in</strong> relative terms, but amounts to<br />

DKK 4.00 million (€537.000) per year <strong>in</strong> absolute terms. This clearly outweighs<br />

<strong>the</strong> cost reduction by more than a factor 10, lead<strong>in</strong>g to a negative balance<br />

<strong>of</strong> DKK 3.7 million per year.<br />

Effect <strong>of</strong> a possible<br />

traffic <strong>in</strong>crease<br />

In case <strong>of</strong> a 30% <strong>in</strong>crease <strong>of</strong> large ship passages sail<strong>in</strong>g to and from Gdańsk/<br />

Kal<strong>in</strong><strong>in</strong>grad/Klaipėda, accident costs are expected to rise back up to DKK 18.4<br />

million (€2.47 million) per year. In o<strong>the</strong>r words, <strong>the</strong> traffic diversion would <strong>in</strong><br />

about neutralize <strong>the</strong> detrimental effect <strong>of</strong> additional large ships sail<strong>in</strong>g to/from<br />

<strong>the</strong> Gdańsk Bay, if operation costs and externalities are not taken <strong>in</strong>to account.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

56<br />

Even <strong>in</strong> that case, it needs to be considered that this result is possibly <strong>in</strong>fluenced<br />

by one <strong>of</strong> <strong>the</strong> assumptions <strong>in</strong> <strong>the</strong> consequence model. In accordance with<br />

/Safedor/, clean-up costs per ton <strong>of</strong> spilt oil have been taken as a constant,<br />

which is <strong>in</strong>dependent <strong>of</strong> <strong>the</strong> size and circumstances <strong>of</strong> <strong>the</strong> spillage. In reality, it<br />

much more difficult and expensive to clean a rock coast as <strong>in</strong> <strong>the</strong> north-east <strong>of</strong><br />

<strong>Bornholm</strong> than to clean a sand coast as <strong>in</strong> <strong>the</strong> south <strong>of</strong> <strong>the</strong> island.<br />

Yet, <strong>the</strong> favourable effect <strong>of</strong> <strong>the</strong> traffic diversion is based on a moderate risk<br />

augmentation <strong>in</strong> <strong>the</strong> north-east that is outbalanced by a stronger risk reduction<br />

<strong>in</strong> <strong>the</strong> south. Therefore, it might occur that <strong>the</strong> assumed moderate risk <strong>in</strong>crease<br />

<strong>in</strong> <strong>the</strong> north-east is not that moderate after all. If that should be <strong>the</strong> case, <strong>the</strong> effect<br />

<strong>of</strong> <strong>the</strong> traffic deviation would become detrimental <strong>in</strong>stead <strong>of</strong> favourable.<br />

F<strong>in</strong>al statement<br />

In general, it appears that <strong>the</strong> projected traffic deviation can have weakly<br />

positive effect that can compensate for a possible future <strong>in</strong>crease <strong>in</strong> large vessel<br />

traffic from <strong>the</strong> Gdańsk Bay, as long as additional ship operation costs and<br />

damages due to ship eng<strong>in</strong>e fumes are not considered. Tak<strong>in</strong>g <strong>the</strong>m <strong>in</strong>to account<br />

leads to a negative cost-benefit balance and does not make <strong>the</strong> proposed<br />

measure appear recommendable.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

57<br />

7 References<br />

/Clarksons 2007/ Clarkson Register CD-ROM, 2007<br />

/COWI 2002/<br />

/COWI 2007/<br />

COWI for Søfartsstyrelsen and Farvandsvæsenet: “Risikovurder<strong>in</strong>g af<br />

sejladssikkerheden i de dankse farvande” (<strong>Risk</strong> assessment <strong>of</strong> navigational<br />

safety <strong>in</strong> <strong>the</strong> Danish waters), COWI report no. 54380, June 2002<br />

COWI for <strong>the</strong> Danish M<strong>in</strong>istry <strong>of</strong> Defence: “Risikoanalyse: Olie- og<br />

kemikalieforuren<strong>in</strong>g i danske farvande” (<strong>Risk</strong> analysis: Oil and chemical pollution<br />

<strong>in</strong> Danish waters), COWI report no. 63743-1-01, March 2007<br />

/Drogden 2001/ Københavns Havn (Copenhagen Port): “Drogden feasibility studie 2001,<br />

Aktivitet 3.9, Søuheld”, HLD Jo<strong>in</strong>t Venture, December 2001<br />

/Fujii/<br />

/IMO FSA/<br />

/KMS/<br />

/Rømer/<br />

Yahei Fujii et al.: “Survey on vessel traffic management systems and brief<br />

<strong>in</strong>troduction to mar<strong>in</strong>e traffic studies”, Electronic Navigation Research Institute<br />

Papers no. 45, 1984.4, 1984<br />

International Maritime Organization (IMO): “Guidel<strong>in</strong>es for formal safety<br />

assessment (FSA) for use <strong>in</strong> <strong>the</strong> IMO rule-mak<strong>in</strong>g process”, London, 2002,<br />

http://www.imo.org/<strong>in</strong>cludes/blastDataOnly.asp/data_id%3D5111/1023-<br />

MEPC392.pdf<br />

Kort- & Matrikelstyrelsen: “Det levende søkort” (The liv<strong>in</strong>g sea map), CD-<br />

ROM, 2007<br />

H.G. Rømer: “<strong>Risk</strong> assessment <strong>of</strong> mar<strong>in</strong>e transport <strong>of</strong> dangerous goods”, PhD<br />

<strong>the</strong>sis, Dept. <strong>of</strong> Chemical Eng<strong>in</strong>eer<strong>in</strong>g, Technical University <strong>of</strong> Denmark, 1996<br />

/Safedor/ Safedor: “<strong>Risk</strong> evaluation criteria”, 2005<br />

/Transportm<strong>in</strong>/<br />

Danish M<strong>in</strong>istry <strong>of</strong> Transport: “Nøgletalskatalog – til brug for<br />

samfundsøkonomiske analyser på transportområdet” (Key number catalogue –<br />

for use <strong>in</strong> socio-economic analyses <strong>in</strong> <strong>the</strong> field <strong>of</strong> transportation),<br />

http://www.trm.dk/sw78715.asp<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

58<br />

Appendix A: Collision Model<br />

‣ Collision frequency model<br />

Basic concepts<br />

Parallel collisions<br />

When two ships collide while sail<strong>in</strong>g on <strong>the</strong> same route, this is referred to as<br />

parallel collision. There are two basic cases:<br />

• Head-on collisions between two ships head<strong>in</strong>g <strong>in</strong> opposed directions<br />

• Overtak<strong>in</strong>g collisions between two ships head<strong>in</strong>g <strong>in</strong> <strong>the</strong> same direction<br />

These two cases are illustrated <strong>in</strong> Figure 8.<br />

V2, L2, B2<br />

µ, σ<br />

V2, L2, B2<br />

µ, σ<br />

µ, σ<br />

µ, σ<br />

V 1, L 1, B 1<br />

V 1, L 1, B 1<br />

Route length, L<br />

Route length, L<br />

Figure 34<br />

Head-on and overtak<strong>in</strong>g collisions<br />

Parallel collision frequencies depend on<br />

• <strong>the</strong> length <strong>of</strong> <strong>the</strong> route segment<br />

• <strong>the</strong> traffic <strong>in</strong>tensity <strong>in</strong> each <strong>of</strong> <strong>the</strong> two directions<br />

• width and speed <strong>of</strong> <strong>the</strong> ships<br />

• <strong>the</strong> deviation <strong>of</strong> <strong>the</strong> ships from <strong>the</strong> route axis<br />

• causation probability P C , i.e. <strong>the</strong> probability that none <strong>of</strong> <strong>the</strong> ships bound<br />

for collision undertakes successful evasive action.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

59<br />

Data <strong>in</strong>put<br />

The ship and traffic data described <strong>in</strong> section 4.2 provide this k<strong>in</strong>d <strong>of</strong><br />

<strong>in</strong>formation for each cross<strong>in</strong>g l<strong>in</strong>e. Cross<strong>in</strong>g l<strong>in</strong>es are virtual l<strong>in</strong>es. Each vessel<br />

cross<strong>in</strong>g <strong>the</strong>m is counted, toge<strong>the</strong>r with IMO number, speed, course over<br />

ground, <strong>the</strong> precise location <strong>of</strong> <strong>the</strong> cross<strong>in</strong>g and o<strong>the</strong>r <strong>in</strong>formation. These l<strong>in</strong>es<br />

are displayed <strong>in</strong> Figure 5 and Figure 6.<br />

Special attention has been paid to <strong>the</strong> precise cross<strong>in</strong>g location, i.e. ship deviation<br />

from <strong>the</strong> route axis. Commonly, this deviation is modelled as a distribution<br />

function similar to those <strong>in</strong> Figure 34. The present study <strong>in</strong>cludes many cases,<br />

where <strong>the</strong> actual distribution strongly differs from any common distribution<br />

function. Therefore, it was chosen to use <strong>the</strong> real distribution <strong>in</strong>stead, which<br />

corresponds to a more or less random histogram (see Figure 35). This <strong>in</strong>volves<br />

more comput<strong>in</strong>g, but leads to more reliable results.<br />

sail<strong>in</strong>g direction<br />

Figure 35<br />

Transversal traffic distribution for both sail<strong>in</strong>g directions (data orig<strong>in</strong>ate<br />

from one <strong>of</strong> <strong>the</strong> cross<strong>in</strong>g l<strong>in</strong>es <strong>in</strong> <strong>the</strong> model)<br />

Calculation<br />

In <strong>the</strong> course <strong>of</strong> calculation, every ship (ship 1 ) is comb<strong>in</strong>ed with every possible<br />

collisions partner (ship 2 ). Then, <strong>the</strong>ir collision probability is calculated.<br />

Both ship 1 and ship 2 have an array <strong>of</strong> properties such as ship type, speed, size,<br />

breadth which are all taken <strong>in</strong>to account. Some <strong>of</strong> this properties are directly<br />

relevant for <strong>the</strong> collision probability (breadth, speed), whereas o<strong>the</strong>rs are relevant<br />

for <strong>the</strong> consequences <strong>of</strong> <strong>the</strong> collision (ship type and size).<br />

Two ships with<strong>in</strong> one width segment (as those <strong>in</strong> Figure 35) collide with a yearly<br />

frequency <strong>of</strong><br />

P = P P<br />

X<br />

T<br />

G<br />

P<br />

C<br />

k<br />

RR<br />

where<br />

P T … yearly frequency <strong>of</strong> meet<strong>in</strong>g with<strong>in</strong> one route segment<br />

(a matter <strong>of</strong> time and route length)<br />

P G … geometrical collision probability (a matter <strong>of</strong> width)<br />

P C … causation probability<br />

k RR … risk reduction factor<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

60<br />

These partial probabilities are obta<strong>in</strong>ed as<br />

Meet<strong>in</strong>g frequency<br />

P T<br />

= LN<br />

1<br />

N<br />

2<br />

V1<br />

−V<br />

V V<br />

1<br />

2<br />

2<br />

where L … length <strong>of</strong> route segment<br />

N 1 , N 2 … yearly number <strong>of</strong> pass<strong>in</strong>gs (ship 1 , ship 2 )<br />

V 1 , V 2 … vessel speed (ship 1 , ship 2 )<br />

Geometrical collision<br />

probability<br />

B<br />

B<br />

c<br />

P + 1 2<br />

G<br />

=<br />

where c … width <strong>of</strong> one width segment (correspond<strong>in</strong>g to <strong>the</strong> width<br />

<strong>of</strong> one histogram bar <strong>in</strong> Figure 35)<br />

B 1 , B 2 … vessel breadth (ship 1 , ship 2 )<br />

Of course, it is also possible to hit ships sail<strong>in</strong>g <strong>in</strong> one <strong>of</strong> <strong>the</strong> neighbour<strong>in</strong>g<br />

width segments. However, this effect can be neglected, as long as <strong>the</strong> width<br />

segments are significantly larger than <strong>the</strong> average vessel breadth, which is <strong>the</strong><br />

case for <strong>the</strong> data set used <strong>in</strong> <strong>the</strong> analysis.<br />

Causation probability<br />

The probability that two ships sail<strong>in</strong>g on collision course do not undertake any<br />

evasive measures is called causation probability P C . This quantity is based on<br />

statistics and modell<strong>in</strong>g by Fujii /Fujii/. In <strong>the</strong> context <strong>of</strong> <strong>the</strong> Storebælt l<strong>in</strong>k <strong>in</strong>vestigation<br />

Fujii’s result was adapted to <strong>the</strong> situation <strong>in</strong> Danish waters, result<strong>in</strong>g<br />

<strong>in</strong> a value <strong>of</strong> P C = 3.2·10 -4 . This value is comparatively high when compar<strong>in</strong>g<br />

with that <strong>in</strong> more recent navigation studies, e.g. /Drogden 2001/, where P C<br />

= 1.3·10 -4 was chosen. However, P C depends upon <strong>the</strong> modell<strong>in</strong>g assumptions,<br />

especially those concern<strong>in</strong>g <strong>the</strong> distribution <strong>of</strong> <strong>the</strong> vessels. As a consequence, a<br />

value <strong>of</strong><br />

P<br />

C<br />

= 3.0 ⋅10<br />

−4<br />

was chosen <strong>in</strong> <strong>the</strong> analysis <strong>of</strong> oil and chemical spill risk <strong>in</strong> Danish waters, because<br />

it was found consistent with <strong>the</strong> observed accident rate dur<strong>in</strong>g <strong>the</strong> past<br />

10-15 years /COWI 2007/. This value is also used <strong>in</strong> <strong>the</strong> present context.<br />

<strong>Risk</strong> reduction factor<br />

Different factors can have a reduc<strong>in</strong>g factor upon collision risk. One <strong>of</strong> <strong>the</strong>m is<br />

due to <strong>the</strong> effect <strong>of</strong> pilotage, local experience or <strong>in</strong>creased safety standards. If<br />

one out <strong>of</strong> two potentially collid<strong>in</strong>g ships feature pilotage (or local experience<br />

or <strong>in</strong>creased safety standards), <strong>the</strong> collision probability is multiplied by a factor<br />

k RR = 0.75. If this is <strong>the</strong> case for both ships, <strong>the</strong> factor is k RR = 0.5. The crew <strong>of</strong><br />

ferries sail<strong>in</strong>g frequently <strong>in</strong> <strong>the</strong> waters <strong>around</strong> <strong>Bornholm</strong> is considered to have<br />

similar experience as a pilot.<br />

Table 30 displays <strong>the</strong> frequency <strong>of</strong> fulfill<strong>in</strong>g one <strong>of</strong> <strong>the</strong> criteria for different ship<br />

types and sizes. It is based on <strong>the</strong> pilotage analysis <strong>in</strong>cluded <strong>in</strong> /COWI 2007/.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

61<br />

Table 30<br />

Probability that a ship features a pilot or local experience or enhanced<br />

safety standards /COWI 2007/<br />

Pilotage rate Ship type<br />

1 2 3 4 5 6 7 8 9 10 11 12 13<br />

Length Bulk<br />

Oil<br />

product Chemical Conta<strong>in</strong>er Crude oil General Gas Ro-Ro Fish<strong>in</strong>g Passenge<br />

Support<br />

Length [m] Class carrier tanker tanker ship tanker cargo ship tanker cargo ship ship r ship Fast ferry ship O<strong>the</strong>r ship<br />

10 1 0.00 0.00 1.00 1.00 0.00<br />

30 2 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 1.00 1.00 0.00 0.01<br />

50 3 0.01 0.02 0.02 0.00 0.02 0.03 0.05 0.00 0.02 1.00 1.00 0.01 0.01<br />

70 4 0.01 0.02 0.02 0.00 0.02 0.03 0.05 0.00 0.02 1.00 1.00 0.01 0.01<br />

90 5 0.01 0.02 0.02 0.00 0.02 0.01 0.05 0.00 0.02 1.00 1.00 0.01 0.01<br />

110 6 0.01 0.02 0.02 0.00 0.02 0.01 0.05 0.00 0.07 1.00 1.00 0.01 0.01<br />

130 7 0.03 0.04 0.04 0.00 0.02 0.02 0.62 0.00 0.07 1.00 1.00 0.01 0.01<br />

150 8 0.03 0.04 0.04 0.00 0.04 0.02 0.62 0.00 0.07 1.00 1.00 0.03 0.01<br />

170 9 0.24 0.54 0.54 0.00 0.54 0.14 0.62 0.00 0.07 1.00 1.00 0.03 0.03<br />

190 10 0.24 0.54 0.54 0.06 0.54 0.14 0.62 0.00 0.07 1.00 1.00 0.03 0.03<br />

225 11 0.24 0.54 0.54 0.06 0.54 0.14 0.62 0.00 1.00 1.00 0.24<br />

275 12 1.00 0.88 0.06 0.88 0.62 0.00 1.00 1.00 1.00<br />

325 13 1.00 0.88 0.35 0.88 0.62 1.00 1.00 1.00<br />

Ano<strong>the</strong>r factor describes <strong>the</strong> situation <strong>of</strong> ships follow<strong>in</strong>g <strong>the</strong> same direction<br />

with<strong>in</strong> a traffic separation scheme. Ships sail on exactly <strong>the</strong> same route over<br />

dozens <strong>of</strong> miles (due to <strong>the</strong> small speed difference) before overtak<strong>in</strong>g one ano<strong>the</strong>r.<br />

Besides, <strong>the</strong>y know that <strong>the</strong>y will only meet o<strong>the</strong>r ships sail<strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

same direction as <strong>the</strong>mselves. Therefore, it is very unlikely that ships do not<br />

notice each o<strong>the</strong>r prior to a potential collision situation. Accord<strong>in</strong>g to <strong>the</strong> conclusions<br />

at Workshop II, this effect is accounted for by a risk reduction factor<br />

<strong>of</strong> k RR = 0.5.<br />

Note that <strong>the</strong> different risk reduction factors can not be comb<strong>in</strong>ed. Therefore,<br />

risk reduction is never higher than 50%, which means that 0.5 ≤ k RR ≤ 1.<br />

Cross<strong>in</strong>g collisions<br />

Any ship-ship collision that does not <strong>in</strong>volve two ships sail<strong>in</strong>g on <strong>the</strong> same<br />

route is classified as cross<strong>in</strong>g collision.<br />

Basic concepts<br />

Its frequency is calculated based on<br />

• <strong>the</strong> cross<strong>in</strong>g pattern<br />

• <strong>the</strong> traffic <strong>in</strong>tensity <strong>in</strong> each <strong>of</strong> <strong>the</strong> two directions<br />

• width, length and speed <strong>of</strong> <strong>the</strong> ships<br />

• <strong>the</strong> cross<strong>in</strong>g angle<br />

• causation probability P C , i.e. <strong>the</strong> probability that none <strong>of</strong> <strong>the</strong> ships bound<br />

for collision undertakes successful evasive action.<br />

• <strong>the</strong> probability that <strong>the</strong> traces <strong>of</strong> both ships <strong>in</strong>tersect<br />

Calculation<br />

Based on <strong>the</strong>se considerations, yearly collision frequency can be written as<br />

P = P P<br />

X<br />

I<br />

G<br />

P<br />

C<br />

k<br />

RR<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

62<br />

where P I … probability that <strong>the</strong> traces <strong>of</strong> <strong>the</strong> two ship 1 and ship 2<br />

<strong>in</strong>tersect<br />

P G … geometrical collision frequency (per year)<br />

P C … causation probability<br />

k RR … risk reduction factor<br />

Cross<strong>in</strong>g pattern<br />

The first step is to clarify, whe<strong>the</strong>r two ships can <strong>the</strong>oretically collide. This is<br />

only <strong>the</strong> case, if <strong>the</strong>ir traces <strong>in</strong>tersect. Essentially, <strong>the</strong>re are two basic k<strong>in</strong>ds <strong>of</strong><br />

cross<strong>in</strong>gs: X-cross<strong>in</strong>gs (full <strong>in</strong>tersection) and Y-cross<strong>in</strong>gs (merg<strong>in</strong>g traffic):<br />

Figure 36<br />

X-type cross<strong>in</strong>g<br />

Figure 37<br />

Y-type cross<strong>in</strong>g with and without <strong>in</strong>tersection<br />

For X-cross<strong>in</strong>gs, basic prerequisite for collision is given <strong>in</strong> every s<strong>in</strong>gle cross<strong>in</strong>g<br />

event (P I = 1). For Y-cross<strong>in</strong>gs, this applies only to one out <strong>of</strong> two cross<strong>in</strong>g<br />

events on average (P I = 0.5).<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

63<br />

All o<strong>the</strong>r, more complex cross<strong>in</strong>g types can be modelled as an array <strong>of</strong> several<br />

X- and Y-cross<strong>in</strong>gs. Figure 38 illustrates this for case <strong>of</strong> a two-lane Y-type<br />

cross<strong>in</strong>g. This constellation has been observable <strong>in</strong> <strong>the</strong> <strong>Bornholm</strong>sgat s<strong>in</strong>ce <strong>the</strong><br />

establishment <strong>of</strong> <strong>the</strong> traffic separation scheme.<br />

X<br />

Y<br />

Y<br />

Figure 38<br />

Two-lane Y-type cross<strong>in</strong>g<br />

Geometrical collision<br />

probability<br />

The possibility <strong>of</strong> a collision between two ships follow<strong>in</strong>g <strong>in</strong>tersect<strong>in</strong>g routes<br />

depends upon <strong>the</strong> angle θ between <strong>the</strong> routes, <strong>the</strong> geometry <strong>of</strong> <strong>the</strong> ships and<br />

<strong>the</strong>ir speed. This possibility can be expressed by means <strong>of</strong> a critical time <strong>in</strong>terval<br />

∆t or a critical length L K = ∆t V 2 for ship 2 . The mean<strong>in</strong>g <strong>of</strong> <strong>the</strong>se quantities<br />

is illustrated <strong>in</strong> Figure 39:<br />

V 2 ∆t<br />

θ<br />

V 2<br />

V 2 ∆t<br />

V 2<br />

V 1 V 1<br />

V 2<br />

V 2<br />

θ<br />

Figure 39<br />

Geometrical determ<strong>in</strong>ation <strong>of</strong> <strong>the</strong> critical time <strong>in</strong>terval/route length for<br />

a cross<strong>in</strong>g collision<br />

The critical time <strong>in</strong>terval is determ<strong>in</strong>ed as<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

64<br />

1 ⎡ V2<br />

V1<br />

V1<br />

V2<br />

∆t<br />

= ⎢B2<br />

− + B1<br />

− + L1<br />

V2<br />

+ L2<br />

V1<br />

V1V<br />

2 ⎣ s<strong>in</strong>θ<br />

tanθ<br />

s<strong>in</strong>θ<br />

tanθ<br />

The passage <strong>of</strong> ships on one <strong>of</strong> <strong>the</strong> two routes is assumed to be a Poisson process.<br />

