01.02.2015 Views

Advanced Abstract Algebra - Maharshi Dayanand University, Rohtak

Advanced Abstract Algebra - Maharshi Dayanand University, Rohtak

Advanced Abstract Algebra - Maharshi Dayanand University, Rohtak

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

UNIT-IV<br />

81<br />

Examples<br />

1. The polynomial<br />

Proof<br />

is irreducible over Q, where p is a prime.<br />

( x − 1) f ( x)<br />

= x p − 1 . Put x = y + 1 , then<br />

Where<br />

F<br />

p<br />

HG I i K J =<br />

F<br />

HG I K J<br />

F = y p p p<br />

p + HGI KJ F y<br />

p + HGI KJ −1 y<br />

p−2<br />

+ ........... + y<br />

1 2 p − 1<br />

(1)<br />

, i < p<br />

Not that<br />

and<br />

divides the product<br />

. Hence p divides<br />

Dividing (1) by y, we see that<br />

satisfies the hypothesis of Eisentein criterion and so it is irreducible over Q. Hence f ( x) is irreducible<br />

1 p−2<br />

Fi!<br />

yf p p<br />

( p iy<br />

! − )( ) p = ( 2y<br />

).............( x + 1)<br />

........... − 1 p − i<br />

x−<br />