As a consequence, <strong>the</strong> geometrical collision frequency follows as<br />

P<br />

G<br />

= N<br />

1<br />

− N2∆t<br />

( 1−<br />

e )<br />

≈ N N ∆t<br />

1<br />

2<br />

⎤<br />

⎥<br />

⎦<br />

Causation probability<br />

This quantity is chosen as<br />

P<br />

C<br />

= 3.0 ⋅10<br />

−4<br />

for <strong>the</strong> same reasons as for parallel collisions above.<br />

<strong>Risk</strong> reduction factor<br />

Different factors can have a reduc<strong>in</strong>g factor upon collision risk. One <strong>of</strong> <strong>the</strong>m is<br />

due to <strong>the</strong> effect <strong>of</strong> pilotage, local experience or enhanced safety standards. If<br />

one out <strong>of</strong> two potentially collid<strong>in</strong>g ships feature pilotage (or local experience<br />

or heightened safety standards), <strong>the</strong> collision probability is multiplied by a factor<br />

k RR = 0.75. If this is <strong>the</strong> case for both ships, <strong>the</strong> factor is k RR = 0.5.<br />

Table 30 above displays <strong>the</strong> frequency <strong>of</strong> fulfill<strong>in</strong>g one <strong>of</strong> <strong>the</strong> criteria for different<br />

ship types and sizes based on /COWI 2007/.<br />

Small vessels <strong>in</strong><br />

general<br />

Cross<strong>in</strong>g collisions <strong>in</strong>volv<strong>in</strong>g small vessels<br />

The above-described collision model cannot be used for small vessels (fish<strong>in</strong>g<br />

boats, yachts) <strong>in</strong> an analogous way for <strong>the</strong> follow<strong>in</strong>g reasons:<br />

• Fish<strong>in</strong>g boats and yachts (especially sail<strong>in</strong>g yachts) mostly do not sail on a<br />

straight route between to po<strong>in</strong>ts, but cruise <strong>in</strong> frequently chang<strong>in</strong>g directions,<br />

partly mov<strong>in</strong>g at low speed. Most vessels return to <strong>the</strong> port, where<br />

<strong>the</strong> cruise took its orig<strong>in</strong>.<br />

• These vessels are nei<strong>the</strong>r covered by AIS records, nor by Lloyd’s Register<br />

(compare data description, section 4.2.2).<br />

Therefore, <strong>the</strong> cross<strong>in</strong>g collision model needs to be modified <strong>in</strong> accordance<br />

with <strong>the</strong> follow<strong>in</strong>g assumptions:<br />

Fish<strong>in</strong>g boats<br />

It is assumed that fish<strong>in</strong>g boats sails to a fish<strong>in</strong>g ground and rema<strong>in</strong>s <strong>the</strong>re<br />

dur<strong>in</strong>g several hours. Dur<strong>in</strong>g that time, it moves only slowly and can be modelled<br />

as static. It is assumed that a fish<strong>in</strong>g shift lasts 12 hours.<br />

The collision frequency is thus a function <strong>of</strong> <strong>the</strong> maximum extension <strong>of</strong> <strong>the</strong><br />

fish<strong>in</strong>g vessel (i.e. boat length), <strong>the</strong> width and frequency <strong>of</strong> <strong>the</strong> ma<strong>in</strong> traffic<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

65<br />

flow as well as <strong>the</strong> frequency and duration <strong>of</strong> an average fish<strong>in</strong>g work shift. It is<br />

assumed that <strong>the</strong> typical fish<strong>in</strong>g boat is 12 m long and 4 m wide.<br />

Yachts<br />

For yacht traffic it is <strong>the</strong> most relevant to know, how frequently a s<strong>in</strong>gle yacht<br />

crosses <strong>the</strong> ma<strong>in</strong> traffic flow dur<strong>in</strong>g its trip. On a journey from A to B, this will<br />

typically occur only once. On a cruise orig<strong>in</strong>at<strong>in</strong>g and end<strong>in</strong>g at A, <strong>the</strong>re will be<br />

two cross<strong>in</strong>gs. However, <strong>in</strong> <strong>the</strong> case <strong>of</strong> <strong>Bornholm</strong> it is unlikely that a yacht will<br />

sail <strong>the</strong> whole way across a ma<strong>in</strong> traffic route and back, simply because <strong>the</strong> distances<br />

would be to long for an ord<strong>in</strong>ary one-day cruise. Besides, many yachts<br />

just follow <strong>the</strong> coast and never get to cross any sea route at all.<br />

Therefore, it is realistic and as a tendency on <strong>the</strong> conservative side to assume<br />

that every yacht crosses <strong>the</strong> ma<strong>in</strong> traffic route <strong>in</strong> its area twice. This assumption<br />

is used <strong>in</strong> <strong>the</strong> analysis.<br />

A typical yacht is assumed to be 12 m long and 4 m wide, which is probably<br />

larger than <strong>the</strong> actual average and <strong>the</strong>refore leads to a more conservative result.<br />

‣ Collision consequence model<br />

Simulation program<br />

Dur<strong>in</strong>g an earlier COWI project deal<strong>in</strong>g with oil and chemical spillage /COWI<br />

2007/, Erik Sonne Ravn and Peter Friis Hansen from DTU developed a simulation<br />

program for <strong>the</strong> consequences <strong>of</strong> ship-ship collisions. They developed a<br />

neural network <strong>in</strong> order to determ<strong>in</strong>e<br />

• <strong>the</strong> penetration depth at <strong>the</strong> struck ship (due to contact with both bulb and<br />

bow <strong>of</strong> <strong>the</strong> strik<strong>in</strong>g ship)<br />

• <strong>the</strong> width and height <strong>of</strong> damage at <strong>the</strong> struck ship<br />

• <strong>the</strong> vertical position <strong>of</strong> <strong>the</strong> penetration<br />

Based on this <strong>in</strong>formation and on <strong>the</strong> number and position <strong>of</strong> cargo compartments<br />

and <strong>of</strong> <strong>the</strong> fuel bunker (Figure 40), <strong>the</strong> model yields fur<strong>the</strong>rmore<br />

• <strong>the</strong> loss <strong>of</strong> cargo (for tankers) – see Figure 41 and Figure 42<br />

• <strong>the</strong> loss <strong>of</strong> bunker fuel<br />

• <strong>the</strong> probability <strong>of</strong> s<strong>in</strong>k<strong>in</strong>g<br />

S<strong>in</strong>gle hull<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

66<br />

B<br />

Mask<strong>in</strong>rum Cargo Cargo Cargo Cargo Cargo cargo D Mask<strong>in</strong>rum<br />

HFO<br />

HFO<br />

LUO LUO LUO 0.1D<br />

3% 15% 12.8% 12.8% 12.8% 12.8% 12.8% 12.8% 5%<br />

L<br />

HFO HFO<br />

Mask<strong>in</strong>rum<br />

HFO HFO<br />

0.7m isoler<strong>in</strong>g<br />

Cargo Cargo Cargo Cargo Cargo Cargo<br />

Cargo Cargo Cargo Cargo Cargo Cargo<br />

Cargo<br />

Cargo<br />

0.1D<br />

S<strong>in</strong>gle hull with<br />

double bottom<br />

B<br />

Mask<strong>in</strong>rum Cargo Cargo Cargo Cargo Cargo Cargo D Mask<strong>in</strong>rum<br />

HFO<br />

HFO<br />

LUO LUO LUO 0.1D<br />

3% 15% 12.8% 12.8% 12.8% 12.8% 12.8% 12.8% 5%<br />

L<br />

HFO HFO<br />

Mask<strong>in</strong>rum<br />

HFO HFO<br />

0.7m isoler<strong>in</strong>g<br />

Cargo Cargo Cargo Cargo Cargo Cargo<br />

Cargo Cargo Cargo Cargo Cargo Cargo<br />

Cargo<br />

Cargo<br />

0.1D<br />

Double hull<br />

B<br />

Mask<strong>in</strong>rum Cargo Cargo Cargo Cargo Cargo Cargo D Mask<strong>in</strong>rum<br />

HFO<br />

HFO<br />

LUO LUO 0.1D<br />

3% 15% 12.8% 12.8% 12.8% 12.8% 12.8% 12.8% 5%<br />

L 0.1B<br />

HFO HFO 0.1B<br />

Cargo Cargo Cargo Cargo Cargo Cargo<br />

Mask<strong>in</strong>rum<br />

HFO HFO<br />

0.7m isoler<strong>in</strong>g<br />

Cargo Cargo Cargo Cargo Cargo Cargo<br />

Cargo<br />

Cargo<br />

0.1D<br />

Figure 40<br />

Example <strong>of</strong> an idealised tanker for determ<strong>in</strong><strong>in</strong>g cargo spillage <strong>in</strong> case<br />

<strong>of</strong> hull damage. The design differs for o<strong>the</strong>r ship types and sizes.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

67<br />

NO SMOKING<br />

D<br />

T<br />

L<br />

B<br />

B<br />

½ bunker<br />

½ bunker<br />

Tank<br />

Figure 41<br />

Example <strong>of</strong> a penetration above <strong>the</strong> water l<strong>in</strong>e. The shaded part runs<br />

out. The dotted part rema<strong>in</strong>s <strong>in</strong>side <strong>the</strong> tank.<br />

NO SMOKING<br />

D<br />

T<br />

L<br />

B<br />

B<br />

½ bunker<br />

½ bunker<br />

Tank<br />

Figure 42<br />

Example <strong>of</strong> a penetration below <strong>the</strong> water l<strong>in</strong>e. The whole tank fill runs<br />

out (<strong>the</strong> area below <strong>the</strong> penetration is washed out by <strong>the</strong> waves)<br />

This type <strong>of</strong> simulation is performed for <strong>the</strong> follow<strong>in</strong>g cases and all <strong>the</strong>ir comb<strong>in</strong>ations<br />

(~ 400.000):<br />

• 20 different strik<strong>in</strong>g ships<br />

• 593 different struck ships<br />

• strik<strong>in</strong>g ship loaded/unloaded<br />

• struck ship loaded/unloaded<br />

• struck ship with s<strong>in</strong>gle/double hull<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

68<br />

• struck ship with/without bunker protection<br />

• angle between 30 and 90°/between 90 and 150°<br />

Application <strong>of</strong> <strong>the</strong> simulation results<br />

Apply<strong>in</strong>g <strong>the</strong> results <strong>of</strong> <strong>the</strong> simulation <strong>in</strong> <strong>the</strong> risk analysis requires some extra<br />

data <strong>in</strong>put and assumptions. Besides, all consequences are meant to be converted<br />

<strong>in</strong>to monetary units <strong>in</strong> order to provide a common means <strong>of</strong> comparison.<br />

General assumptions<br />

One important assumption is that ships do not penetrate each o<strong>the</strong>r, if <strong>the</strong><br />

collision occurs at a very acute (150°). Instead,<br />

<strong>the</strong>y just gr<strong>in</strong>d alongside. This, however, does not mean that parallel collisions<br />

are by any means harmless. Two ships <strong>in</strong> a head-on situation hav<strong>in</strong>g failed to<br />

make an evasive manoeuvre <strong>in</strong> good time will typically try to change <strong>the</strong>ir direction<br />

as a last resort prior to impact. This means, that one or both ships “open<br />

up” by present<strong>in</strong>g <strong>the</strong>ir side to <strong>the</strong> o<strong>the</strong>r ship. If <strong>the</strong> evasive manoeuvre fails,<br />

one <strong>of</strong> <strong>the</strong> two ships will be struck <strong>in</strong> a vulnerable constellation (30° < angle <<br />

150°).<br />

Yet, this reason<strong>in</strong>g is only fully realistic for head-on scenarios. In an overtak<strong>in</strong>g<br />

situation, <strong>the</strong> overtaken ship is typically less tempted to change course and thus<br />

to “open up”. Assum<strong>in</strong>g that this behaviour never<strong>the</strong>less occurs <strong>in</strong> 10% <strong>of</strong> all<br />

cases is actually very conservative accord<strong>in</strong>g to <strong>the</strong> experts participat<strong>in</strong>g <strong>in</strong><br />

Workshop II.<br />

Loss <strong>of</strong> life<br />

An earlier analysis /COWI 2002/ showed that <strong>the</strong> expected number <strong>of</strong> fatalities<br />

<strong>in</strong> case <strong>of</strong> oil spillage is <strong>the</strong> same for collisions and ground<strong>in</strong>gs:<br />

E[N LOL |spillage] = 0.01 persons<br />

Divid<strong>in</strong>g this number with <strong>the</strong> average number <strong>of</strong> persons on board yields an<br />

<strong>in</strong>dividual crew member’s probability <strong>of</strong> dy<strong>in</strong>g <strong>in</strong> such an accident, i.e.<br />

P(LOL|spillage). This number can be multiplied with <strong>the</strong> number <strong>of</strong> persons on<br />

board (Table 31).<br />

Table 31<br />

Expected number <strong>of</strong> persons on board (based on an estimate by<br />

Søfartsstyrelsen)<br />

Expected # <strong>of</strong> Ship type<br />

persons on board 1 2 3 4 5 6 7 8 9 10 11 12 13<br />

Length Bulk<br />

Oil<br />

product Chemical Conta<strong>in</strong>er Crude oil General Gas Ro-Ro Fish<strong>in</strong>g Passenge<br />

Support<br />

Length [m] Class carrier tanker tanker ship tanker cargo ship tanker cargo ship ship r ship Fast ferry ship O<strong>the</strong>r ship<br />

10 1 5 5 5 5 5 5 5 5 5 100 100 5 5<br />

30 2 5 5 5 5 5 5 5 5 5 100 100 5 5<br />

50 3 9 9 5 9 9 9 9 9 9 500 500 9 9<br />

70 4 9 9 9 9 9 9 9 9 9 500 500 9 9<br />

90 5 20 9 9 20 9 20 20 20 20 500 500 20 20<br />

110 6 20 20 20 20 9 20 20 20 20 2000 20 20<br />

130 7 20 20 20 20 20 20 20 20 20 2000 20 20<br />

150 8 20 20 20 20 20 20 20 20 20 2000 20 20<br />

170 9 20 20 20 20 20 20 20 20 20 2000 20 20<br />

190 10 20 20 20 20 20 20 20 20 20 2000 20 20<br />

225 11 20 20 20 20 20 20 20 20 20 2000 20 20<br />

275 12 20 20 20 20 20 20 20 20 20 2000 20 20<br />

325 13 20 20 20 20 20 20 20 20 20 2000 20 20<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

69<br />

Loss <strong>of</strong> life is converted <strong>in</strong>to monetary units by us<strong>in</strong>g <strong>the</strong> so-called value <strong>of</strong> a<br />

statistical life (VSL). Every person has a limited will<strong>in</strong>gness to pay for a possible<br />

prolongation <strong>of</strong> his own life or that <strong>of</strong> a fellow member <strong>of</strong> society by a<br />

small time span. Extrapolat<strong>in</strong>g <strong>the</strong> will<strong>in</strong>gness to pay from this time span to <strong>the</strong><br />

duration <strong>of</strong> an average life yields <strong>the</strong> VSL.<br />

Safedor /Safedor/ <strong>in</strong>dicates <strong>the</strong> VSL as USD 3 million ≈ DKK 16 million.<br />

Ship damage<br />

Ship damage has several aspects <strong>in</strong>clud<strong>in</strong>g<br />

• repair costs (if <strong>the</strong> ship did not s<strong>in</strong>k)<br />

• loss <strong>of</strong> earn<strong>in</strong>gs dur<strong>in</strong>g <strong>the</strong> repair period (if <strong>the</strong> ship did not s<strong>in</strong>k)<br />

• loss <strong>of</strong> cargo (due to leakage or <strong>in</strong> case <strong>of</strong> s<strong>in</strong>k<strong>in</strong>g)<br />

• total loss <strong>of</strong> ship (if <strong>the</strong> ship sank)<br />

The <strong>in</strong>formation concern<strong>in</strong>g <strong>the</strong> penetration area [m 2 ] can be used for calculat<strong>in</strong>g<br />

<strong>the</strong> repair costs, when multiply<strong>in</strong>g with <strong>the</strong> average hull thickness, <strong>the</strong> steel<br />

thickness and <strong>the</strong> repair price per weight. Upon enquiry, Tryg <strong>in</strong>surance company<br />

(Denmark) estimated hull thickness to 10 mm and recommends to add<br />

ano<strong>the</strong>r 50% <strong>in</strong> order to account for damages to structural components underneath<br />

<strong>the</strong> hull. Toge<strong>the</strong>r with a steel density <strong>of</strong> 8000 kg/m 3 , this ensues <strong>in</strong> 120<br />

kg steel replacement per 1 m 3 <strong>of</strong> damage. Tryg estimates <strong>the</strong> repair price to be<br />

100 DKK/kg, which is also consistent with value used <strong>in</strong> an earlier analysis<br />

/COWI 2002/.<br />

Loss <strong>of</strong> earn<strong>in</strong>gs depends upon <strong>the</strong> average repair time and <strong>the</strong> daily capital<br />

costs, as displayed <strong>in</strong> Table 32 and Table 33.<br />

Table 32<br />

Repair time, as estimated by <strong>the</strong> pr<strong>of</strong>essionals attend<strong>in</strong>g Workshop II<br />

Damage area < 1 m 2 1-10 m 2 10-20 m 2 >20 m 2<br />

Repair time 2 days 7 days 14 days 21 days<br />

Table 33<br />

Capital costs <strong>in</strong> DKK/day for different ship types and sizes, based on<br />

/Clarksons 2007/<br />

Capital costs Ship type<br />

(<strong>in</strong> DKK/day) 1 2 3 4 5 6 7 8 9 10 11 12 13<br />

Length Bulk Oil product Chemical Conta<strong>in</strong>er Crude oil General Gas Ro-Ro Fish<strong>in</strong>g Passenger<br />

Support<br />

Length [m] Class carrier tanker tanker ship tanker cargo ship tanker cargo ship ship ship Fast ferry ship O<strong>the</strong>r ship<br />

10 1 8691 2593 29723 27005 10901 2533<br />

30 2 5753 4106 5779 3305 14761 20679 17702 2919 27981 11720 2559<br />

50 3 6685 4493 7044 24428 15694 21221 22143 2284 38723 32805 10969 2581<br />

70 4 15805 17900 19039 30704 41994 26365 52857 80924 24942 7348<br />

90 5 16845 18981 21658 35226 38414 29491 53429 8644 82513 67928 32055<br />

110 6 27512 20633 44950 38150 19140 28450 123756 56294 10773 128653 83552 73126<br />

130 7 26639 91979 55589 51736 93460 62636 92964 58254 29493 253819 209072<br />

150 8 27514 95016 51375 56818 93144 63320 100555 57727 25777 282664 203947 58056<br />

170 9 29881 33185 69681 34312 76819 158157 200769 520683 236982<br />

190 10 58686 73061 158280 72866 69824 700659 246189<br />

225 11 81679 121164 1061573<br />

275 12 134961<br />

325 13<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

70<br />

If a ship leaks oil from its cargo compartments (tanker) or from its bunker (all<br />

ships), this basically a matter <strong>of</strong> pollution and clean-up (see below). However,<br />

such an event also means that cargo and <strong>the</strong>refore worth is lost. The loss <strong>of</strong><br />

cargo worth is obta<strong>in</strong>ed by multiply<strong>in</strong>g <strong>the</strong> oil volume with <strong>the</strong> crude oil price.<br />

For 2007, USD 70 per ton corresponds to <strong>the</strong> situation observed throughout <strong>the</strong><br />

year. The price <strong>of</strong> bunker fuel (low sulphur fuel, as prescribed <strong>in</strong> <strong>the</strong> Baltic <strong>Sea</strong>)<br />

is only little above this price.<br />

The simulation program yields fur<strong>the</strong>rmore <strong>the</strong> probability <strong>of</strong> s<strong>in</strong>k<strong>in</strong>g <strong>in</strong> case <strong>of</strong><br />

a collision (values between 0 and 0.56 depend<strong>in</strong>g on <strong>the</strong> properties <strong>of</strong> <strong>the</strong> strik<strong>in</strong>g<br />

and <strong>the</strong> struck vessel). The monetary effect <strong>of</strong> such an event is obta<strong>in</strong>ed by<br />

multiply<strong>in</strong>g this probability with <strong>the</strong> present value <strong>of</strong> <strong>the</strong> ship. Averag<strong>in</strong>g some<br />

sales numbers from <strong>the</strong> past decade and for ships <strong>of</strong> different age leads to <strong>the</strong><br />

numbers <strong>in</strong> Table 34.<br />

Table 34<br />

Sales prices for ships <strong>of</strong> different sizes (average <strong>of</strong> different ages) <strong>in</strong><br />

USD<br />

Purchase cost Ship type<br />

(<strong>in</strong> mill. USD) 1 2 3 4 5 6 7 8 9 10 11 12 13<br />

Length Bulk Oil product Chemical Conta<strong>in</strong>er Crude oil General Gas Ro-Ro Fish<strong>in</strong>g Passenger<br />

Support<br />

Length [m] Class carrier tanker tanker ship tanker cargo ship tanker cargo ship ship ship Fast ferry ship O<strong>the</strong>r ship<br />

10 1 1.2 4.5 9.8<br />

30 2 6.3 3.4 3.9 12.5 13.7 13.3 13.8 19.4 19.2 19.2 19.6 23.7<br />

50 3 6.3 26.5 23.1 12.9 20.3 13.3 17.2 21.2 14.5 16.7 7.7<br />

70 4 6.3 17.3 17.1 8.3 4.3 18.2 21.4 17.2 28.6 26.1 37.0 6.6<br />

90 5 12.1 10.6 9.9 13.3 40.3 16.2 29.4 16.1 14.3 8.8 20.8 5.6<br />

110 6 18.8 13.1 21.4 24.6 25.8 20.8 37.5 9.7 21.6 20.0 27.6 16.2<br />

130 7 24.3 21.7 19.2 10.1 25.8 20.9 41.5 5.5 28.2 7.8<br />

150 8 19.1 20.4 4.8 17.0 25.8 26.6 45.5 9.9 22.2 7.0<br />

170 9 19.8 23.2 13.6 16.8 25.8 22.2 52.8 25.1 15.2<br />

190 10 22.1 20.1 28.8 30.8 14.5 60.0 23.6 47.5<br />

225 11 24.7 31.2 32.1 33.3 40.3 28.3 9.2 11.8<br />

275 12 36.7 2.5 19.3 42.2<br />

325 13 59.6<br />

Clean-up costs<br />

Small vessels<br />

Clean-up costs are obta<strong>in</strong>ed by multiply<strong>in</strong>g <strong>the</strong> oil spillage (both from oil<br />

tankers and bunkers) with Safedor’s value for clean<strong>in</strong>g up one ton <strong>of</strong> crude oil,<br />

which is 12700 USD/t /Safedor/.<br />

For small vessels, <strong>the</strong> available models and data are less sophisticated.<br />

However, <strong>the</strong> focus <strong>of</strong> <strong>in</strong>terest is limited to two consequences, loss <strong>of</strong> life and<br />

loss <strong>of</strong> vessel. A collision with any larger vessel (i.e. one that is covered by <strong>the</strong><br />

AIS records) will <strong>in</strong> nearly all cases lead to a loss <strong>of</strong> <strong>the</strong> <strong>in</strong>volved yacht or fish<strong>in</strong>g<br />

vessel. In a conservative sense, it is assumed that this is always <strong>the</strong> case.<br />

Table 35<br />

Consequence parameters for small vessels<br />

Small vessel type<br />

Vessel worth<br />

[DKK]<br />

Expected number <strong>of</strong><br />

persons on board<br />

Fatality rate given<br />

collision<br />

Fish<strong>in</strong>g boat 500,000 1-2 1.0<br />

Yacht (sail<strong>in</strong>g or motor) 500,000 3-4 1.0<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

71<br />

Appendix B: Ground<strong>in</strong>g Model<br />

‣ Ground<strong>in</strong>g model<br />

The ground<strong>in</strong>g model describes <strong>the</strong> yearly rate <strong>of</strong> ships runn<strong>in</strong>g aground or<br />

ashore as well as <strong>the</strong> consequences <strong>of</strong> such events.<br />

Modell<strong>in</strong>g <strong>of</strong> <strong>the</strong> grounds<br />

Seen from a ship, an island does not appear as a more or less round object as<br />

from <strong>the</strong> air, but as a l<strong>in</strong>e on <strong>the</strong> horizon. In geometrical terms, this l<strong>in</strong>e is called<br />

a projection. If <strong>the</strong> course <strong>of</strong> <strong>the</strong> ship aims at a po<strong>in</strong>t <strong>in</strong>side <strong>the</strong> projection,<br />

<strong>the</strong> ship will run ashore, provided it cont<strong>in</strong>ues on a straight course.<br />

The same thought is valid for sub-sea grounds, even if <strong>the</strong>y are <strong>in</strong>visible. The<br />

only condition is that <strong>the</strong> ship draught is greater and <strong>the</strong> water depth at <strong>the</strong><br />

ground location. Therefore, a simple way <strong>of</strong> modell<strong>in</strong>g grounds is to determ<strong>in</strong>e<br />

<strong>the</strong>ir projections with respect to <strong>the</strong> relevant sea routes, as it is done <strong>in</strong> Figure<br />

11 (section 4.6).<br />

Modell<strong>in</strong>g <strong>of</strong> <strong>the</strong> ships<br />

The present study dist<strong>in</strong>guished two basic types <strong>of</strong> ground<strong>in</strong>gs. One is due to<br />

imprecise navigation. The o<strong>the</strong>r one occurs, when bridge personnel is lack<strong>in</strong>g<br />

attention due to alcohol, sleep<strong>in</strong>ess and o<strong>the</strong>r distractions.<br />

When analys<strong>in</strong>g <strong>the</strong> ground<strong>in</strong>g probability, <strong>the</strong> relevant characteristic <strong>of</strong> a ship<br />

is its draught. In pr<strong>in</strong>ciple, <strong>the</strong> actual draught <strong>of</strong> a ship is transmitted via its AIS<br />

device. However, this piece <strong>of</strong> <strong>in</strong>formation was partly not reliable and partly<br />

not available. Therefore, it was decided to use maximum draught <strong>in</strong>stead.<br />

Lloyd’s Register conta<strong>in</strong>s this type <strong>of</strong> <strong>in</strong>formation for every s<strong>in</strong>gle ship.<br />

Of course, this means that <strong>the</strong> ground<strong>in</strong>g risk will be systematically overestimated<br />

<strong>in</strong> <strong>the</strong> analysis, i.e. <strong>the</strong> model is quite conservative <strong>in</strong> this respect.<br />

Basic concepts<br />

Ground<strong>in</strong>gs due to imprecise navigation<br />

This ground<strong>in</strong>g type typically occurs <strong>in</strong> difficult waters, especially when <strong>the</strong><br />

personnel is not fully aware <strong>of</strong> precisely where <strong>the</strong> ship is sail<strong>in</strong>g, due to lack <strong>of</strong><br />

local experience, bad navigational equipment, lack <strong>of</strong> tra<strong>in</strong><strong>in</strong>g and o<strong>the</strong>r causes.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

72<br />

Figure 43<br />

Ground<strong>in</strong>g due to imprecise navigation<br />

As opposed to <strong>the</strong> collision model, it is not possible to use <strong>the</strong> actual ship density<br />

at <strong>the</strong> location <strong>of</strong> a potential accident <strong>in</strong> order to determ<strong>in</strong>e <strong>the</strong> ground<strong>in</strong>g<br />

frequency. The data basis would become much too small, s<strong>in</strong>ce it would only<br />

conta<strong>in</strong> those very few ships that actually grounded.<br />

Geometrical ground<strong>in</strong>g<br />

probability<br />

Therefore, it is necessary to analyse <strong>the</strong> behaviour <strong>of</strong> ships a few nautical miles<br />

before <strong>the</strong>y pass a ground. A small number <strong>of</strong> <strong>the</strong> ships can be observed to head<br />

right for <strong>the</strong> ground. The correspond<strong>in</strong>g frequency is shaded orange <strong>in</strong> Figure<br />

44 and can be obta<strong>in</strong>ed as<br />

P G<br />

= F( α1)<br />

− F(<br />

α<br />

2<br />

)<br />

where α 1 and α 2 are <strong>the</strong> upper and lower bound <strong>of</strong> <strong>the</strong> critical angle range. F =<br />

N(µ,σ) is a normal distribution describ<strong>in</strong>g <strong>the</strong> course over ground <strong>of</strong> all ships <strong>in</strong><br />

one draught class. The distribution parameters are based on AIS data.<br />

σ<br />

σ<br />

µ<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

73<br />

Figure 44<br />

Determ<strong>in</strong>ation <strong>of</strong> <strong>the</strong> geometrical ground<strong>in</strong>g frequency<br />

Causation probability<br />

Of course, most <strong>of</strong> <strong>the</strong>se “aberrant” vessels will correct <strong>the</strong>ir course <strong>in</strong> due time.<br />

Still, <strong>the</strong>re is a risk that <strong>the</strong>y do not, similar to <strong>the</strong> probability that two vessels<br />

on collision course fail to take evasive action. Therefore, <strong>the</strong> same causation<br />

probability as for collisions is used:<br />

P<br />

C<br />

= 3.0 ⋅10<br />

−4<br />

Obviously, <strong>the</strong> result equally depends upon <strong>the</strong> distance between <strong>the</strong> observation<br />

po<strong>in</strong>t (where <strong>the</strong> distribution <strong>of</strong> course over ground is measured) and <strong>the</strong><br />

ground. If <strong>the</strong> observation po<strong>in</strong>t is to close, ground<strong>in</strong>g probability will become<br />

very low, because most ships will already have corrected <strong>the</strong>ir position. If it is<br />

to far away, a large number <strong>of</strong> ships that <strong>in</strong> reality have plenty <strong>of</strong> time and<br />

space to manoeuvre will be assumed to head for <strong>the</strong> ground. Therefore, a realistic<br />

distance can be expected to be <strong>in</strong> <strong>the</strong> area <strong>of</strong> half an hour to one hour travel,<br />

correspond<strong>in</strong>g to 6-20 nm.<br />

Distance correction<br />

Instead <strong>of</strong> guess<strong>in</strong>g, a distance factor was <strong>in</strong>troduced and calibrated aga<strong>in</strong>st <strong>the</strong><br />

ground<strong>in</strong>g frequency observed dur<strong>in</strong>g <strong>the</strong> past 10-15 years:<br />

k DC<br />

=<br />

x<br />

distance<br />

where x = 10 nm = 18.522 km.<br />

<strong>Risk</strong> reduction factor<br />

Different factors can have a reduc<strong>in</strong>g factor upon collision risk. One <strong>of</strong> <strong>the</strong>m is<br />

due to <strong>the</strong> effect <strong>of</strong> pilotage, local experience or enhanced safety standards.<br />

This contribution has already been taken <strong>in</strong>to account previously /COWI 2007/.<br />

If a ship features pilotage (or local experience or heightened safety standards),<br />

<strong>the</strong> ground<strong>in</strong>g probability is multiplied by a factor k RR = 0.5.<br />

Table 30 above displays <strong>the</strong> frequency <strong>of</strong> fulfill<strong>in</strong>g one <strong>of</strong> <strong>the</strong> criteria for different<br />

ship types and sizes.<br />

Calculation<br />

The yearly ground<strong>in</strong>g frequency is obta<strong>in</strong>ed by multiply<strong>in</strong>g <strong>the</strong> above factors as<br />

P<br />

X<br />

= N P<br />

G<br />

P<br />

C<br />

k<br />

DC<br />

k<br />

RR<br />

where N is <strong>the</strong> yearly number <strong>of</strong> vessel pass<strong>in</strong>gs.<br />

Basic concepts<br />

Ground<strong>in</strong>gs due to missed turns<br />

This ground<strong>in</strong>g type is typical for locations, where sea routes make a turn,<br />

especially if <strong>the</strong> area is generally easy to sail and does not demand special attention<br />

from <strong>the</strong> crew. In this situation lack <strong>of</strong> attention due to alcohol, sleepi-<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

74<br />

ness and o<strong>the</strong>r distractions can lead to a missed turn. If <strong>the</strong>re is a ground or<br />

coastl<strong>in</strong>e ahead, <strong>the</strong> ship is bound to run aground.<br />

turn<strong>in</strong>g<br />

po<strong>in</strong>t<br />

--- sea route ---<br />

Figure 45<br />

Ground<strong>in</strong>g due to missed turn<br />

Calculation<br />

The frequency <strong>of</strong> such an event is calculated as<br />

P<br />

X<br />

= N P<br />

NT<br />

P<br />

G<br />

P<br />

C<br />

k<br />

RR<br />

where N … yearly number <strong>of</strong> pass<strong>in</strong>g ships<br />

P C … causation probability<br />

P NT … yearly frequency at which a ships misses a turn and does not<br />

correct its error at a later, but sufficiently early po<strong>in</strong>t<br />

P G … geometrical collision probability<br />

k RR … risk reduction factor<br />

Missed-turn frequency Accord<strong>in</strong>g to Pr<strong>of</strong>. Peter Friis Hansen, Technical University <strong>of</strong> Denmark as<br />

well as COWI experience from earlier projects, a previously used and verified<br />

approach consists <strong>in</strong> calculat<strong>in</strong>g<br />

P NT<br />

= e<br />

x<br />

−λ<br />

V<br />

where λ … check frequency (0.5-1 m<strong>in</strong>utes)<br />

x … distance between missed turn<strong>in</strong>g po<strong>in</strong>t and ground<br />

V … vessel speed<br />

However, this approach has been calibrated <strong>in</strong> order to suit narrow navigation<br />

channels, such as Drogden <strong>in</strong> Øresund. Obviously, a check frequency <strong>of</strong> between<br />

½ and 1 m<strong>in</strong>ute is characteristic for a crew do<strong>in</strong>g its normal duty.<br />

However, <strong>the</strong> missed-turn accidents <strong>in</strong> <strong>the</strong> <strong>Bornholm</strong> area are <strong>of</strong> a different nature.<br />

There is plenty <strong>of</strong> space, so that accidents can only occur, if <strong>the</strong> personnel<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

75<br />

<strong>in</strong> charge is lack<strong>in</strong>g attention dur<strong>in</strong>g an extended period (due to sleep<strong>in</strong>ess, alcohol<br />

etc.). Never<strong>the</strong>less, <strong>the</strong> above-presented model is an accepted state-<strong>of</strong><strong>the</strong>-art<br />

approach and will <strong>the</strong>refore be used <strong>in</strong> <strong>the</strong> analysis.<br />

Causation probability<br />

As for collisions and imprecision ground<strong>in</strong>gs, causation probability is estimated<br />

as<br />

P<br />

C<br />

= 3.0 ⋅10<br />

−4<br />

Geometrical collision<br />

probability<br />

Even if a ship missed a turn, this does not automatically mean it hits <strong>the</strong> nearest<br />

ground or coastl<strong>in</strong>e. The correspond<strong>in</strong>g probability is calculated <strong>in</strong> <strong>the</strong> same<br />

way as P G for imprecision ground<strong>in</strong>gs above (see also Figure 44):<br />

P G<br />

= F( α1)<br />

− F(<br />

α<br />

2<br />

)<br />

<strong>Risk</strong> reduction factor<br />

Same as for ground<strong>in</strong>gs due to imprecise navigation.<br />

Drift ground<strong>in</strong>gs<br />

Drift ground<strong>in</strong>gs are not <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> analysis but deserve some general<br />

comments.<br />

Drift ground<strong>in</strong>gs occur, if a vessel loses its manoeuvr<strong>in</strong>g capacity due to eng<strong>in</strong>e<br />

or rudder brake down, power outage etc. If this state cannot be repaired or<br />

moved by tugs <strong>in</strong> good, <strong>the</strong> vessel will eventually run aground or ashore.<br />

Drift ground<strong>in</strong>gs can be analysed <strong>in</strong> a very similar way to ground<strong>in</strong>gs due to<br />

imprecise navigation. The only pr<strong>in</strong>ciple difference is that <strong>the</strong> vessel speed vector<br />

has to be replaced by a w<strong>in</strong>d distribution express<strong>in</strong>g w<strong>in</strong>d speed and direction.<br />

Fur<strong>the</strong>rmore, <strong>the</strong> outage frequency and a distribution function <strong>of</strong> <strong>the</strong> time<br />

until recovery needs to be modelled.<br />

The ma<strong>in</strong> difficulty is <strong>of</strong> practical, not pr<strong>in</strong>ciple nature. In fact, a sensible drift<br />

ground<strong>in</strong>g analysis would have to <strong>in</strong>clude a much greater number <strong>of</strong> observation<br />

po<strong>in</strong>ts (cross<strong>in</strong>g l<strong>in</strong>es) than <strong>the</strong> above-described model for imprecise navigation<br />

ground<strong>in</strong>gs. For that ground<strong>in</strong>g type, <strong>the</strong> ship’s behaviour few kilometres<br />

ahead <strong>of</strong> <strong>the</strong> ground is most relevant. For drift ground<strong>in</strong>gs, any po<strong>in</strong>t along<br />

a route is relevant.<br />

‣ Ground<strong>in</strong>g consequence model<br />

Basic model<br />

Dur<strong>in</strong>g <strong>the</strong> analysis on oil and chemical spillages /COWI 2007/, <strong>the</strong> spillage<br />

model for ground<strong>in</strong>g accidents was derived from a PhD <strong>the</strong>sis by H.G. Rømer<br />

/Rømer/. This lead to <strong>the</strong> basic relations summarized <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

76<br />

Spillage <strong>of</strong> tanker<br />

cargo (oil)<br />

Spillage <strong>of</strong> cargo (oil) is expected <strong>in</strong> 20% <strong>of</strong> <strong>the</strong> ground<strong>in</strong>gs where s<strong>in</strong>gle-hull<br />

oil tankers are <strong>in</strong>volved and 15% <strong>of</strong> <strong>the</strong> cases where double-hull oil tankers are<br />

<strong>in</strong>volved.<br />

Table 36<br />

Spillage from tankers:<br />

Probability <strong>of</strong> a certa<strong>in</strong> spillage size given spillage P(spillsize|spillage)<br />

Spillage<br />

fraction S<strong>in</strong>gle hull Double hull<br />

0.001 9.74E-01 9.40E-01<br />

0.050 1.30E-02 3.00E-02<br />

0.150 6.50E-03 1.50E-02<br />

0.250 3.25E-03 7.50E-03<br />

0.350 1.63E-03 3.75E-03<br />

0.450 8.14E-04 1.88E-03<br />

0.550 4.06E-04 9.36E-04<br />

0.650 2.03E-04 4.68E-04<br />

0.750 1.01E-04 2.34E-04<br />

0.850 5.20E-05 1.20E-04<br />

0.950 5.20E-05 1.20E-04<br />

Spillage <strong>of</strong> bunker oil<br />

Spillage <strong>of</strong> bunker fuel is expected <strong>in</strong> 1% <strong>of</strong> all ground<strong>in</strong>gs.<br />

Table 37<br />

Spillage <strong>of</strong> bunker oil (all ship types):<br />

Probability <strong>of</strong> a certa<strong>in</strong> spillage size given spillage P(spillsize|spillage)<br />

Spillage fraction<br />

Bunker protection:<br />

LowLim UpLim Average No Yes<br />

0.000 0.005 0.003 0.00E+00 8.75E-01<br />

0.000 0.167 0.083 9.50E-01 1.19E-01<br />

0.500 1.000 0.750 5.00E-02 6.25E-03<br />

Loss <strong>of</strong> life<br />

Application <strong>of</strong> <strong>the</strong> basic model<br />

An earlier analysis /COWI 2002/ showed that <strong>the</strong> expected number <strong>of</strong> fatalities<br />

<strong>in</strong> case <strong>of</strong> oil spillage is basically <strong>the</strong> same for collisions and ground<strong>in</strong>gs:<br />

E[N LOL |spillage] = 0.01 persons<br />

Divid<strong>in</strong>g this number with <strong>the</strong> average number <strong>of</strong> persons on board yields an<br />

<strong>in</strong>dividual crew member’s probability <strong>of</strong> dy<strong>in</strong>g <strong>in</strong> such an accident, i.e.<br />

P(LOL|spillage). This number can be multiplied with <strong>the</strong> number <strong>of</strong> persons on<br />

board (see Table 31).<br />

Loss <strong>of</strong> life is converted <strong>in</strong>to monetary units by us<strong>in</strong>g <strong>the</strong> so-called value <strong>of</strong> a<br />

statistical life (VSL). Every person has a limited will<strong>in</strong>gness to pay for a possible<br />

prolongation <strong>of</strong> his own life or that <strong>of</strong> a fellow member <strong>of</strong> society by a<br />

small time span. Extrapolat<strong>in</strong>g <strong>the</strong> will<strong>in</strong>gness to pay from this time span to <strong>the</strong><br />

duration <strong>of</strong> an average life yields <strong>the</strong> VSL.<br />

Safedor /Safedor/ <strong>in</strong>dicates <strong>the</strong> VSL as USD 3 million ≈ DKK 16 million.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

77<br />

Ship damage<br />

Ship damage has several aspects <strong>in</strong>clud<strong>in</strong>g<br />

• repair costs (if <strong>the</strong> ship did not s<strong>in</strong>k)<br />

• loss <strong>of</strong> earn<strong>in</strong>gs dur<strong>in</strong>g <strong>the</strong> repair period (if <strong>the</strong> ship did not s<strong>in</strong>k)<br />

• loss <strong>of</strong> cargo (due to leakage or <strong>in</strong> case <strong>of</strong> s<strong>in</strong>k<strong>in</strong>g)<br />

• total loss <strong>of</strong> ship (if <strong>the</strong> ship sank)<br />

Repair costs are based on an estimate (Table 38). This estimate was confirmed<br />

as be<strong>in</strong>g realistic by <strong>the</strong> participants <strong>of</strong> Workshop II.<br />

Table 38<br />

Probability <strong>of</strong> damage size given ground<strong>in</strong>g, damage cost and repair<br />

time<br />

Ship damage Probability | Ground<strong>in</strong>g Damage relative to ship worth Repair time<br />

M<strong>in</strong>or 0.98 0.02 7 days<br />

Major 0.02 0.20 21 days<br />

Loss <strong>of</strong> earn<strong>in</strong>gs depends upon <strong>the</strong> average repair time (Table 38) and <strong>the</strong> daily<br />

capital costs, as displayed earlier <strong>in</strong> Table 33.<br />

If a ship leaks oil from its cargo compartments (tanker) or from its bunker (all<br />

ships), this basically a matter <strong>of</strong> pollution and clean-up (see below). However,<br />

such an event also means that cargo and <strong>the</strong>refore worth is lost. The loss <strong>of</strong><br />

cargo worth is obta<strong>in</strong>ed by multiply<strong>in</strong>g <strong>the</strong> oil volume with <strong>the</strong> crude oil price.<br />

For 2007, USD 70 per ton corresponds to <strong>the</strong> situation observed throughout <strong>the</strong><br />

year. The price <strong>of</strong> bunker fuel (low sulphur fuel, as prescribed <strong>in</strong> <strong>the</strong> Baltic <strong>Sea</strong>)<br />

is only little above this price.<br />

In <strong>the</strong> case <strong>of</strong> <strong>Bornholm</strong>, it is very unlikely that a ship s<strong>in</strong>ks after ground<strong>in</strong>g<br />

accord<strong>in</strong>g to <strong>the</strong> experts participat<strong>in</strong>g <strong>in</strong> Workshop II.<br />

Clean-up costs<br />

Clean-up costs are obta<strong>in</strong>ed by multiply<strong>in</strong>g <strong>the</strong> oil spillage (both from oil<br />

tankers and bunkers) with Safedor’s value for clean<strong>in</strong>g up one ton <strong>of</strong> crude oil,<br />

which is 12700 USD/t /Safedor/.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

78<br />

Appendix C: Ship Operation Costs and<br />

Externalities<br />

The follow<strong>in</strong>g costs are used <strong>in</strong> order to calculate <strong>the</strong> costs <strong>of</strong> divert<strong>in</strong>g ships to<br />

o<strong>the</strong>r routes <strong>of</strong> diverg<strong>in</strong>g route length:<br />

Length<br />

Length [m] Class<br />

Table 39 Fuel cost <strong>in</strong> DKK per kilometre, derived from /Clarksons 2007/<br />

Ship type<br />

1 2 3 4 5 6 7 8 9 10 11 12 13<br />

Oil<br />

Bulk product Chemical Conta<strong>in</strong>er Crude oil General Gas Ro-Ro Fish<strong>in</strong>g Passenge<br />

Support<br />

carrier tanker tanker ship tanker cargo ship tanker cargo ship ship r ship Fast ferry ship O<strong>the</strong>r ship<br />

10 1<br />

30 2 23 23 23 35 23 35 35 96 23 64 89 23 23<br />

50 3 23 23 23 35 23 35 35 96 23 64 89 23 23<br />

70 4 23 23 23 35 23 35 35 96 23 64 89 23 23<br />

90 5 50 50 50 79 50 79 79 165 50 144 198 50 50<br />

110 6 50 50 50 79 50 79 79 165 50 144 198 50 50<br />

130 7 82 82 82 138 82 138 138 407 82 242 333 82 82<br />

150 8 102 102 102 186 102 186 186 433 102 314 432 102 102<br />

180 9 102 102 102 186 102 186 186 433 102 314 432 102 102<br />

190 10 139 139 139 379 139 379 379 736 139 533 735 139 139<br />

225 11 197 197 197 738 197 738 738 1,239 197 899 1,238 197 197<br />

275 12 324 324 324 1,210 324 1,210 1,210 2,033 324 1,474 2,030 324 324<br />

325 13 324 324 324 1,210 324 1,210 1,210 2,033 324 1,474 2,030 324 324<br />

Length<br />

Length [m] Class<br />

Table 40 Capital cost <strong>in</strong> DKK per kilometre, derived from /Clarksons 2007/<br />

Ship type<br />

1 2 3 4 5 6 7 8 9 10 11 12 13<br />

Oil<br />

Bulk product Chemical Conta<strong>in</strong>er Crude oil General Gas Ro-Ro Fish<strong>in</strong>g Passenge<br />

Support<br />

carrier tanker tanker ship tanker cargo ship tanker cargo ship ship r ship Fast ferry ship O<strong>the</strong>r ship<br />

10 1<br />

30 2 14 10 15 43 10 36 40 46 6 55 28 6<br />

50 3 14 10 15 43 10 36 40 46 6 55 28 6<br />

70 4 14 10 15 43 10 36 40 46 6 55 28 6<br />

90 5 31 33 37 50 33 80 45 81 14 121 58 14<br />

110 6 31 33 37 50 33 80 45 81 14 121 58 14<br />

130 7 47 35 73 50 35 49 181 75 23 187 86 22<br />

150 8 47 148 82 63 148 93 141 71 44 353 135 42<br />

180 9 47 148 82 63 148 93 141 71 44 353 116 135 42<br />

190 10 51 58 88 84 58 121 214 240 58 463 177 55<br />

225 11 95 116 103 171 116 223 93 440 106 848 324 182<br />

275 12 139 199 141 233 199 304 127 601 145 1,159 442 103<br />

325 13 139 199 141 233 199 304 127 601 145 1,159 442 103<br />

It was not possible to obta<strong>in</strong> realistic capital cost values for fast ferries. However,<br />

<strong>the</strong>re are presently none <strong>of</strong> <strong>the</strong>se sail<strong>in</strong>g between Gdańsk/Kal<strong>in</strong><strong>in</strong>grad/<br />

Klaipėda and <strong>the</strong> entrance <strong>of</strong> <strong>the</strong> Baltic <strong>Sea</strong>. Therefore, this does not have any<br />

effect upon <strong>the</strong> result.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

79<br />

Table 41<br />

External cost <strong>in</strong> DKK per kilometre, based on /Transportm<strong>in</strong>/<br />

Length<br />

Length [m] Class<br />

Ship type<br />

1 2 3 4 5 6 7 8 9 10 11 12 13<br />

Oil<br />

Bulk product Chemical Conta<strong>in</strong>er Crude oil General Gas Ro-Ro Fish<strong>in</strong>g Passenge<br />

Support<br />

carrier tanker tanker ship tanker cargo ship tanker cargo ship ship r ship Fast ferry ship O<strong>the</strong>r ship<br />

10 1<br />

30 2 54 54 54 84 54 84 84 104 54 48 52 54 54<br />

50 3 54 54 54 84 54 84 84 104 54 48 52 54 54<br />

70 4 54 54 54 84 54 84 84 104 54 48 52 54 54<br />

90 5 120 120 120 190 120 190 190 180 120 107 117 120 120<br />

110 6 120 120 120 190 120 190 190 180 120 107 117 120 120<br />

130 7 196 196 196 331 196 331 331 443 196 180 197 196 196<br />

150 8 243 243 243 446 243 446 446 472 243 234 255 243 243<br />

180 9 243 243 243 446 243 446 446 472 243 234 255 243 243<br />

190 10 333 333 333 907 333 907 907 802 333 397 434 333 333<br />

225 11 473 473 473 1,767 473 1,767 1,767 1,351 473 669 731 473 473<br />

275 12 776 776 776 2,898 776 2,898 2,898 2,216 776 1,098 1,199 776 776<br />

325 13 776 776 776 2,898 776 2,898 2,898 2,216 776 1,098 1,199 776 776<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

80<br />

Appendix D: Enlarged Figures<br />

Enlargement <strong>of</strong> Figure 7 from p. 18:<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

81<br />

Enlargement <strong>of</strong> Figure 14 from p. 31:<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

82<br />

Enlargement <strong>of</strong> Figure 15 from p. 31:<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

83<br />

Enlargement <strong>of</strong> Figure 16 from p. 32:<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

84<br />

Enlargement Figure 17 from p. 32:<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

85<br />

Enlargement <strong>of</strong> Figure 18 from p. 33:<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

86<br />

Enlargement <strong>of</strong> Figure 19 from p. 33:<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

87<br />

Enlargement <strong>of</strong> Figure 20 from p. 38:<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

88<br />

Enlargement <strong>of</strong> Figure 21 from p. 38:<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

89<br />

Enlargement <strong>of</strong> Figure 22 from p. 39:<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

90<br />

Enlargement <strong>of</strong> Figure 23 from p. 39:<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

91<br />

Enlargement <strong>of</strong> Figure 24 from p. 44:<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

92<br />

Enlargement <strong>of</strong> Figure 25 from p. 44:<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

93<br />

Enlargement <strong>of</strong> Figure 26 from p. 45:<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

94<br />

Enlargement <strong>of</strong> Figure 27 from p. 49:<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

95<br />

Enlargement <strong>of</strong> Figure 28 from p. 49:<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

96<br />

Enlargement <strong>of</strong> Figure 29 from p. 53:<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

97<br />

Enlargement <strong>of</strong> Figure 30 from p. 53:<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

98<br />

Enlargement <strong>of</strong> Figure 31 from p. 54:<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

99<br />

Enlargement <strong>of</strong> Figure 32 from p. 54:<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

100<br />

Enlargement <strong>of</strong> Figure 33 from p. 55:<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

101<br />

Appendix E: Curricula Vitae<br />

Name<br />

Position<br />

Company<br />

Company address<br />

F<strong>in</strong>n Vessel<br />

Pilot<br />

Danpilot<br />

Marmorvej<br />

2100 København Ø<br />

Short description <strong>of</strong> relevant<br />

job description<br />

1969 – 1980 deck <strong>of</strong>ficer, EAC<br />

1980 Pilot <strong>in</strong> <strong>the</strong> Sound, stationed at <strong>Bornholm</strong><br />

1984 responsible for equipment and safety<br />

Potential o<strong>the</strong>r related<br />

activites<br />

Statistics BPAC<br />

Author on ‘Fartøjhåndbog for bådsmænd’<br />

Author on brochure on BPAC/pilots<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

102<br />

Name<br />

Position<br />

Company<br />

Johnny Nielsen<br />

Master (chefkaptajn)<br />

<strong>Bornholm</strong>strafikken A/S<br />

Company address Dampskibskajen 3 – 5<br />

3700 Rønne<br />

Short description <strong>of</strong> relevant<br />

job description<br />

Master <strong>of</strong> POUL ANKER<br />

Potential o<strong>the</strong>r related<br />

activites<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

103<br />

Name<br />

Position<br />

Company<br />

Kurt Bruun-Villadsen<br />

Chief <strong>of</strong>ficer<br />

Scandl<strong>in</strong>es DK<br />

Company address Dampfærgevej 10<br />

2100 København Ø<br />

Short description <strong>of</strong> relevant<br />

job description<br />

Work<strong>in</strong>g on M/V ASK <strong>in</strong> trade between Rostock and<br />

Ventspils. 2 trips per week.<br />

Potential o<strong>the</strong>r related<br />

activites<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

104<br />

Name<br />

Position<br />

Company<br />

Frank Kier Rasmussen<br />

Naval capta<strong>in</strong> – Danish rank ‘orlogskaptajn’<br />

Admiralty Danish Fleet – <strong>Bornholm</strong>s Mar<strong>in</strong>edistrikt<br />

Company address Segenvej 31<br />

3700 Rønne<br />

Short description <strong>of</strong> relevant<br />

job description<br />

Educated master mar<strong>in</strong>er<br />

Experience from merchant shipp<strong>in</strong>g and from naval<br />

ships sail<strong>in</strong>g <strong>in</strong> Danish waters.<br />

Second <strong>in</strong> command at <strong>Bornholm</strong>s Mar<strong>in</strong>edistrikt<br />

with responsibility <strong>of</strong> monitor<strong>in</strong>g <strong>the</strong> traffic <strong>in</strong> <strong>the</strong><br />

traffic separation scheme <strong>in</strong> <strong>Bornholm</strong>sgat. Responsible<br />

for <strong>the</strong> local SAR service and for environmental<br />

surveillance <strong>in</strong> <strong>the</strong> Baltic <strong>Sea</strong> <strong>in</strong> corporation with <strong>the</strong><br />

Danish Admiral Fleet.<br />

Potential o<strong>the</strong>r related<br />

activites<br />

Native from <strong>Bornholm</strong> fish<strong>in</strong>g <strong>of</strong>f <strong>Bornholm</strong><br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

105<br />

Name<br />

Position<br />

Company<br />

Henrik Hammer Jensen<br />

Vice chairman<br />

<strong>Bornholm</strong>s og Christians Ø Fiskeriforen<strong>in</strong>g<br />

Company address Øernes Kaj 2<br />

3700 Rønne<br />

Short description <strong>of</strong> relevant<br />

job description<br />

Fisherman from <strong>Bornholm</strong><br />

Former deck <strong>of</strong>ficer on merchant ships<br />

Potential o<strong>the</strong>r related<br />

activites<br />

Voluntary rescue person (Rønne)<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

106<br />

Name<br />

Position<br />

Company<br />

Henrik Balle<br />

Tejn Yacht Club<br />

<strong>Bornholm</strong>s og Christians Ø Fiskeriforen<strong>in</strong>g<br />

Company address Sdr. Strandvej 14<br />

3770 All<strong>in</strong>ge<br />

Short description <strong>of</strong> relevant<br />

job description<br />

Yachtsman<br />

Potential o<strong>the</strong>r related<br />

activites<br />

Voluntary rescue person (Rønne)<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

107<br />

Name<br />

Position<br />

Company<br />

Company address<br />

Aron Sørensen<br />

Special consultant<br />

Danish Maritime Authority<br />

Vermundsgade 38C<br />

2100 København Ø<br />

Short description <strong>of</strong> relevant<br />

job description<br />

Master Mar<strong>in</strong>er<br />

Former Lecturer on Danish Navigational Colleges<br />

Responsible for SOLAS – safety <strong>of</strong> navigation –<br />

(Chapter V) <strong>in</strong> Denmark<br />

Potential o<strong>the</strong>r related<br />

activites<br />

Author <strong>of</strong> commented COLREG issued by <strong>the</strong> Danish<br />

Maritime Authority<br />

Author on voyage plann<strong>in</strong>g for master mar<strong>in</strong>ers –<br />

used on navigational colleges<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

108<br />

Name<br />

Position<br />

Company<br />

Company address<br />

Short description <strong>of</strong> relevant<br />

job description<br />

Michael Skov<br />

Inspektoratschef<br />

Farvandsvæsenet<br />

Overgaden o. Vandet 62 B<br />

Postboks 1919<br />

1023 København K<br />

Aids to navigation management<br />

In charge <strong>of</strong> publication <strong>of</strong> Danish NtM, NtDW,<br />

Dansk Fyrliste<br />

Management <strong>of</strong> Wrecks<br />

Master Mar<strong>in</strong>er<br />

Hydrographic surveyor<br />

Potential o<strong>the</strong>r related<br />

activites<br />

Former editor <strong>of</strong> Danish NtM<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

109<br />

Name<br />

Position<br />

Company<br />

Peter Friis-Hansen<br />

Pr<strong>of</strong>essor<br />

Technical University <strong>of</strong> Denmark<br />

Company address Build<strong>in</strong>g 403<br />

Niels Koppels Alle<br />

2800 Kongens Lyngby<br />

Short description <strong>of</strong> relevant<br />

job description<br />

Safety assessment <strong>of</strong> mar<strong>in</strong>e systems<br />

<strong>Risk</strong> analysis <strong>of</strong> general water way management<br />

(primarily related to collisions and ground<strong>in</strong>gs)<br />

<strong>Risk</strong> and reliability <strong>of</strong> ships operations<br />

Potential o<strong>the</strong>r related<br />

activites<br />

Formulation <strong>of</strong> rational pr<strong>in</strong>ciples for acceptance<br />

criteria sett<strong>in</strong>g<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

110<br />

Name<br />

Position<br />

Company<br />

Inger B. Kroon<br />

Senior Specialist <strong>Risk</strong> Assessment<br />

COWI A/S<br />

Company address Parallelvej 2<br />

2800 Kongens Lyngby<br />

Short description <strong>of</strong> relevant<br />

job description<br />

<strong>Risk</strong> assessment <strong>in</strong> general and for ship collision<br />

with bridges and o<strong>the</strong>r <strong>in</strong>frastructure and for oil spill<br />

<strong>in</strong> Danish waters.<br />

16 years <strong>of</strong> experience <strong>in</strong> risk, reliability and decision<br />

analysis<br />

Potential o<strong>the</strong>r related<br />

activites<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

111<br />

Name<br />

Position<br />

Company<br />

Lene Schepper<br />

Senior Specialist <strong>Risk</strong> Assessment<br />

COWI A/S<br />

Company address Parallelvej 2<br />

2800 Kongens Lyngby<br />

Short description <strong>of</strong> relevant<br />

job description<br />

More than 25 years <strong>of</strong> experience <strong>in</strong> hazid analysis<br />

<strong>of</strong> <strong>of</strong>fshore facilities etc.<br />

Detailed analysis <strong>of</strong> pipel<strong>in</strong>es, railways, shipp<strong>in</strong>g<br />

traffic, chemical plants, frequency and consequence<br />

assessment.<br />

Potential o<strong>the</strong>r related<br />

activites<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

112<br />

Name<br />

Position<br />

Company<br />

Albrecht Lentz<br />

Specialist <strong>Risk</strong> Assessment<br />

COWI A/S<br />

Company address Parallelvej 2<br />

2800 Kongens Lyngby<br />

Short description <strong>of</strong> relevant<br />

job description<br />

Eng<strong>in</strong>eer specialised <strong>in</strong> risk analysis and risk assessment.<br />

Potential o<strong>the</strong>r related<br />

activites<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


<strong>Risk</strong> <strong>Analysis</strong> for <strong>Sea</strong> <strong>Traffic</strong> <strong>in</strong> <strong>the</strong> <strong>Area</strong> <strong>around</strong> <strong>Bornholm</strong><br />

113<br />

Appendix F: Hazard Identification<br />

Workshop I (Hazard identification) was held <strong>in</strong> Danish, which <strong>the</strong>refore is <strong>the</strong><br />

language <strong>of</strong> <strong>the</strong> HazID list.<br />

P:\65775A\3_Pdoc\DOC\P-65775A ma<strong>in</strong> report f<strong>in</strong>al corr prepared for PDF.DOC<br />

.


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 1<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

Skib<br />

Et skib og dets retn<strong>in</strong>g beskrives ved tre bogstaver svarende til det område skibet kommer fra, det område skibet bef<strong>in</strong>der<br />

sig i og det område skibet sejler mod.<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 2<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

VAB<br />

VAB 1.1<br />

VAB 1.2<br />

VAB 1.3<br />

VAB 1.4<br />

VAB 1.5<br />

Skib kommer fra vest gennem Kadetrenden og passerer område A med kurs mod <strong>Bornholm</strong>s Gat<br />

Kollision med færge<br />

Krydsende færge fra styrbord med<br />

retn<strong>in</strong>g fra Sw<strong>in</strong>oujscie til Trelleborg.<br />

V<strong>in</strong>kel 90 grader<br />

Kollision med færge<br />

Krydsende færge fra bagbord med<br />

retn<strong>in</strong>g fra Trelleborg til Sw<strong>in</strong>oujscie.<br />

V<strong>in</strong>kel 90 grader<br />

Kollision med færge<br />

Krydsende færge fra styrbord med<br />

retn<strong>in</strong>g fra Sw<strong>in</strong>oujscie til Ystad.<br />

V<strong>in</strong>kel 90 grader<br />

Kollision med færge<br />

Krydsende færge fra bagbord med<br />

retn<strong>in</strong>g fra Ystad til Sw<strong>in</strong>oujscie.<br />

V<strong>in</strong>kel 90 grader<br />

a) Regel om at VAB normalt skal<br />

vige i sigtbart vejr *)<br />

b) Der er god plads til at manøvrere,<br />

vanddybden er stor nok<br />

c) Der er lang tid til at reagere.<br />

Der vil <strong>of</strong>test være langt mellem<br />

skibene. Men der kan være<br />

en klump og andre gange<br />

<strong>in</strong>gen som helst<br />

d) Der er en risikoreducerende<br />

effekt i, at færgen nu i højere<br />

grad ved, hvor de skibe, man<br />

skal krydse, sejler<br />

a) Regel om at færge normalt<br />

skal vige i sigtbart vejr *). Det<br />

er bare den sidste tur <strong>in</strong>den<br />

vagtskifte, hvor fokus er flyttet<br />

lidt hen på om afløseren nu<br />

kommer, der kan være en<br />

øget risiko ved.<br />

Også VAB 1.1 b), c) og d)<br />

a) Regel om at VAB normalt skal<br />

vige i sigtbart vejr *)<br />

Også VAB 1.1 b), c) og d)<br />

a) Regel om at færge normalt<br />

skal vige i sigtbart vejr *)<br />

Også VAB 1.1 b), c) og d)<br />

Kollision med andet skib<br />

Krydsende skib fra styrbord, der<br />

kommer syd om <strong>Bornholm</strong> og skal<br />

på tværs af den nordgående del af<br />

den separerede zone og sejle videa)<br />

Regel om at VAB normalt skal<br />

vige i sigtbart vejr *). Dvs.<br />

skibet, der kommer fra sydøst<br />

har retten til at fortsætte. Men<br />

VAB kunne være af den opfat-<br />

Burde ikke være<br />

et problem<br />

Sandsynligheden<br />

for en kollision er<br />

lavere nu end<br />

tidligere<br />

Som VAB 1.1<br />

Som VAB 1.1<br />

Som VAB 1.1<br />

M<strong>in</strong>dre sandsynlighed<br />

nu end før<br />

fordi VAB kun<br />

møder skibe fra<br />

styrbords side<br />

Hvor der er vand nok, skal en færge<br />

placere sig, så der er mest muligt plads<br />

til et stort skib<br />

En kollision i et snævert farvand kan<br />

forklares, men her er der mulighed for<br />

at dreje styrbord (alm<strong>in</strong>delig procedure<br />

for at undvige). Der er vanddybde nok<br />

Hvis det er usigtbart vejr, så skal alle<br />

vige for alle<br />

Det er bekymrende, at nogle store<br />

skibe er af den opfattelse, at søvigepligten<br />

er trådt ud af kraft, når<br />

de sejler i en trafiksepareret zone<br />

Hvis v<strong>in</strong>klen er over 10 - 15 grader kan<br />

man betragte det som en slags krydsn<strong>in</strong>g.<br />

Men m<strong>in</strong>dre v<strong>in</strong>kler kan sammenlignes<br />

med lige ud, dvs. +/-5 grader<br />

head-on kollision. Ved 5-7 grader er<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 3<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

VAB 1.6<br />

VAB 1.7<br />

VAB 1.8<br />

VAB 1.9<br />

re mod sydvest (Kadetrenden).<br />

V<strong>in</strong>kel ca. 20 grader<br />

Kollision med skib i medgående<br />

trafik<br />

Kollision med skib i modgående<br />

trafik<br />

Kollision med fiskefartøj<br />

Man kan også sejle <strong>in</strong>d i drivgarn<br />

Kollision med lystsejler<br />

Der er en del lystsejlere, der sejler<br />

direkte Rønne - Møn<br />

telse, at hans skib er på en rute<br />

og derfor måtte have første<br />

ret. Den største fare er vurder<strong>in</strong>gen<br />

af hvor tæt man synes,<br />

man vil sejle på h<strong>in</strong>anden. Man<br />

må som SFA være forberedt<br />

på undvigemanøvrer<br />

b) Kryds under lille v<strong>in</strong>kel, nærmest<br />

modgående trafik<br />

a) Små fiskekuttere er begyndt at<br />

bruge AIS aktivt, og så viger<br />

fragtskibene<br />

a) En moderne sejlbåd er hvid<br />

med hvide sejl. Den ligner bølger,<br />

og man ser den vanskeligt<br />

fra et stort skib og slet ikke i<br />

hårdt vejr<br />

M<strong>in</strong>dre sandsynligt<br />

nu end før<br />

fordi der nu er<br />

færre (næsten<br />

<strong>in</strong>gen) modgående<br />

skibe at møde<br />

længden af krydsn<strong>in</strong>gen meget lang<br />

Folk der sejler på floder synes 50 m er<br />

en stor afstand. Men dem der sejler et<br />

stort skib har en anden opfattelse. Her<br />

er 200 m en lille afstand<br />

Der er en del travlfiskeri lige til slut i<br />

forløbet<br />

Fragtskibene kan til tider have svært<br />

ved at aflæse en fiskerbåds hensigter<br />

Der er også lystbåde, der sejler op<br />

langs den svenske kyst. Om sommeren<br />

er der nok i snit 70 både om dagen fra<br />

den kant. Dvs. m<strong>in</strong>imum 10 både om<br />

dagen, der krydser <strong>in</strong>d over. Nogen gør<br />

det i precautionary area (B) nogen<br />

langs svenskekysten og nogen på<br />

tværs af trafikseparer<strong>in</strong>gen. Der kommer<br />

også et stigende antal tyskere op<br />

Der er i snit 3-4 personer på en lystbåd<br />

VAB 1.10 Kollision med dykkerfartøj Der er dykkere, men de holder til længere<br />

oppe. Nærmere i område B<br />

VAB 1.11<br />

Kollision med trafik i forb<strong>in</strong>delse<br />

med etabler<strong>in</strong>g af v<strong>in</strong>dmøllepark<br />

a) Der er god plads Tyskerne vil bygge en v<strong>in</strong>dmøllepark<br />

på Adler Grund. Det kommer i fremtiden<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 4<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

VAB 2.1<br />

Grundstødn<strong>in</strong>g<br />

VAB ændrer ikke kurs men fortsætter<br />

lige ud og rammer Hasle<br />

Navigationsfejl, styrmanden sover,<br />

eller han glemmer hvor han skal<br />

hen<br />

Skibet forventes at grundstøde<br />

med en hastighed på 9 knob.<br />

Grunden består af sand, istidssten<br />

(nogle meget store), ral, klippeskær,<br />

stenrev. Dvs. bunden er<br />

hård med en begrænset mængde<br />

kanter<br />

a) Et skib der tidligere glemte,<br />

hvad det var i færd med var<br />

primært udsat for at kollidere.<br />

Her havde de andre skibe så<br />

en mulighed for at opdage at<br />

der var en farlig situation på<br />

vej, hvorfor de undveg. Nu er<br />

denne kollisionsrisiko afløst af<br />

en risiko for at gå på grund <strong>in</strong>de<br />

ved Hasle. Her er der <strong>in</strong>gen,<br />

der hjælper med at undgå<br />

ulykken<br />

VAB 2.2 Grundstødn<strong>in</strong>g nær rute a) Der er ikke noget at gå på<br />

grund på i dette område<br />

VAB 3.1<br />

Ulykke pga. færdsel i skydeareal<br />

under skydn<strong>in</strong>g<br />

a) Når der skydes er området<br />

spærret<br />

b) Hvis nogen sejler <strong>in</strong>d i området,<br />

må man vente med at<br />

skyde, kalde dem op og så<br />

true med politianmeldelse,<br />

hvis de ikke forlader området<br />

frivilligt<br />

c) Spærr<strong>in</strong>g varsles i efterretn<strong>in</strong>ger<br />

for søfarende, men dem<br />

man henvender sig til, ser ikke<br />

altid de medier<br />

Det er nu blevet<br />

en signifikant<br />

større risiko, at<br />

skibet glemmer<br />

at skifte kurs.<br />

Risikoen er ændret<br />

fra en kollisionsrisiko<br />

før trafikseparer<strong>in</strong>gen<br />

til en grundstødn<strong>in</strong>gsrisiko<br />

Ingen<br />

Der har været 2 grundstødn<strong>in</strong>ger ved<br />

Hasle af denne årsag<br />

Der har ikke været udslip fra de grundstødte<br />

skibe, men det vurderes kun at<br />

være held. Det er dog således, at<br />

stævnen rammer først, og der skal<br />

ødelægges en hel del før tankene beskadiges.<br />

Men det er jo muligt at bunden<br />

rives op, hvis der er sten, der rager<br />

op<br />

Ved Hasle og nordpå er holdebunden<br />

ikke god for at kaste anker<br />

Vi har ikke set den større båd grundstøde<br />

endnu, kun coastere. Tankskibene<br />

kommer alm<strong>in</strong>deligvis mest fyldte<br />

den anden vej (vigtigt mht. konsekvenser)-<br />

men det er da set. Et stort<br />

skib vil grundstøde længere ude - med<br />

mulighed for at ødelægge bundtanke<br />

med olie. Sandsynligheden for udslip<br />

vurderes at være højere end ved<br />

grundstødn<strong>in</strong>g på en sandbanke<br />

Det skydeareal, der er markeret på<br />

søkortet er ved at blive flyttet, således,<br />

at det ikke længere skærer <strong>in</strong>d i trafikseparer<strong>in</strong>gen<br />

Området anvendes ca. 30 dage om<br />

året.<br />

VAB 3.2 Ødelæggelse af kabel a) Kablerne krydser zonen, hvor Et drivende skib, der vil bremse kan<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 5<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

Kabelfelt løber på tværs af trafikzonen<br />

Beskadigelse af kablerne kan betyde<br />

en afbrydelse af el til <strong>Bornholm</strong>.<br />

vanddybden er stor (ca. 50<br />

m). Men der er en yderligere<br />

konsekvens af en grundstødn<strong>in</strong>g<br />

ved Hasle. Her kommer<br />

kablerne i land og vanddybden<br />

ved kablerne er ikke så stor<br />

f<strong>in</strong>de på at kaste anker. Det er en anden<br />

mulighed for at beskadige et kabel<br />

VAB 3.3<br />

ABC<br />

ABC 1.1<br />

Når man sejler hen over el-kabler<br />

sker der et udslag i et magnetkompas<br />

(kan være 10 grader). Et<br />

skib kan derved komme ud af kurs<br />

a) Der er adskillige kabler i området,<br />

men vanddybden er stor<br />

Skib kommer fra Kadetrenden og sejler gennem precautionary area for at sejle videre gennem <strong>Bornholm</strong>s Gat<br />

Kollision med andet skib<br />

Fletn<strong>in</strong>g med skib, der kommer<br />

fra Øresund<br />

a) Regel om at disse skibe (NBC)<br />

normalt skal vige i sigtbart vejr<br />

*). Men her skal man være<br />

opmærksom på, at NBC jo også<br />

skal passe på CBA. Dvs.<br />

NBC er ikke en forudsigelig<br />

faktor for ABC, for NBC skal<br />

også tilpasse sig anden trafik<br />

b) Det er væsentligt, at der nu<br />

står precautionary area på søkortet<br />

c) Man kan også aftale på VHF,<br />

hvad man vil gøre<br />

d) Det er dog alt i alt lettere at<br />

flette <strong>in</strong>d nu end tidligere. NBC<br />

kunne jo ikke bare dreje <strong>in</strong>d,<br />

for man vidste ikke hvad man<br />

ville møde. Det virker som om<br />

fletn<strong>in</strong>gen går nemmere i dag.<br />

Man kan evt. ikke følge den<br />

slaviske kurs, Man er nødt til at<br />

have en buffer<br />

e) Det er ulige lettere at forholde<br />

sig til, at man ved hvilken vej<br />

skibene sejler og hvor<br />

f) Imod taler at alle skibe nu skal<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 6<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

flette over et m<strong>in</strong>dre område<br />

end tidligere. Det giver større<br />

trafik<strong>in</strong>tensitet, der hvor der<br />

flettes<br />

ABC 1.2<br />

Kollision med andet skib<br />

Indflettet kysttrafik, der tidligere<br />

kunne sejle langs Sveriges sydkyst<br />

Øget antal skibe<br />

skal nu flettes<br />

<strong>in</strong>d. Hyppigheden<br />

stiger m<strong>in</strong>dst<br />

proportionalt med<br />

antallet<br />

Området <strong>in</strong>d under Sveriges kyst er<br />

alene bestemt for skibe med dest<strong>in</strong>ation<br />

til svenske havne. Efter trafikseparer<strong>in</strong>gen<br />

er <strong>in</strong>dført tv<strong>in</strong>ges små skibe,<br />

der kunne sejle kystnært, ud i trafikseparer<strong>in</strong>gen<br />

mellem de store skibe<br />

ABC 1.3<br />

Kollision med færge<br />

Krydsende færge fra styrbord med<br />

retn<strong>in</strong>g fra Rønne mod Øresund<br />

a) Regel om at ABC normalt skal<br />

vige i sigtbart vejr *)<br />

b) Færger er mere stedkendte og<br />

har en anden brodiscipl<strong>in</strong>. Der<br />

træffes aftale om hvorvidt man<br />

skal gå agten om eller fortsætte<br />

c) Færger manøvrerer bedre end<br />

skibe generelt<br />

ABC 1.4<br />

Kollision med færge<br />

Krydsende færge fra bagbord med<br />

retn<strong>in</strong>g fra Øresund til Rønne<br />

a) Regel om at færge normalt<br />

skal vige i sigtbart vejr *)<br />

ABC 1.5<br />

Kollision med færge<br />

Krydsende færge fra styrbord med<br />

retn<strong>in</strong>g fra Rønne til Ystad<br />

a) Regel om at ABC normalt skal<br />

vige i sigtbart vejr *) for færge<br />

Ystad-Rønne sejler lige <strong>in</strong>d i området<br />

der, hvor der er separeret, færgen<br />

synes at søfartsreglerne vel også må<br />

gælde når de er til færgens fordel<br />

Ruten er efter separer<strong>in</strong>gen lidt omlagt<br />

i forhold til Bøjen ved Svart Grund for<br />

<strong>Bornholm</strong>strafikkens færge Villum<br />

Clausen. Til dels også fordi færgen<br />

sejler hurtigere på lavt vand. Færgen<br />

sejler meget tæt på separationen i den<br />

nordøstlige del af precautionary area<br />

ABC 1.6<br />

Kollision med færge<br />

Krydsende færge fra bagbord med<br />

retn<strong>in</strong>g fra Ystad til Rønne<br />

a) Regel om at færgen normalt<br />

skal vige i sigtbart vejr *)<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 7<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

ABC 1.7 Kollision med medgående skib<br />

ABC 1.8 Kollision med modgående skib<br />

ABC 1.9<br />

ABC 1.10<br />

ABC 1.11<br />

ABC 2.1<br />

Kollision med fiskefartøj<br />

Der er fiskeri i området<br />

Kollision med lystsejler<br />

Det forekommer at lystsejlere<br />

bevæger sig <strong>in</strong>d i precautionary<br />

area<br />

Kollision med dykkerfartøj<br />

Der kan være dykkere i området<br />

Grundstødn<strong>in</strong>g<br />

Svart Grund<br />

a) Regel om at motor viger for<br />

sejl, men det forudsætter at<br />

sejlskibet kan ses<br />

a) Vurderes ikke at være et problem.<br />

Selv ved motorstop vil<br />

ABC næppe kunne drive helt<br />

op til Svart Grund<br />

ABC 2.2 Grundstødn<strong>in</strong>g nær rute a) Der er ikke noget andet at gå<br />

på grund på<br />

ABC 3.1 Beskadigelse af telekabel a) Telekablet ligger dybt i havbunden<br />

og løber syd for rute.<br />

Vurderes ikke at være et problem<br />

BCD<br />

BCD 1.1<br />

<strong>Bornholm</strong>s Gat nordøst gående trafik<br />

Der ikke længere så mange fiskefartøjer<br />

ved Svart Grund som tidligere. Men<br />

omlægn<strong>in</strong>gen af færgeruten er også<br />

sket pga. fiskefartøjerne. Om natten<br />

kan man ikke se, hvilken vej en fiskerbåd<br />

vender<br />

Det ses <strong>of</strong>te, at fritidssejlerne krydser<br />

<strong>in</strong>dover dette område. Det vurderes, at<br />

det kommer til at gå galt. Nogle skibe<br />

har ikke radar, og det er ikke altid muligt<br />

at se de små hvide både<br />

Vanddybden på Svart Grund er m<strong>in</strong>dst<br />

14 m. Svart Grund består af sand. Kun<br />

de helt store skibe er i fare for at sidde<br />

fast. De m<strong>in</strong>dre går fri igen, når de<br />

stopper<br />

Trafikseparer<strong>in</strong>gen betyder, at man især undgår "head-on" kollisioner. Det er den type kollisioner, man ser meget ude i Verden, men i Danmark er<br />

det også den krydsende trafik, der volder problemer<br />

Lods tages op og sættes af i området omkr<strong>in</strong>g Hammeren. Skibe, der kommer fra øst, og skal have lods ombord, sejler i kystzonen syd for trafikseparer<strong>in</strong>gen<br />

og fletter først <strong>in</strong>d nede i precautionary area (B).<br />

Kollision med færge<br />

Krydsende færge fra styrbord med<br />

retn<strong>in</strong>g fra All<strong>in</strong>ge til Simrishamn<br />

a) Regel om at BCD normalt skal<br />

vige i sigtbart vejr *).<br />

b) Færger manøvrerer bedre end<br />

skibe i alm<strong>in</strong>delighed.<br />

Der er generelt ikke meget krydsende<br />

trafik, men det er ikke forbudt at krydse<br />

trafikseparer<strong>in</strong>gen. Man må gerne,<br />

dog skal krydsn<strong>in</strong>gen ske så v<strong>in</strong>kelret<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 8<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

BCD 1.2<br />

Kollision med færge<br />

Krydsende færge fra bagbord med<br />

retn<strong>in</strong>g fra Simrishamn til All<strong>in</strong>ge<br />

a) Regel om at færge normalt skal<br />

vige i sigtbart vejr *)<br />

på sejlretn<strong>in</strong>gen som muligt<br />

I danske farvande er der snævert i<br />

<strong>Bornholm</strong>s Gat, men slet ikke så smalt<br />

som i Storebælt. Der er relativt meget<br />

plads. Man følger kursen som skipper<br />

har sagt. Man har ikke på forhånd diskuteret,<br />

hvordan man går af vejen<br />

BCD 1.3 Kollision med medgående skib Trafikseparer<strong>in</strong>gen betyder en større<br />

koncentration af trafik. Skibene ligger<br />

på et jernbanespor. De sejler bare.<br />

Navigatøren bliver fokuseret på landevejen<br />

og at man ikke kommer ud i<br />

rabatten<br />

BCD 1.4 Kollision med modgående skib Mange af skibene sejler her <strong>of</strong>tere end<br />

lodserne gør. De skibe, der sejler usikkert<br />

er de der "cowboydere", der ligger<br />

og jonglerer mellem ruterne og ikke<br />

mener, de har brug for en lods<br />

Det er ikke en ny fare hvis et skib skulle<br />

sejle <strong>in</strong>d i zonen mellem de to trafikzoner.<br />

Denne zone er reelt ca. 1 sømil<br />

bred<br />

BCD 1.5<br />

Kollision med fiskefartøj<br />

Fiskerbåde tager opmærksomhed<br />

og giver manøvrebegrænsn<strong>in</strong>g<br />

Der fiskes en del i selve ruten,<br />

men mest på Davids Banke<br />

a) Fiskefartøjer skal i trafikseparer<strong>in</strong>gszonen<br />

trawle i sejlretn<strong>in</strong>gen.<br />

Deres hastighed er dog<br />

lav og de udgør således stadig<br />

en risiko<br />

Garnfiskeri fra hammeren til nord om<br />

Davids Banke<br />

De bedste fiskepladser ligger i drejepunkterne<br />

Fiskerne har 4 VHF-anlæg, der som<br />

regel alle er <strong>in</strong>dstillet på fiskekanalerne,<br />

så de hører ikke efter, hvad der<br />

ellers sker omkr<strong>in</strong>g dem<br />

Drivgarn og laksekroge kan være generende.<br />

Der har været problemer. Fra<br />

2008 forsv<strong>in</strong>der de sidste drivgarn, idet<br />

man vil undgå at fange marsv<strong>in</strong>. Lak-<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 9<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

BCD 1.6<br />

Kollision med troll<strong>in</strong>gbåd<br />

Der ligger troll<strong>in</strong>gbåde i området,<br />

men de må ikke sejle ud i trafikseparer<strong>in</strong>gen<br />

sedrivkrogen forsv<strong>in</strong>der også<br />

Troll<strong>in</strong>gbåde er lystfiskere, der sejler<br />

langsomt, når de fisker og hurtigt, når<br />

de sejler hjem. De tror de har særlige<br />

rettigheder, når de fisker, men det har<br />

de ikke. Der er nok 10 - 15 stykker,<br />

når man sejler forbi på en god fiskedag.<br />

BCD 1.7 Kollision med lystsejler Der er nogle lystsejlere, der sejler direkte<br />

fra Rønne til Hanöbukten.<br />

BCD 2.1<br />

Grundstødn<strong>in</strong>g på Davids Banke<br />

Davids Banke har altid været afmærket,<br />

så hvis man sejler på<br />

den, er det fordi man drejer for<br />

tidligt.<br />

a) Davids Banke er afmærket,<br />

fordi vandet er lavt (vanddybden<br />

er ca. 11 m). Her er derfor<br />

m<strong>in</strong>dre manøvrerum.<br />

b) Davids Banke er sand.<br />

c) Mange af tankskibene er i ballast<br />

på vej tilbage til Primorsk.<br />

Dvs. de stikker m<strong>in</strong>dre dybt.<br />

Første gang man støder på afmærkn<strong>in</strong>g<br />

på ruten er ved Davids Banke.<br />

BCD 2.2 Kontakt med Hammeren V<strong>in</strong>den er det farligste ved havari i<br />

dette område. Skibet kan blive kastet<br />

<strong>in</strong>d mod Hammeren<br />

BCD 3.1 Kabel<br />

Ingen kabler identificeret<br />

CDØ<br />

CDØ 1.1<br />

CDØ 1.2<br />

Skib sejler fra <strong>Bornholm</strong>s Gat mod øst<br />

Et skib, der sejler i fortsættelsen af den trafikseparerede rute møder <strong>in</strong>gen grunde, men mange modsejlende skibe. Skibene kommer <strong>in</strong>d fra sydøst<br />

bl.a. ad dybvandsruten, dvs. skråt <strong>in</strong>d fra siden. CDØ kommer fra en separeret rute (motorvej) og <strong>in</strong>d på en landevej<br />

Kollision med færge<br />

Krydsende færge fra styrbord med<br />

retn<strong>in</strong>g fra All<strong>in</strong>ge til Simrishamn<br />

Kollision med færge<br />

Krydsende færge fra bagbord med<br />

retn<strong>in</strong>g fra Simrishamn til All<strong>in</strong>ge<br />

a) Regel om at DCØ normalt skal<br />

vige i sigtbart vejr *).<br />

b) Færger manøvrerer bedre<br />

a) Regel om at færge normalt<br />

skal vige i sigtbart vejr *)<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 10<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

CDØ 1.3<br />

Kollision med andet skib<br />

Skib der kommer fra Klaipeda og<br />

skal over i den modgående rute.<br />

Skibet kommer fra styrbords side<br />

a) Regel om at DCØ normalt skal<br />

vige i sigtbart vejr *)<br />

Det er bemærket, at det forekommer<br />

sært, at man på søkortet lader dybvandsruten<br />

(DW) løber helt frem til<br />

trafikseparer<strong>in</strong>gen starter. Ruten burde<br />

stoppe et stykke <strong>in</strong>den trafikseparer<strong>in</strong>gszonen<br />

CDØ 1.4<br />

Kollision med andet skib<br />

Skib der kommer fra havne øst for<br />

Klaipeda af mere nordlig rute og<br />

skal over i den modgående rute.<br />

Skibet kommer fra styrbords side<br />

a) Regel om at DCØ normalt skal<br />

vige i sigtbart vejr *)<br />

CDØ 1.5<br />

Kollision med andet skib<br />

Skib der kommer fra øst via dybvandsruten<br />

og skal over i den<br />

modgående rute. Skibet kommer<br />

fra styrbords side<br />

Skib kommer <strong>in</strong>d under spids v<strong>in</strong>kel,<br />

så det nærmest er modgående<br />

a) Regel om at CDØ normalt skal<br />

vige i sigtbart vejr *)<br />

CDØ 1.6<br />

Kollision med andet skib<br />

Kysttrafikken langs Sveriges sydkyst<br />

skal dreje fra mod nord igen<br />

I den nye situation møder man mere<br />

trafik, fordi man skal have krydset<br />

kysttrafikken <strong>in</strong>d, den må ikke gå langs<br />

kysten mere. Så der er mere trafik<br />

derude nu.<br />

Langt de fleste af disse skibe vil vælge<br />

at sejle i venstre del af den østgående<br />

rute, men de må krydse de vestgående<br />

skibe 2 gange.<br />

Det vurderes at ca. 10 % af skibene<br />

skal op langs Sveriges østkyst<br />

CDØ 1.7<br />

Kollision med andet skib<br />

Større skib, der har udvekslet lods<br />

i Hammerområdet sejler på tværs<br />

af trafikseparer<strong>in</strong>gszonen for at<br />

flette <strong>in</strong>d i den sydvest gående<br />

trafik<br />

a) Det er ikke normal procedure.<br />

Skibet vil fortsætte til precautionary<br />

area og flette <strong>in</strong>d der<br />

på lige fod med trafikken fra<br />

syd<br />

En del af de store skibe, der benytter<br />

dybvandsruten, sejler syd om trafikseparer<strong>in</strong>gszonen<br />

for at sætte lods af og<br />

på<br />

Det drejer sig i snit om 3 skibe om<br />

dagen, idet nogle tager lods andre<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 11<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

CDØ 1.8 Kollision med medgående skib<br />

CDØ 1.9 Kollision med modgående skib Tidligere mødte<br />

DCØ flere modgående<br />

skibe<br />

CDØ 1.10<br />

CDØ 1.11<br />

CDØ 2.1<br />

Kollision med fiskefartøj<br />

Der er fiskere i området, men ikke<br />

specielt mange. På en rigtig god<br />

dag er der 10 - 15 stykker, men<br />

heroppe er det færre<br />

Kollision med lystsejler<br />

Der er ikke så mange lystsejlere<br />

her<br />

Grundstødn<strong>in</strong>g<br />

Davids Banke<br />

steder. Det store pres slipper øst for<br />

<strong>Bornholm</strong><br />

Der mistes en del bøjer af den årsag<br />

Lodserne ser gerne, der tages Østersølods<br />

Man oplever hurtigt modgående trafik<br />

efter <strong>Bornholm</strong>s Gat. Andre skibe<br />

kommer jo <strong>in</strong>d fra siden fra flere retn<strong>in</strong>ger<br />

Evt. burde der sættes nogle flere knudepunkter<br />

<strong>in</strong>d i beregn<strong>in</strong>gsmodellen<br />

Grundstødn<strong>in</strong>g kan kun ske ved Davids<br />

Banke<br />

CDØ 3.1<br />

CDØ 3.2<br />

ØDC<br />

ØDC 1.1<br />

Beskadigelse af kabel<br />

Der er <strong>in</strong>gen kabler her<br />

Beskadigelse af gasledn<strong>in</strong>g<br />

Er endnu ikke etableret<br />

Ny gasledn<strong>in</strong>g skal lægges sydøst om<br />

<strong>Bornholm</strong>. Slet ikke i dette område.<br />

Etabler<strong>in</strong>g langt ude i fremtiden.<br />

Skib fra Øst sejler gennem <strong>Bornholm</strong>s Gat<br />

Ca. 50.000 fartøjer om året<br />

På ruten møder skibet den krydsende trafik, der kommer fra vest og skal op langs Sveriges østkyst samt den flettende trafik, der kommer fra de sydlige<br />

sejlruter i Østersøen<br />

Kollision med færge<br />

a) Regel om at færge normalt skal<br />

Krydsende færge fra bagbord med vige i sigtbart vejr *)<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 12<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

ØDC 1.2<br />

ØDC 1.3<br />

ØDC 1.4<br />

ØDC 1.5<br />

ØDC 1.6<br />

ØDC 1.7<br />

retn<strong>in</strong>g fra All<strong>in</strong>ge til Simrishamn<br />

Kollision med færge<br />

Krydsende færge fra styrbord med<br />

retn<strong>in</strong>g fra Simrishamn til All<strong>in</strong>ge<br />

Kollision med andet skib<br />

Skib der kommer fra Klaipeda og<br />

skal flette. Skibet kommer fra<br />

bagbords side<br />

Kollision med andet skib<br />

Skib der kommer fra havne øst for<br />

Klaipeda af mere nordlig rute og<br />

skal flette. Skibet kommer fra<br />

bagbords side<br />

Kollision med andet skib<br />

Skib der kommer fra øst via dybvandsruten<br />

og skal flette. Skibet<br />

kommer fra bagbords side<br />

Skib kommer <strong>in</strong>d i så lav v<strong>in</strong>kel,<br />

at det nærmest er medgående<br />

Kollision med andet skib<br />

Kysttrafik langs Sveriges sydkyst<br />

skal dreje fra mod nord igen. Dvs.<br />

skibene skal krydse og kommer<br />

<strong>in</strong>d nærmest modgående fra bagbord<br />

Kollision med andet skib<br />

Kysttrafik langs Sveriges sydkyst<br />

skal flette <strong>in</strong>d fra styrbords side.<br />

ØDC 1.8 Kollision med medgående skib<br />

a) Regel om at ØCD normalt skal<br />

vige i sigtbart vejr *)<br />

a) Regel om at andet skib normalt<br />

skal vige i sigtbart vejr *)<br />

a) Regel om at andet skib normalt<br />

skal vige i sigtbart vejr *)<br />

a) Regel om at andet skib normalt<br />

skal vige i sigtbart vejr *)<br />

a) Regel om at disse skibe normalt<br />

skal vige i sigtbart vejr *)<br />

for ØCD<br />

a) Regel om at ØDC normalt skal<br />

vige i sigtbart vejr *)<br />

ØDC 1.9 Kollision med modgående skib Tidligere mødte<br />

man flere modgående<br />

skibe<br />

ØDC 1.10<br />

Kollision med fiskefartøj<br />

Der er fiskere, men ikke specielt<br />

mange. På en rigtig god dag er<br />

Der er ikke længere så mange skibe op<br />

til Øland Sødre. Det tynder ud<br />

Man kan vælge at gå <strong>in</strong>shore med lille<br />

skib nede fra Møn og op langs svenskekysten.<br />

Det er tilladt, hvis man skal<br />

til en svensk havn<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 13<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

ØDC 1.11<br />

ØCD 2.1<br />

ØDC 2.2<br />

ØDC 3.1<br />

ØDC 3.2<br />

DCB<br />

DCB 1.1<br />

DCB 1.2<br />

der 10 - 15 stykker syd for ruten,<br />

men heroppe er det færre<br />

Kollision med lystsejler<br />

Der er ikke så mange lystsejlere<br />

her<br />

Grundstødn<strong>in</strong>g<br />

Davids Banke<br />

Grundstødn<strong>in</strong>g<br />

Sandhammeren<br />

Beskadigelse af kabel<br />

Kabler er der ikke nogen af.<br />

Beskadigelse af gasledn<strong>in</strong>g<br />

Ny gasledn<strong>in</strong>g skal ligge sydøst<br />

om <strong>Bornholm</strong>. Slet ikke i dette<br />

område.<br />

a) Grundstødn<strong>in</strong>g kan kun ske<br />

ved Davids Banke og den ligger<br />

langt væk<br />

Skib fra Sveriges østkyst, fra øst eller fra syd sejler gennem <strong>Bornholm</strong>s Gat mod sydvest<br />

Kollision med færge<br />

Krydsende færge fra bagbord med<br />

retn<strong>in</strong>g fra All<strong>in</strong>ge til Simrishamn<br />

Kollision med færge<br />

Krydsende færge fra styrbord med<br />

retn<strong>in</strong>g fra Simrishamn til All<strong>in</strong>ge<br />

a) Regel om at færge normalt skal<br />

vige i sigtbart vejr *)<br />

a) Regel om at DCB normalt skal<br />

vige i sigtbart vejr *)<br />

Sandhammeren er en sandbanke ligesom<br />

Due Odde<br />

Skibe med stor dybgang går på grund<br />

<strong>in</strong>de ved Sandhammeren på svenskekysten,<br />

hvis det ikke ændrer kurs. De<br />

har jo sejlet længe ligeud, så der er en<br />

risiko.<br />

Langt ude i fremtiden<br />

DCB 1.3 Kollision med medgående skib Dem der kommer oppe fra Hanøbugten<br />

er sejlet <strong>in</strong>d i enden af trafikseparer<strong>in</strong>gszonen.<br />

En del af de m<strong>in</strong>dre fartøjer<br />

vil vælge at blive <strong>in</strong>de langs kysten<br />

DCB 1.4 Kollision med modgående skib<br />

DCB 1.5 Kollision med fiskefartøj<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 14<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

Der er lidt svenske fiskefartøjer i<br />

området. Vurderes ikke at være et<br />

stort problem<br />

DCB 1.6 Kollision med lystsejler<br />

DCB 2.1 Grundstødn<strong>in</strong>g<br />

Davids Banke<br />

DCB 2.2<br />

DCB 3.1<br />

CBA<br />

CBA 1.1<br />

CBA 1.2<br />

CBA 1.3<br />

CBA 1.4<br />

Grundstødn<strong>in</strong>g<br />

Svart Grund<br />

Man kan komme til at ramme<br />

Svart Grund, hvis kursen vestpå<br />

ikke lige er den rigtige<br />

Beskadigelse af kabel<br />

Ingen kabler her<br />

a) Davids Banke ligger på den<br />

anden side af den modsatte<br />

sejlretn<strong>in</strong>g. Her ender man<br />

næppe<br />

a) 14 m vanddybde på Svart<br />

Grund, så en stor del af skibene<br />

kan sejle lige hen over<br />

Se yderligere ABC 2.1<br />

Skib sejler fra <strong>Bornholm</strong>s Gat mod Kadetrenden<br />

Kollision med færge<br />

Krydsende færge fra bagbord med<br />

retn<strong>in</strong>g fra Rønne mod Øresund<br />

Kollision med færge<br />

Krydsende færge fra styrbord med<br />

retn<strong>in</strong>g fra Øresund til Rønne<br />

Kollision med færge<br />

Krydsende færge fra bagbord med<br />

retn<strong>in</strong>g fra Rønne til Ystad<br />

Kollision med færge<br />

Krydsende færge fra styrbord med<br />

retn<strong>in</strong>g fra Ystad til Rønne<br />

a) Regel om at færge normalt skal<br />

vige i sigtbart vejr *)<br />

a) Regel om at CBA normalt skal<br />

vige i sigtbart vejr *)<br />

a) Regel om at færge normalt skal<br />

vige i sigtbart vejr *)<br />

a) Regel om at CBA normalt skal<br />

vige i sigtbart vejr *)<br />

Negligibel<br />

Ingen<br />

Hvis man dummer sig og taster forkert<br />

på sit <strong>in</strong>strument uden at kontrollere,<br />

kan man komme til at gå på grund,<br />

hvis man sejler lidt mere nord<br />

Færgen Ystad-Rønne sejler lige <strong>in</strong>d i<br />

området og skærer der, hvor der er<br />

separeret. Færgen er af den opfattelse,<br />

at søfartsreglerne vel også gælder for<br />

dem.<br />

Ruten er lidt omlagt i forhold til bøjen<br />

ved Sorte Grund for hurtigfærgen Villum<br />

Clausen. Men det er også fordi<br />

færgen sejler hurtigere på lavt vand<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 15<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

CBA 1.5 Kollision med medgående skib<br />

CBA 1.6 Kollision med modgående skib<br />

CBA 1.7<br />

CBA 1.8<br />

Kollision med fiskefartøj<br />

Lidt fiskeri. Ved ikke hvor meget,<br />

der bliver fisket. Måske ikke så<br />

meget.<br />

Kollision med lystsejler<br />

Nogen i precautionary area<br />

Lystsejlere bør holde sig væk fra området,<br />

især hvis det er tåget. CBA har<br />

ikke en jordisk chance for at se et lille<br />

skib. Man kan høre skruen, men ved<br />

ikke hvor lyden kommer fra<br />

CBA 1.9<br />

Kollision med dykkerfartøj<br />

Der er lejlighedsvis dykkere i området<br />

CBA 2.1<br />

Grundstødn<strong>in</strong>g<br />

Svart Grund<br />

a) 14 m vanddybde på Svart<br />

Grund, så en stor del af skibene<br />

kan sejle lige hen over<br />

Se også ABC 2.1<br />

CBA 3.1<br />

Beskadigelse af kabel<br />

Telekabel<br />

a) Telekabel ligger dybt og sønden<br />

for<br />

Negligibel<br />

BAV<br />

BAV 1.1<br />

BAV 1.2<br />

Skib sejler fra precautionary area mod Kadetrenden<br />

Kollision med færge<br />

Krydsende færge fra bagbord med<br />

retn<strong>in</strong>g fra Sw<strong>in</strong>oujscie til Trelleborg.<br />

V<strong>in</strong>kel 90 grader<br />

Kollision med færge<br />

Krydsende færge fra styrbord med<br />

retn<strong>in</strong>g fra Trelleborg til Sw<strong>in</strong>oujscie.<br />

V<strong>in</strong>kel 90 grader<br />

a) Færge normalt skal vige i sigtbart<br />

vejr *). Der er god plads<br />

til at manøvrere.<br />

a) Regel om at BAV normalt skal<br />

vige i sigtbart vejr *) for de<br />

sydgående færger<br />

Færgen sejler hver 6. time<br />

BAV bliver l<strong>in</strong>et op i forhold til færgerne<br />

på et sent tidspunkt nu i forhold til før.<br />

Ystad færgen mødes lige med det<br />

samme. Man har måske nok tid, men<br />

altid når der er en kursændr<strong>in</strong>g er det<br />

svært at forudse, hvordan trafikken vil<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 16<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

BAV 1.3<br />

BAV 1.4<br />

Kollision med færge<br />

Krydsende færge fra bagbord med<br />

retn<strong>in</strong>g fra Sw<strong>in</strong>oujscie til Ystad<br />

V<strong>in</strong>kel 90 grader<br />

Kollision med færge<br />

Krydsende færge fra styrbord med<br />

retn<strong>in</strong>g fra Ystad til Sw<strong>in</strong>oujscie<br />

V<strong>in</strong>kel 90 grader<br />

BAV 1.5 Kollision med andet skib<br />

Flettende skib fra bagbord, der<br />

kommer syd om <strong>Bornholm</strong> og skal<br />

på tværs af den nordgående del af<br />

den separerede zone og sejle videre<br />

mod vest<br />

Flet under lille v<strong>in</strong>kel<br />

BAV 1.6 Kollision med medgående trafik<br />

a) Regel om at færge normalt<br />

skal vige i sigtbart vejr *)<br />

a) Regel om at BAV normalt skal<br />

vige i sigtbart vejr *)<br />

a) Regel om at skib fra syd normalt<br />

skal vige i sigtbart vejr *)<br />

BAV 1.7 Kollision med modgående trafik M<strong>in</strong>dre sandsynligt<br />

i dag pga.<br />

separer<strong>in</strong>gen<br />

BAV 1.8<br />

BAV 1.9<br />

BAV 1.10<br />

BAV 1.11<br />

Kollision med fiskefartøj<br />

En del travlfiskeri. Lige i starten af<br />

forløbet<br />

Kollision med lystsejler<br />

Der er en del, der sejler direkte<br />

Rønne - Møn<br />

Kollision med dykkerfartøj<br />

Der er dykkere, men de holder til<br />

nær B<br />

Kollision med trafik i forb<strong>in</strong>delse<br />

med etabler<strong>in</strong>g af v<strong>in</strong>dmøllepark<br />

udvikle sig. Der er ca. 20 m<strong>in</strong>utter. 6<br />

sømil. Der er normalt ikke 3-4 skibe på<br />

rad. Typisk vil der være et enkelt skib<br />

Kritisk når skibe kommer <strong>in</strong>d medgående<br />

fra syd. Vil skibet overhale eller<br />

krydse Der kan opstå tvivl<br />

a) Der er god plads Tyskerne vil bygge en v<strong>in</strong>dmøllepark<br />

på Adler Grund. Det kommer i fremtiden<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 17<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

BAV 2.1<br />

BAV 2.2<br />

NBC<br />

NBC 1.1<br />

NBC 1.2<br />

Grundstødn<strong>in</strong>g<br />

Grundstødn<strong>in</strong>g nær rute<br />

Glemme at ændre kurs<br />

Kollision med skib i modsat sejlretn<strong>in</strong>g<br />

a) Der er ikke noget at gå på<br />

grund på<br />

a) Sandsynligt at andet skib vil<br />

erkende situationen og undvige.<br />

Det opdager sandsynligvis<br />

ret hurtigt, at skibet er på gale<br />

veje. Besætn<strong>in</strong>gen på BAV er<br />

jo nok også vågnet op oppe i<br />

precautionary area. Men der<br />

kunne jo være et vagtskifte på<br />

samme tid<br />

b) Skibe der er vant til at sejle i<br />

området, ved jo nok, hvad der<br />

skal gøres<br />

Skib fra Øresund sejler mod <strong>Bornholm</strong>s Gat<br />

Efter trafikseparer<strong>in</strong>gen skal NBC nærmest frem til et bestemt punkt før skibet må begynde at dreje<br />

Kollision med andet skib, der sejler<br />

ABC, under <strong>in</strong>dfletn<strong>in</strong>g<br />

Kollision med andet skib, der sejler<br />

CBA, under kryds af sydvest<br />

gående rute<br />

a) Regel om at NBC normalt skal<br />

vige i sigtbart vejr *)<br />

b) Der er god plads, og NBC er<br />

ikke presset af nogen grunde<br />

c) NBC skal ikke ved <strong>in</strong>dfletn<strong>in</strong>gen<br />

som før holde øje med den<br />

modgående trafik. Endvidere<br />

er der nu et slip uden skibe<br />

imellem de to sejlretn<strong>in</strong>ger,<br />

hvor NBC kan manøvrere om<br />

nødvendigt<br />

a) Regel om at CBA normalt skal<br />

vige i sigtbart vejr *). Det kan<br />

evt. tv<strong>in</strong>ge CBA op på Svart<br />

Grund<br />

Tidligere skulle<br />

NBC holde øje til<br />

alle sider. Fletn<strong>in</strong>gen<br />

er meget<br />

mere overskuelig<br />

nu. Før kunne<br />

man ikke vide<br />

hvorfra de andre<br />

kom<br />

Det kan være lidt svært at afgøre om<br />

NBC er overhalende eller krydsende.<br />

Det ligger lige på grænsen. Der kan<br />

opstå nogle tvivlssituationer. V<strong>in</strong>klen<br />

skal dog være mere spids for at det er<br />

et reelt problem<br />

Om NBC vælger at gå for eller agter<br />

afhænger af farten<br />

NBC 1.3<br />

Kollision med færge<br />

Krydsende færge fra styrbord med<br />

retn<strong>in</strong>g fra Rønne mod Øresund<br />

a) Regel om at NBC normalt skal<br />

vige i sigtbart vejr *)<br />

b) Der er god plads, og NBC er<br />

ikke presset af nogen grunde<br />

Det er m<strong>in</strong>dre farligt at møde en færge<br />

end et andet skib, for mandskabet er<br />

godt kendt med farvandet og vil vige,<br />

hvis de kan se, at NBC har problemer<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 18<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

NBC 1.4<br />

Kollision med færge<br />

Krydsende færge fra styrbord med<br />

retn<strong>in</strong>g fra Rønne til Ystad<br />

c) Færger er mere stedkendte og<br />

har en anden brodiscipl<strong>in</strong>. Der<br />

træffes aftale om hvorvidt man<br />

skal gå agten om eller fortsætte<br />

d) Færger manøvrerer bedre end<br />

skibe generelt<br />

a) Regel om at NBC normalt skal<br />

vige i sigtbart vejr *) for færge<br />

Også NBC 1.3 b), c) og d)<br />

Ruten er efter separer<strong>in</strong>gen lidt omlagt<br />

i forhold til Bøjen ved Svart Grund for<br />

hurtigfærgen Villum Clausen. Men det<br />

er også fordi færgen sejler hurtigere på<br />

lavt vand<br />

NBC 1.5<br />

NBC 1.6<br />

NBC 1.7<br />

NBC 1.8<br />

NBC 1.9<br />

NBC 1.10<br />

NBC 2.1<br />

Kollision med færge<br />

Krydsende færge fra bagbord med<br />

retn<strong>in</strong>g fra Ystad til Rønne<br />

Kollision med medgående skib<br />

Herunder færge fra Øresund til<br />

Rønne<br />

Kollision med modgående skib,<br />

dvs. skib, der sejler CBA<br />

Kollision med fiskefartøj<br />

Der er lidt fiskeri i området, muligvis<br />

meget lidt<br />

Kollision med lystsejler<br />

Det forekommer at lystsejlere<br />

bevæger sig <strong>in</strong>d i precautionary<br />

area<br />

Kollision med dykkerfartøj<br />

Der kan være dykkere i området<br />

Grundstødn<strong>in</strong>g<br />

Svart Grund<br />

Man kan ikke gå på grund på<br />

Svart Grund, hvis man kommer<br />

<strong>in</strong>d fra Øresund, dertil er skibets<br />

a) Regel om at færgen normalt<br />

skal vige i sigtbart vejr *)<br />

a) Selv ved motorstop vil NBC<br />

ikke kunne drive helt op til<br />

Svart Grund<br />

Negligibel<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 19<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

dybgang for lille<br />

NBC 2.2 Grundstødn<strong>in</strong>g nær rute a) Der er ikke noget andet at gå<br />

på grund på<br />

NBC 2.3<br />

Grundstødn<strong>in</strong>g pga. manglende<br />

kursændr<strong>in</strong>g<br />

Hvis man ikke får drejet rammer<br />

man syd for Hasle. Her er der små<br />

og store sten på grunden<br />

NBC 3.1 Beskadigelse af telekabel a) Telekablet ligger dybt i havbunden<br />

og løber syd for rute<br />

CBN<br />

CBN 1.1<br />

CBN 1.2<br />

CBN 1.3<br />

Skib fra <strong>Bornholm</strong>s Gat sejler mod Øresund<br />

Kollision med færge<br />

Fletn<strong>in</strong>g med færge fra bagbord<br />

med retn<strong>in</strong>g fra Rønne mod Øresund<br />

Kollision med færge<br />

Krydsende færge fra bagbord med<br />

retn<strong>in</strong>g fra Rønne til Ystad<br />

Kollision med færge<br />

Krydsende færge fra styrbord med<br />

retn<strong>in</strong>g fra Ystad til Rønne<br />

CBN 1.4 Kollision med medgående skib<br />

CBN 1.5<br />

CBN 1.6<br />

Kollision med modgående skib,<br />

herunder modgående færge med<br />

retn<strong>in</strong>g fra Øresund til Rønne<br />

Kollision med fiskefartøj<br />

Lidt fiskeri. Ved ikke hvor meget,<br />

der bliver fisket. Måske ikke så<br />

meget.<br />

a) Regel om at færge normalt<br />

skal vige i sigtbart vejr *)<br />

a) Regel om at færge normalt<br />

skal vige i sigtbart vejr *)<br />

a) Regel om at CBN normalt skal<br />

vige i sigtbart vejr *)<br />

Ingen<br />

Negligibel<br />

Færgen Ystad-Rønne sejler lige <strong>in</strong>d i<br />

området og skærer der, hvor der er<br />

separeret.<br />

Ruten er lidt omlagt i forhold til bøjen<br />

ved Svart Grund for hurtigfærgen Villum<br />

Clausen. Men det er også fordi<br />

disse færger sejler hurtigere på lavt<br />

vand<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 20<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

CBN 1.7<br />

CBN 1.8<br />

CBN 2.1<br />

Kollision med lystsejler<br />

Nogen i precautionary area<br />

Kollision med dykkerfartøj<br />

Der er lejlighedsvis dykkere i området<br />

Grundstødn<strong>in</strong>g<br />

Svart Grund<br />

a) 14 m vanddybde på Svart<br />

Grund, så en stor del af skibene<br />

kan sejle lige hen over<br />

CBN går nok ikke på grund på Svart<br />

Grund, men det er en mulighed, hvis<br />

CBN drejer for tidligt<br />

CBN 2.2<br />

CBN 3.1<br />

Grundstødn<strong>in</strong>g<br />

Stevns<br />

Glemt at ændre kurs<br />

Beskadigelse af kabel<br />

Telekabel<br />

a) Telekabel ligger dybt og sønden<br />

for<br />

Negligibel<br />

SED<br />

SED 1.1<br />

SED 1.2<br />

Skib fra den sydøstlige del af Østersøen går nord om <strong>Bornholm</strong> og fletter <strong>in</strong>d i trafikken øst for <strong>Bornholm</strong>s Gat<br />

Dette er den ene af de tre ruter, som skibe, der har ær<strong>in</strong>de i den sydøstlige del af Østersøen, kan benytte for at komme forbi <strong>Bornholm</strong>:<br />

• Rute nord om <strong>Bornholm</strong> via <strong>Bornholm</strong>s Gat. Denne rute har de største vanddybder og skibe med en dybgang > 10 - 12 m er nødt til at anvende<br />

denne rute<br />

SED må gå nord om Christiansø for at komme <strong>in</strong>d i trafikseparer<strong>in</strong>gszonen uden at skulle krydse <strong>in</strong>de i zonen. Det betyder at trafikken holdes uden<br />

for de <strong>in</strong>dre farvande nord for <strong>Bornholm</strong><br />

Kollision med andet skib<br />

Skib, der sejler mod vest, men<br />

syd for den nordøst gående trafikzone,<br />

pga. afsætn<strong>in</strong>g/optagn<strong>in</strong>g af<br />

lods i området omkr<strong>in</strong>g Hammeren<br />

Kollision med andet skib<br />

Skib, der sejler mod øst men syd<br />

for den nordøst gående trafikzone,<br />

pga. afsætn<strong>in</strong>g/optagn<strong>in</strong>g af lods i<br />

området omkr<strong>in</strong>g Hammeren<br />

SED 1.3 Kollision med modgående skib<br />

a) Regel om at SED normalt skal<br />

vige i sigtbart vejr *)<br />

a) Regel om at andet skib normalt<br />

skal vige i sigtbart vejr *)<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 21<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

SED 1.4 Kollision med medgående skib<br />

SED 2.1<br />

SED 2.2<br />

SED 2.3<br />

Grundstødn<strong>in</strong>g<br />

Christiansø. Øerne ligger ret tæt<br />

på sejlruten, ca. 3 sømil. Der er<br />

dybt vand til ganske tæt på øerne<br />

Grundstødn<strong>in</strong>g<br />

Davids Banke<br />

Skydeområde øst for <strong>Bornholm</strong><br />

Skib rammes ved skydeøvelse<br />

Øerne er udlagt som reservat, så man<br />

bør have en større sikkerhedsafstand.<br />

Her er yngleområder, og der er væsentlige<br />

miljø<strong>in</strong>teresser, som man kan<br />

komme i konflikt med. Græsholmene er<br />

nok de mest sårbare. V<strong>in</strong>d og strøm<br />

bestemmer, hvad der kommer hvor af<br />

et spild<br />

Habitatområder har regler for hvilken<br />

afstand, man må færdes i. COWI undersøger.<br />

Området er lukket ca. 30 dage om<br />

året. Så er det vanskeligt at lægge en<br />

anbefalet rute gennem det<br />

EDC<br />

EDC 1.1<br />

EDC 1.2<br />

EDC 1.3<br />

Skib fra den sydøstlige del af Østersøen krydser østgående trafik fra <strong>Bornholm</strong>s Gat og fletter med vestgående trafik for selv at gå<br />

gennem <strong>Bornholm</strong>s Gat<br />

Kollision med andet skib<br />

Krydsende skib, CDØ, på vej mod<br />

øst ud af trafikseparer<strong>in</strong>gszonen<br />

SED rammer i meget spids v<strong>in</strong>kel<br />

og er nærmest modgående<br />

Kollision med andet skib<br />

Fletn<strong>in</strong>g med skib, der kommer<br />

fra øst<br />

V<strong>in</strong>klen er meget spids og skibet<br />

er nærmest medgående<br />

Kollision med andet skib<br />

Kysttrafik, der drejer mod nord op<br />

a) Regel om at CDØ normalt skal<br />

vige i sigtbart vejr *), der er<br />

god plads, hvis CDØ er kommet<br />

forbi Davids Banke<br />

a) Regel om at SED normalt skal<br />

vige i sigtbart vejr *). SED har<br />

mulighed for at vige i midterområdet<br />

mellem de to sejlretn<strong>in</strong>ger,<br />

hvor der stort set ikke<br />

er nogen trafik<br />

a) Regel om at dette skib normalt<br />

skal vige i sigtbart vejr *) for<br />

Det kan være lidt vanskeligt for CDØ at<br />

forholde sig til SED. CDØ har lige forladt<br />

trafikseparer<strong>in</strong>gen og kommet fri<br />

af <strong>Bornholm</strong>. CDØ føler sig fri, men er<br />

også særlig opmærksom. Hvis CDØ<br />

ikke er kommet forbi Davids Banke er<br />

der mulighed for at gå på grund her,<br />

hvis dybgangen er større end 11 m<br />

Kan evt. kompliceres af trafikken med<br />

m<strong>in</strong>dre fartøjer, der skal op langs den<br />

svenske østkyst<br />

Forslag: Flyt <strong>in</strong>dfletn<strong>in</strong>gen længere<br />

østpå, så man kommer fri af kysttrafikken<br />

til Sverige og CDØ får tid til at<br />

orientere sig<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 22<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

langs den svenske kyst og skal<br />

krydse den sydvest gående trafikzone<br />

den sydvest gående trafik<br />

EDC 2.1 Grundstødn<strong>in</strong>g a) Her er god plads Negligibel<br />

CDE<br />

CDE 1.1<br />

CDE 2.1<br />

DES<br />

DES 1.1<br />

DES 1.2<br />

Skib fra <strong>Bornholm</strong>s Gat drejer af mod den sydøstlige del af Østersøen<br />

Kollision med andet skib<br />

Den rute CDE følger skulle ikke<br />

medføre, at CDE krydser andre<br />

skibe<br />

Grundstødn<strong>in</strong>g<br />

Davids Banke<br />

Skib sejler nord om <strong>Bornholm</strong> mod den sydøstlige del af Østersøen<br />

Kollision med andet skib<br />

Skib, der sejler mod vest, men<br />

syd for den nordøst gående trafikzone,<br />

pga. afsætn<strong>in</strong>g/optagn<strong>in</strong>g af<br />

lods i området omkr<strong>in</strong>g Hammeren<br />

Kollision med andet skib<br />

Skib, der sejler mod øst, men syd<br />

for den nordøst gående trafikzone,<br />

pga. afsætn<strong>in</strong>g/optagn<strong>in</strong>g af lods i<br />

området omkr<strong>in</strong>g Hammeren<br />

DES 1.3 Kollision med modgående skib<br />

DES 1.4 Kollision med medgående skib<br />

DES 2.1<br />

DES 2.2<br />

DES 2.3<br />

Grundstødn<strong>in</strong>g<br />

Christiansø. Øerne ligger ret tæt<br />

på sejlruten, ca. 3 sømil. Der er<br />

dybt vand til ganske tæt på øerne<br />

Grundstødn<strong>in</strong>g<br />

Davids Banke<br />

Skydeområde øst for <strong>Bornholm</strong><br />

Skib rammes ved skydeøvelse<br />

a) Regel om at skib normalt skal<br />

vige i sigtbart vejr *)<br />

a) Regel om at DES normalt skal<br />

vige i sigtbart vejr *)<br />

Se SED 2.1<br />

Se SED 2.3<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 23<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

SFA<br />

SFA 1.1<br />

SFA 1.2<br />

SFA 1.3<br />

SFA 1.4<br />

SFA 1.5<br />

SFA 1.6<br />

Skib fra den sydøstlige del af Østersøen sejler mod vest i en rute syd om <strong>Bornholm</strong><br />

Der er to ruter, som skibe, der er på vej til/fra den sydøstlige del af Østersøen, kan benytte for at sejle syd om <strong>Bornholm</strong>:<br />

• En rute syd om Adlergrund. Denne rute kan anvendes af skibe med en dybgang op til 10 - 12 m. For de største af disse kræver det dog hjælp<br />

af moderne navigationsudstyr, idet det er nødvendigt at zigzagge for at gå fri af nogle grunde. Disse kursændr<strong>in</strong>ger kan være problematiske,<br />

da det er vigtigt, at skibe kommer <strong>in</strong>d på en ny kurs lang tid før, at de eksempelvis møder en grund (altså at de bliver l<strong>in</strong>et op). Gør de ikke<br />

det, så stiger risikoen for ulykker.<br />

• En rute nord om Adlergrund. Denne rute kan anvendes af skibe med dybgang < 7 m<br />

I tysk farvand er det tilladt at benytte kystzonen, også selvom skibet ikke har ær<strong>in</strong>de til en havn på kysten<br />

Nord om Adlergrund<br />

Kollision med færge<br />

Krydsende færge fra styrbord med<br />

retn<strong>in</strong>g fra Rønne til Sassnitz<br />

V<strong>in</strong>kel 60 grader<br />

Syd om Adlergrund<br />

Kollision med færge<br />

Krydsende færge fra styrbord med<br />

retn<strong>in</strong>g fra Rønne til Sassnitz<br />

V<strong>in</strong>kel 60 grader<br />

Kollision med færge<br />

Krydsende færge fra bagbord med<br />

retn<strong>in</strong>g fra Sassnitz til Rønne<br />

Kollision med færge<br />

Krydsende færge fra styrbord med<br />

retn<strong>in</strong>g fra Ystad til Sw<strong>in</strong>oujscie<br />

V<strong>in</strong>kel 90 grader<br />

Kollision med færge<br />

Krydsende færge fra bagbord med<br />

retn<strong>in</strong>g fra Sw<strong>in</strong>oujscie<br />

til Ystad. V<strong>in</strong>kel 90 grader<br />

Syd om Adlergrund<br />

Kollision med færge<br />

Krydsende færge fra styrbord med<br />

a) Regel om at SFA normalt skal<br />

vige i sigtbart vejr *). Der er<br />

god plads til at manøvrere for<br />

skibe med så lav dybgang som<br />

er nødvendig for at gå over<br />

Rønne Banke<br />

a) Regel om at SFA normalt skal<br />

vige i sigtbart vejr *). Der er<br />

god plads til at manøvrere<br />

a) Regel om at færge normalt<br />

skal vige i sigtbart vejr *). Der<br />

er god plads til at manøvrere<br />

a) Regel om at SFA normalt skal<br />

vige i sigtbart vejr *)<br />

a) Regel om at færge normalt<br />

skal vige i sigtbart vejr *)<br />

a) Regel om at SFA normalt skal<br />

vige i sigtbart vejr *) for de<br />

sydgående færger<br />

Færgen sejler hver 6. time<br />

SFA skal ændre kurs lige, hvor man<br />

møder trafikken fra Trelleborg, og det<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 24<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

SFA 1.7<br />

retn<strong>in</strong>g fra Trelleborg til Sw<strong>in</strong>oujscie<br />

V<strong>in</strong>kel 90 grader<br />

Syd om Adlergrund<br />

Kollision med færge<br />

Krydsende færge fra bagbord med<br />

retn<strong>in</strong>g fra Sw<strong>in</strong>oujscie<br />

til Trelleborg<br />

V<strong>in</strong>kel 90 grader<br />

SFA 1.8 Kollision med medgående trafik<br />

SFA 1.9 Kollision med modgående trafik<br />

SFA 1.10<br />

Kollision med fiskefartøj<br />

Der er meget fiskeri på Rønne<br />

Banke syd for Due Odde<br />

SFA 1.11 Kollision med lystsejler<br />

SFA 1.12 Kollision med trafik i forb<strong>in</strong>delse<br />

med etabler<strong>in</strong>g af v<strong>in</strong>dmøllepark<br />

SFA 2.1<br />

SFA 2.2<br />

Nord om Adlergrund<br />

Grundstødn<strong>in</strong>g på Rønne Banke<br />

Nord om Adlergrund<br />

Grundstødn<strong>in</strong>g på Adlergrund<br />

a) Færge normalt skal vige i sigtbart<br />

vejr *). Der er god plads<br />

til at manøvrere<br />

a) Der er god plads, idet der er<br />

rigelig vanddybde<br />

er ikke helt så rart. Men her er ikke så<br />

meget trafik, og man er forbi de lavere<br />

dele på ruten<br />

Der er nogle organiserede fisketure om<br />

sommeren, hvor man ligger og fisker<br />

på et godt sted. Der er begyndt at<br />

komme nogle polske både. De ligger<br />

mest på Rønne Banke<br />

Tyskerne vil bygge en v<strong>in</strong>dmøllepark<br />

på Adler Grund. Det kommer i fremtiden<br />

Denne analyse skal ikke vurdere de<br />

problemer skibene evt. må have længere<br />

mod øst, hvor de kan have lidt<br />

vanskeligheder med at komme <strong>in</strong>d i<br />

ruten, når de sejler kystnært<br />

Hvis man skal klare turen uden at kigge<br />

på søkort er den største dybgang 7<br />

- 8 m. I det tilfælde er sandsynligheden<br />

for grundstødn<strong>in</strong>g på Rønne Banke<br />

meget lille<br />

Det forudses, at der vil komme en<br />

v<strong>in</strong>dmøllepark på Adlergrund<br />

SFA 2.3<br />

Syd om Adlergrund<br />

Grundstødn<strong>in</strong>g på Adlergrund<br />

a) I dag burde det ikke være forbundet<br />

med fare for grund-<br />

Hvis GPS svigter, har SFA dog et problem.<br />

Man er derfor nødt til at etablere<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 25<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

stødn<strong>in</strong>g at benytte denne rute,<br />

fordi man har langt bedre<br />

navigationsudstyr end tidligere<br />

andre muligheder. Man kunne stille et<br />

fyrtårn op<br />

SFA 2.4<br />

FAV<br />

FAV 1.1<br />

FAV 1.2<br />

FAV 1.3<br />

VAF<br />

VAF 1.1<br />

Syd om Adlergrund<br />

Grundstødn<strong>in</strong>g på Oderbank<br />

SFA skal ændre kurs syd for Rønne<br />

Banke. Hvis dette ikke sker,<br />

går skibet på grund på Oderbank<br />

Skib, der er sejlet syd om <strong>Bornholm</strong>, skal flette <strong>in</strong>d i trafikken mod Kadetrenden<br />

Hasarderne BAV 1.6, BAV 1.7, BAV 1.9 og BAV 1.11 er også relevante for disse skibe<br />

Der ligger et væsentligt naturområde<br />

nordvest for Rygen<br />

Skibe, der går nord om Adlergrund krydser færgen mellem Sw<strong>in</strong>oujscie og Trelleborg i område A, dvs. hasarderne BAV 1.1 og BAV 1.2 er også relevant<br />

for disse skibe<br />

Nord om Adlergrund<br />

Kollision med andet skib<br />

Krydsn<strong>in</strong>g på tværs af trafikzonen<br />

med nordøst gående trafik, VAB<br />

V<strong>in</strong>kel 150 grader<br />

Syd om Adlergrund<br />

Kollision med andet skib<br />

Krydsn<strong>in</strong>g på tværs af trafikzonen<br />

med nordøst gående trafik, VAB<br />

V<strong>in</strong>kel 150 grader<br />

Kollision med andet skib<br />

Fletn<strong>in</strong>g med skibe fra styrbord på<br />

vej mod Kadetrenden<br />

V<strong>in</strong>kel 30 grader<br />

Skib fra Kadetrenden drejer syd om <strong>Bornholm</strong><br />

a) Regel om at VAB normalt skal<br />

vige i sigtbart vejr *)<br />

a) Regel om at VAB normalt skal<br />

vige i sigtbart vejr *)<br />

a) Regel om at FAV normalt skal<br />

vige i sigtbart vejr *)<br />

Hasarderne VAB 1.6, VAB 1.7, VAB 1.9 og VAB 1.11 er også relevante for disse skibe<br />

Indfletn<strong>in</strong>gen vil ske ret tæt på <strong>in</strong>dgangen<br />

til Kadetrenden helt henne syd for<br />

Møn, hvor trafikseparer<strong>in</strong>gen hører<br />

op/starter. Man bør overveje at revidere<br />

<strong>in</strong>dgangen til Kadetrenden. Det er<br />

vanskeligt at navigere her, der ligger 3<br />

vrag og renden flytter sig<br />

Skibe, der går nord om Adlergrund krydser færgen mellem Sw<strong>in</strong>oujscie og Trelleborg i område A, dvs. hasarderne VAB 1.1 og VAB 1.2 er også relevant<br />

for disse skibe<br />

Kollision med andet skib<br />

a) Regel om at VAF normalt skal<br />

Kollision med medgående skib i vige i sigtbart vejr *)<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 26<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

AFS<br />

AFS 1.1<br />

AFS 1.2<br />

AFS 1.3<br />

AFS 1.4<br />

AFS 1.5<br />

forb<strong>in</strong>delse med kursændr<strong>in</strong>g mod<br />

syd<br />

Skib fra Kadetrenden går syd om <strong>Bornholm</strong><br />

Der er to ruter, som skibe, der er på vej til/fra den sydøstlige del af Østersøen, kan benytte for at sejle syd om <strong>Bornholm</strong>:<br />

• En rute syd om Adlergrund. Denne rute kan anvendes af skibe med en dybgang op til 10 - 12 m. For de største af disse kræver det dog hjælp<br />

af moderne navigationsudstyr, idet det er nødvendigt at zigzagge for at gå fri af nogle grunde<br />

• En rute nord om Adlergrund. Denne rute kan anvendes af skibe med dybgang < 7 m<br />

Kollision med færge<br />

Krydsende færge fra styrbord med<br />

retn<strong>in</strong>g fra Sw<strong>in</strong>oujscie til Trelleborg<br />

V<strong>in</strong>kel 120 grader<br />

Kollision med færge<br />

Krydsende færge fra bagbord med<br />

retn<strong>in</strong>g fra Trelleborg til Sw<strong>in</strong>oujscie<br />

V<strong>in</strong>kel 60 grader<br />

Kollision med færge<br />

Krydsende færge fra styrbord med<br />

retn<strong>in</strong>g fra Sassnitz til Rønne<br />

V<strong>in</strong>kel 60 grader<br />

Kollision med færge<br />

Krydsende færge fra bagbord med<br />

retn<strong>in</strong>g fra Rønne til Sassnitz<br />

V<strong>in</strong>kel 120 grader<br />

Kollision med færge<br />

Krydsende færge fra styrbord med<br />

retn<strong>in</strong>g fra Sw<strong>in</strong>oujscie til Ystad.<br />

V<strong>in</strong>kel 100 grader<br />

a) Regel om at VAF normalt skal<br />

vige i sigtbart vejr *)<br />

b) Der er god plads til at manøvrere,<br />

vanddybden er stor nok<br />

c) Der er lang tid til at reagere.<br />

Der vil <strong>of</strong>test være langt mellem<br />

skibene. Men der kan være<br />

en klump og andre gange <strong>in</strong>gen<br />

som helst<br />

a) Regel om at færge normalt<br />

skal vige i sigtbart vejr *)<br />

Også VAF 1.1 b) og c)<br />

a) Regel om at VAF normalt skal<br />

vige i sigtbart vejr *)<br />

Også VAF 1.1 b) og c)<br />

a) Regel om at færge normalt<br />

skal vige i sigtbart vejr *)<br />

Også VAF 1.1 b) og c)<br />

a) Regel om at VAF normalt skal<br />

vige i sigtbart vejr *)<br />

Også VAF 1.1 b) og c)<br />

Som VAF 1.1<br />

Som VAF 1.1<br />

Som VAF 1.1<br />

Som VAF 1.1<br />

AFS 1.6 Kollision med færge a) Regel om at færge normalt Som VAF 1.1<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 27<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

AFS 1.7<br />

AFS 1.8<br />

AFS 1.9<br />

Krydsende færge fra bagbord med<br />

retn<strong>in</strong>g fra Ystad til Sw<strong>in</strong>oujscie.<br />

V<strong>in</strong>kel 80 grader<br />

Kollision med skib i medgående<br />

trafik<br />

Kollision med skib i modgående<br />

trafik<br />

Kollision med fiskefartøj<br />

Meget fiskeri på Rønne banke syd<br />

for Due Odde<br />

skal vige i sigtbart vejr *)<br />

Også VAF 1.1 b) og c)<br />

AFS 1.10 Kollision med lystsejler Der er et stigende antal lystfartøjer i<br />

det tyske område<br />

AFS 1.11<br />

AFS 2.1<br />

AFS 2.2<br />

Kollision med trafik i forb<strong>in</strong>delse<br />

med etabler<strong>in</strong>g af v<strong>in</strong>dmøllepark<br />

Grundstødn<strong>in</strong>g nær rute<br />

Adlergrund<br />

Grundstødn<strong>in</strong>g nær rute<br />

Rønne Banke<br />

a) Der er god plads Tyskerne vil bygge en v<strong>in</strong>dmøllepark<br />

på Adler Grund. Det kommer i fremtiden<br />

*) Søvejsreglerne er ret komplekse. Situationen forandres fx, når det er usigtbart vejr. Måden hvorpå skibene skal forholde sig, er meget forskellig i sigtbart<br />

og usigtbart vejr. Dette giver da også problemer i praksis, idet man <strong>of</strong>te oplever, at kollisioner sker i usigtbart vejr. Endvidere vil der i sigtbart vejr i<br />

særlige tilfælde kunne forekomme eksempler på et skib, som bef<strong>in</strong>der sig i en særlig situation (eksempelvis kan det være begrænset i s<strong>in</strong> evne til at manøvrere),<br />

hvilket kan gøre situationen være omvendt, således at skibet nu ikke skal gå af vejen.<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 28<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

Generel beskrivelse<br />

Skibes antal og størrelse<br />

• Der forekommer timer eller andre kortere perioder, hvor koncentrationen af skibe visse steder omkr<strong>in</strong>g<br />

<strong>Bornholm</strong> er ekstremt stor. Hvornår det sker, er en ren tilfældighed<br />

• Trenden er større skibe og et svagt stigende antal<br />

• Trafikkompositionen er ændret meget de seneste år, fordi de store tankere er blevet flere. Dvs. miljøkonsekvenserne<br />

af ulykker er meget større i dag end tidligere<br />

• Færgetrafikken til og fra <strong>Bornholm</strong> og også mellem østersølandene er øget de seneste år. F.eks. er der<br />

kommet en ny hurtigfærge mellem All<strong>in</strong>ge og Simrishamn. Der kommer evt. også flere færger til Polen<br />

• Der forventes at komme flere polske lystsejlere, størrelsen af disse er opadgående<br />

Dybgang<br />

• Skibe med lille dybgang kan gå gennem Øresund og Kielerkanalen. Det er langt de fleste af disse skibe,<br />

der skal ud gennem Kielerkanalen til Hamborg. Der går ca. 50.000 skibe/år til Kiel og 25.000/år op gennem<br />

Storebælt<br />

Vandstand<br />

• Der er <strong>in</strong>gen tidevand af betydn<strong>in</strong>g i området<br />

• Vandstanden varierer kun i forb<strong>in</strong>delse med storm. V<strong>in</strong>dstuvn<strong>in</strong>g kan betyde -1.2 m i All<strong>in</strong>ge havn<br />

Dårlig sigt<br />

M<strong>in</strong>er<br />

• Det er usigtbart, hvis man ikke kan se så langt som radaren<br />

• Tåget vil sige under 500 m sigt<br />

• Også regnbyger kan være årsag til nedsat sigt<br />

• Ved dårlig sigt, skal man ned på manøvrefart, ellers så får man skylden, hvis der sker noget. Hvis man er<br />

midt ude i vandet, sætter man dog <strong>of</strong>te ikke hastigheden ned i tåget vejr. Det tør man godt, hvis man har<br />

en god radar<br />

• Man viger aldrig til bagbord, når det er tåget<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 29<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

• I Kadetrenden ligger vrag på 19 m med m<strong>in</strong>er, der ikke er eksploderet. Men det er generelt ikke m<strong>in</strong>er, der<br />

ligger på havbunden, men sennepsgas, granater, bomber og nysegas. Der er <strong>in</strong>gen sprængladn<strong>in</strong>g tilbage<br />

og de ligger så dybt, at det kun er fiskerne, der kan få fat i dem<br />

Årsager til fejl<br />

• Ca. 90 % af de fejl, der fører til ulykker vurderes at være menneskelige fejl. En typisk årsag er at kommandovejen<br />

er for lang og styrmanden tør ikke vige. Alternativt er styrmanden faldet i søvn<br />

• Blackout sker 1 gang om året på ethvert skib. Det kan tage flere timer, men varer typisk 1 - 5 m<strong>in</strong>utter.<br />

Hvis man skal have vækket nogen til at starte nødgeneratoren tager det ekstra tid. Man må kaste anker,<br />

hvis det varer længe. Hvis man ikke kan starte nødgeneratoren er det et problem<br />

Generelle sikkerhedsforanstaltn<strong>in</strong>ger<br />

Uddannelse af broens besætn<strong>in</strong>g<br />

• Nogle styrmænd har underlødige certifikater (købecertifikater), reelt har en del ikke nogen uddannelse.<br />

Især filipp<strong>in</strong>erne er dårlige. Der er set adskillige eksempler på, at styrmanden ikke ved hvorledes man bestemmer<br />

s<strong>in</strong> position med udstyret. Tilsvarende gælder for visse polakker. Skibenes besætn<strong>in</strong>ger sættes<br />

<strong>of</strong>te af bemand<strong>in</strong>gsselskaber, så der kan være mange nationaliteter på broen<br />

• Har man et certifikat, har man ret til at sejle uden lods. Men falske eller underlødige certifikater kan købes<br />

Navigationsudstyr<br />

• Den elektroniske samkør<strong>in</strong>g af skibenes positioner med søkortet er en meget god t<strong>in</strong>g, for man får en bedre<br />

forståelse for situationen. Men ikke alle skibe har udstyret<br />

• Et skib med en god radar kan agere lidt mere dristigt<br />

• En gammel radar, skal man se på i m<strong>in</strong>dst 3 m<strong>in</strong>utter, for at kunne se, hvad der er af skibe<br />

At tage lods<br />

• Nogen skippere, der ikke er kendt med området, er nervøse hele vejen. De fleste sejler uden lods i dette<br />

farvand. Mange af de skibe, der laver sjove manøvrer har nok den fejl, at skibsføreren er faldet i søvn.<br />

Men det vil de næppe svare på<br />

• Alt hvad der ikke er normalt er farligt. Lodsen ser altid efter, hvad der ikke er normalt på sit billede. Mange<br />

reagerer på de mærkelige skibe og passer på, men de kalder dem ikke op. Mange skibe sejler vanvittigt.<br />

De er nok gået til køjs. Og så hjælper det jo ikke at kalde dem op<br />

• Man må godt sejle uden for de anbefalede ruter<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 30<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

• Hvor går skibene nu, når de skal <strong>in</strong>d og hente lods Tre steder nord for <strong>Bornholm</strong>, tager de lods op. Tankskibe<br />

er mest omhyggelige<br />

• Man kan tage lods fra <strong>Bornholm</strong> til Gdansk. Mange med 15 m dybgang følger ruten, og de fletter lidt senere.<br />

Men der er en åbenhed øst for <strong>Bornholm</strong>, man kan også sagtens krydse over og ned og hente. Men<br />

man skal dreje noget før og vurdere, hvad vand man har omkr<strong>in</strong>g sig<br />

Beredskab<br />

• Responstiden for danske oliemiljøoprydn<strong>in</strong>gsskibe nord eller syd om <strong>Bornholm</strong> er lang, for der er ikke stationeret<br />

skibe i området. Det er fordi Hammerhavet ikke længere regnes for et "sort område". Der er ikke<br />

planer om at ændre olieberedskabet. Man har jo også svenskernes beredskab<br />

Bøjer<br />

• Hvis en coaster (400 - 500 t) rammer en bøje, så går den ned<br />

• Der er to bøjer på turen gennem <strong>Bornholm</strong>s Gat. Der er en i hjørnet på precautionary area ved Svart<br />

Grund og en ved Davids Banke<br />

Generelle konsekvenser af uheld<br />

• En alvorlig skade betyder, at skibet ikke kan sejle videre ved egen kraft<br />

Grundstødn<strong>in</strong>g<br />

• Der har stået skibe alle steder rundt om øen, på den svenske kyst og på grundene. Men det er ikke så galt<br />

mere, for navigationsudstyret er i dag meget bedre end tidligere<br />

• De grundstødn<strong>in</strong>ger, der har været på selve øen er primært hændelser, der har noget at gøre med at nogen<br />

begår en fejl, når de går fra havnen. Kun de to hændelser syd for Hasle, på Rønne Banke og på Davids<br />

Banke er reelle grundstødn<strong>in</strong>ger<br />

• Christiansø og omliggende øer er klippeøer med stor vanddybde på alle sider<br />

• Det er bedre at ramme en grund lige på end med siden, for hvis man river siden op, synker man<br />

• Der er 3 klasser af grundstødn<strong>in</strong>ger: Flade sandbanker, klippeskær (som ved Hasle), og kollision med en<br />

klippe, der nærmest er at betragte som en væg. dvs. en påsejl<strong>in</strong>g. Konsekvenserne er forskellige<br />

• Der er masser af sten på Rønne Banke, men mest <strong>in</strong>de under land<br />

• På Davids Banke kunne nogen løbe op i et skib, der er fanget der. Det kan næppe ske andre steder. Men<br />

hvis skibene kommer tæt efter h<strong>in</strong>anden, kan det ske<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 31<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

• Ved at sænke et skib mister man ikke sejlrenden i <strong>Bornholm</strong>s Gat, for der er dybt<br />

• Kan en grundstødn<strong>in</strong>g på Davids Banke betyde, at skibet knækker På en sandbanke vil man glide af og<br />

energien går til at løfte skibet. Skibet skal stikke m<strong>in</strong>dst 16 m, hvis det skal sejle på grund, evt. kun 15 m:<br />

Det knækker nok ikke, for det kan vanskeligt komme op og ride på grunden. Her skal der skelnes mellem<br />

bulkcarrier og tankskibe. Bulkcarrier sker der mere med, de går nemmere i stykker. Man har et tilsvarende<br />

problem når man losser skibet. Det skal gøres i rigtig rækkefølge, ellers bliver de udmattede og knækker.<br />

Men der er en begrænset sandsynlighed for at det går galt. Det er nok mest selvværdet, det går ud over,<br />

hvis man sejler på Davids Banke. De materielle skader vil være buler i bunden og stål, der skal skiftes.<br />

Væsentligt m<strong>in</strong>dre materiel skade. 1 million dollar pr løbende meter bule. Og så tabt <strong>in</strong>dtjen<strong>in</strong>g, når skibet<br />

er ude af drift. For personer kan nogen falde og slå sig.<br />

• Et conta<strong>in</strong>erskib kunne tabe lasten. Conta<strong>in</strong>erskibe 10 m. En dækslast kunne også falde af. Persontransporter<br />

stikker ikke så dybt, at de kan sejle på Davids Banke. Krydstogtskibe stikker generelt 8 m.<br />

• Hvor meget plads skal man bruge til at dreje 5 skibslængder til at få drejet. Hvis der er m<strong>in</strong>dre vand bliver<br />

det længere. Større skibe har nok en udkig ud over navigatøren, så der er bedre chance for at opdage,<br />

at man er på forkert kurs. Passagerskibe har 4 folk: 2 styrmænd+rorgænger+udkig. Man kan med lidt held<br />

nå at dreje på 1 - ½ mil, men det er tæt på<br />

• Rønne Banke. De er nok hyppigere at man går på grund her. Men der er mere vand. Så det er mest dem,<br />

der har glemt, hvor meget dybgang de har. Adlergrund skal de nok komme ud om<br />

• Christiansø. Scenariet er at man kan ramme sten og skær. Man kan blive slået i stykker, vælte glide og gå<br />

i stykker. Man kan ryge af skæret igen, men beskadiget. Der er dybt omkr<strong>in</strong>g 80 - 100 m. Øen rejser sig<br />

helt pludseligt, så at en grundstødn<strong>in</strong>gs effekt kan sammenlignes med en kollision. Der vil altså her kunne<br />

blive tale om en markant deceleration.<br />

• Hold sig i en vis radius, hvis man ikke har noget at gøre der. Hvis man driver derned, så er 1-2 knob er en<br />

m<strong>in</strong>dre hastighed at ramme med, end hvis man sejler med 12 knob. Der vil nok gå lang tid, <strong>in</strong>den der kan<br />

komme en slæbebåd og hjælpe. Men der ligger vist en i området rimeligt regelmæssigt. Der er heller ikke<br />

så langt <strong>in</strong>d til klippekysten på <strong>Bornholm</strong>, og den kan man ikke gøre ren for olie, hvis der skulle ske et udslip<br />

Kollisioner<br />

• Konsekvenser for mennesker. Skrækscenariet er en kollision mellem 2 skibe med hver 1500 personer,<br />

f.eks. Poul Anker + krydstogtskib. Der er skibe nok i området, også svenskerne. Men det ville være et problem<br />

med en redn<strong>in</strong>gsoperation om natten, og især hvis det blæser. Hvis kollisionen sker for+side er det<br />

ene skib nok stadig flydende. Ved en påsejl<strong>in</strong>g er decelerationen meget større end ved en grundstødn<strong>in</strong>g<br />

og så er der nogen, der kan komme til skade<br />

• Er head-on kollisioner værst måske, men de er også meget usandsynlige. Det er nok mest 90 graders<br />

kollisioner med krydsende skibe, der udgør den største risiko, især for det skib, der bliver sejlet <strong>in</strong>d i<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 32<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

• Er det sværere at sejle i område D efter trafikseparer<strong>in</strong>gen end tidligere Næe, ikke i dag, der er for lille<br />

trafik, der kommer <strong>in</strong>d fra siderne<br />

• Man kunne prøve at lave en opgørelse over hvor mange skæve krydsn<strong>in</strong>ger der er før og efter trafikseparer<strong>in</strong>gen<br />

• Head-on er ikke det værste skadesmæssigt. Man gør vel også noget for at reducere hastighed og v<strong>in</strong>kel<br />

<strong>in</strong>den man ramler sammen. Hvis et skib sejler op i et skib bagfra vil skibene blive suget sammen, og så er<br />

skaderne forholdsvis begrænsede. Det er risikomæssigt det samme at krydse og at flette - dog ikke hvis<br />

v<strong>in</strong>klen er under ca. 10 grader<br />

• Bundskader er dyre. Skader på siderne mere til at betale<br />

• Kollision med lystsejlere kan gå helt galt. De små vil forlise. Stor mod lille<br />

• Fiskerne har redn<strong>in</strong>gsflåder<br />

• Fiskerbåd 1-2 mand. Årstid spiller <strong>in</strong>d. Det er koldt at falde i vandet, især om v<strong>in</strong>teren. Man kan holde sig i<br />

live 1-1½ time om sommeren på en god dag. Om v<strong>in</strong>teren i 3 - 5 m<strong>in</strong>utter. Men det er <strong>in</strong>dividuelt. Det påsejlende<br />

skib skal bruge 10 - 20 m<strong>in</strong>utter for at få en båd i vandet. Og det er jo den, der er tættest på. At<br />

komme ud <strong>in</strong>de fra land tager meget længere tid<br />

• Hovedparten af lystsejlads f<strong>in</strong>der sted om sommeren, og da er sigten generelt god bortset fra i tilfælde af<br />

"sommerdis"<br />

• I modellen arbejder man med 3 typer kollisioner - krydsende, head-on, overtak<strong>in</strong>g. Krydsende trafik påvirkes<br />

i modellen ikke af separer<strong>in</strong>gen og resultatet vil være det samme. Head-on - vil der være en reduktion,<br />

da der ikke er så meget overlap af fordel<strong>in</strong>gerne mere. Overtak<strong>in</strong>g - også en reduktion, idet der kan<br />

komme flere forbi i samme spor<br />

Nord eller syd om <strong>Bornholm</strong><br />

• Hvis man trækker skibene for højt mod nord i forhold til Christiansø, så skal de sejle for langt og vil vælge<br />

en tur syd om <strong>Bornholm</strong>, og det har de måske for stor dybgang til<br />

• Polakkerne ønsker ikke skibe syd om Adlergrund. Polakkerne er bange for foruren<strong>in</strong>g og fremhæver, at de<br />

har mange vigtige habitatsområder<br />

• Det er svært at forholde sig til, at man umiddelbart møder krydsende trafik efter knækket i den vestlige<br />

del af område D<br />

• Der en disput om hvilket land, der ejer farvandet syd for <strong>Bornholm</strong>. Man ved i dag ikke, hvor grænsen går.<br />

Polakkerne vil kun give Danmark 12 sømil. Danmark mener, vi har ret til halvdelen<br />

• Danmark har ret til at lave ruter ud til de 12 sømil. Men længere ude skal det være i samarbejde med naboerne<br />

og med IMO. Hvis vi begrænser friheden ødelægger det frihandelstanken<br />

• Man kan jo aldrig vide, hvem der bliver forurenet., hvis der sker et uheld. Man kan give en anbefalet rute<br />

med det formål at alle kan komme mere sikkert igennem farvandet<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 33<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

• Søfartsstyrelsens <strong>in</strong>teresse er ikke at lave trafikseparer<strong>in</strong>g syd for <strong>Bornholm</strong><br />

• Man kunne lave en anbefalet rute svarende til en eller anden dybgang, men det er farligt<br />

• Polakkerne vil sende skibe med farligt gods nord om <strong>Bornholm</strong> - gælder for alle størrelser skibe - så får de<br />

heller ikke foruren<strong>in</strong>gen hjemme<br />

• Antallet af både bliver større nordpå<br />

• Grundstødn<strong>in</strong>ger tæt under land sydpå<br />

• Hvis 2 skibe tørner sammen ude i systemet, så får systemet skylden<br />

• Hvis der sker et uheld med olieforuren<strong>in</strong>g, så vil man gerne have det sker længst muligt fra kysten. Det giver<br />

længere respit tror man. men det er ikke sikkert det giver så meget, for olien når hurtigt <strong>in</strong>d til kysten,<br />

da strømmen er stærk<br />

• Fragtskibe har ikke noget at gøre i en <strong>in</strong>shore zone, når man ikke skal <strong>in</strong>d til lods eller til land. Her er<br />

mange lystbåde. Dvs. man vil ikke have fremmede skibe <strong>in</strong>d mellem Christiansø og <strong>Bornholm</strong>. Efter separationen<br />

må de gå nord om Christiansø og nord om Davids Banke<br />

• Samarbejde mht. reguler<strong>in</strong>g af trafikken i alle Østersølandene. Så det er et led i en større plan.<br />

• Skibe fra Gdansk vil spare 6- 7 sømil, svarende til under ½ times sejlads. Disse skibe udgør et bredt spektrum,<br />

men består især af ro-ro trafik samt småskibe med ensartede laster, herunder meget gødn<strong>in</strong>g<br />

• Skibe fra Klaipeda vil ikke spare noget ved at gå nord om <strong>Bornholm</strong><br />

• Skibe fra Polen med dybgang > 10 m vil få større vanddybder og derved have lettere ved at navigere ved<br />

at gå nord om <strong>Bornholm</strong>. Med moderne navigationsudstyr er grænsen nok øget til > 12 m<br />

• Hvis der sker en ulykke, er det længere væk fra Polens kyst, så i tilfælde af udslip og foruren<strong>in</strong>g er det en<br />

fordel for Polen at få skibene nordpå<br />

• På den sydlige rute er det nødvendigt for skibe med dybgang > 10 m at zigzagge en del for at gå fri af<br />

nogle grunde<br />

• Ved den Polske kyst var det i gamle dage svært at tage pejl<strong>in</strong>g og bestemme hvor man var. Der var for få<br />

kendemærker. Med moderne navigationsudstyr er dette ikke noget problem<br />

• Skibe, der sejler nord om <strong>Bornholm</strong> kan sejle med større fart, derfor ønsker også m<strong>in</strong>dre skibe at anvende<br />

denne rute<br />

• Det er uheldigt med mange små skibe igennem <strong>Bornholm</strong>s Gat. Det øger sandsynligheden for kollisioner i<br />

området<br />

• Vælger man en rute syd om <strong>Bornholm</strong> betyder det, at man kun skal <strong>in</strong>d i ét fletteområde. Går man nordom<br />

skal man gennem to fletteområder.<br />

• Internationalt kan man træffe en sådan beslutn<strong>in</strong>g, men har DK og SE en fordel af, at skibene sendes denne<br />

vej<br />

• Syd for Adlergrund f<strong>in</strong>des et andet lands skydeområde. DK kan ikke lægge en anbefalet rute igennem et<br />

skydeområde. Måske er det ikke så stort et problem med en anbefalet rute. Måske har de ikke så meget<br />

brug for et skydeområde. Men man har jo de <strong>in</strong>ternationale øvelser<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 34<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

• Rusland planlægger en rørledn<strong>in</strong>g med gas. Den skal gå nord om Christiansø og syd om Due Odde. Den<br />

bliver gravet så dybt ned, at man kan trawle hen over den.<br />

Ideer til nye sikkerhedsforanstaltn<strong>in</strong>ger<br />

• Mere overvågn<strong>in</strong>g fra land<br />

• VTS kan hjælpe på at folk begynder at følge søfartsreglerne. Det er en slags politi man kan true dem med<br />

• Man kunne overveje at etablere et precautionary area i område D<br />

• Man kunne lave en rute nord om Christiansø, der tvang de sydligste skibe lidt længere op<br />

• Man kunne lave en cirkel 5 - 6 sømil uden om Christiansø, hvori gennemsejl<strong>in</strong>g var forbudt<br />

• Forlag om at lave en anbefalet rute syd om <strong>Bornholm</strong> med <strong>in</strong>dfletn<strong>in</strong>g i område A uden for området med<br />

de krydsende færger. Den løsn<strong>in</strong>g er det dog opfattelsen, at tyskerne ikke vil have<br />

• Man kan ikke skaffe lodser i tilstrækkeligt antal til at alle skibe kan tage lods. Men man skulle kunne bestemme,<br />

hvilke skibe der skal have lods, det burde ikke være frivilligt<br />

• Der skal flere billeder og kortere tekst i de publikationer, der lægges ud til skibene. Ikke <strong>in</strong>teressant hvor<br />

der er sten på 2 m vand<br />

• Mere rabat på forsikr<strong>in</strong>ger til lystsejlere, hvis de har duelighedsbevis<br />

Bekymr<strong>in</strong>ger<br />

• Er der større risiko ved en m<strong>in</strong>dre <strong>in</strong>tensitet i spredt fægtn<strong>in</strong>g end ved en større <strong>in</strong>tensitet i ordnede rammer<br />

Der skete jo ikke noget før. Nu har man lavet systemet om. Vil der så ske noget nu Det må her<br />

fremhæves at dette er en "m<strong>in</strong>dretalsbekymr<strong>in</strong>g" og man jo har lavet systemet om for netop at reducere<br />

risikoen. Risikoen kan godt være stor selvom de helt store ulykker ikke er <strong>in</strong>dtruffet.<br />

• Fletn<strong>in</strong>gen i områderne B og D sker med større <strong>in</strong>tensitet. Det ville være m<strong>in</strong>dre bekymrende, hvis fletteområdet<br />

var spredt mere ud<br />

• Bekymret over en voldsom forøgelse af trafikken. Ulykkerne sker, fordi nogen der dummer sig. Skibene<br />

ligger tættere nu med separer<strong>in</strong>gen, og det må føre til noget<br />

• Det er bekymrende, at nogle store skibe er af den opfattelse, at søvigepligten er trådt ud af kraft, når de<br />

sejler i en trafiksepareret zone<br />

Diverse<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc


Sejladssikkerheden omkr<strong>in</strong>g <strong>Bornholm</strong><br />

Hazopmøde på <strong>Bornholm</strong> den 6. og 7. juni 2007<br />

Side 35<br />

Skib Beskrivelse af uheld Sikkerhedsforanstaltn<strong>in</strong>ger Hyppighed Konsekvens Kommentar<br />

• Før havde man generelt begge retn<strong>in</strong>ger at skulle passe på. Nu ved man, hvor skibene, man skal krydse,<br />

kommer fra<br />

• Hov! Skal vi se på tiden før anbefal<strong>in</strong>g om trafikseparer<strong>in</strong>g Dengang havde man 3 hovedspor, og da gik<br />

det ene helt tæt <strong>in</strong>d nord om <strong>Bornholm</strong>. Men den situation kan vi ikke analysere nu, for der har vi ikke data,<br />

og den er for lang tid tilbage. Så der er i virkeligheden en lang udvikl<strong>in</strong>g, hvor vi sammenligner med en<br />

mellemstation<br />

• Der er altså noget galt med AIS dækn<strong>in</strong>gen og billederne af skibenes tæ<strong>the</strong>d. I områder langt fra kysten<br />

burde nogle af de gule områder være røde. Men der er en stor flade at sejle på. Bedre nu fordi man bedre<br />

ved hvor skibene er<br />

• Der er mange timer til at et skib rammer Tyskland. Ravagen er kun at navigatøren skal passere den modgående<br />

trafik, han går ikke på grund <strong>in</strong>den han rammer Tyskland<br />

• Der mangler nogen data om den østgående trafik på det før billede, vi har. Det var heller ikke en grundstødn<strong>in</strong>gsfare<br />

tidligere. Ingen kan huske, at der har været nogen hændelser<br />

• <strong>Bornholm</strong>strafikken møder 8 færger om dagen i højsæsonen<br />

• Der er også færger fra All<strong>in</strong>ge til Christiansø og den fra Neksø til Kolopcheck hele året<br />

• Der ligger også et svensk skydeområdet oppe ved Ystad. Så skyder de ikke, medens færgen sejler igennem<br />

• Den vestlige del ved Kadetrenden. Her er dybdeændr<strong>in</strong>ger. 17 m kurven har ændret sig. I enden af dybvandsruten,<br />

og der er også et vrag, men det er længe fra det, der påvirker området omkr<strong>in</strong>g <strong>Bornholm</strong>,<br />

men kursen af skibene kan have ændret sejladsmønstret for at optimere vand under kølen<br />

• Hvorfor kun 2 spor, hvorfor ikke 4. Så man ikke skal krydse, med m<strong>in</strong>dre det er nødvendigt. Det lyder tilforladeligt,<br />

for man flytter problemerne til et andet sted. Med lokalbriller på er det f<strong>in</strong>t, men der opstår evt.<br />

andre problemer<br />

• Skibene bør være opmærksomme på, at de er under opsyn<br />

• Der er <strong>in</strong>gen "no blame" kultur til søs. Derfor får man ikke ordentlige forklar<strong>in</strong>ger på uheld, kun bortforklar<strong>in</strong>ger.<br />

Man vil nemlig ikke betale. Derfor kan man ikke lave en ordentlig opklar<strong>in</strong>g og <strong>in</strong>ddel<strong>in</strong>g af årsager<br />

til ulykker<br />

• Der kommer i øvrigt nogle organiserede fisketure om sommeren, hvor man ligger og fisker på et godt sted.<br />

Men det er ikke stort. De ligger mest i kysttrafikzonen. De går ud fra Hasle<br />

P:\65775A\3_Pdoc\DOC\hazopskema 10 aug 1.doc

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!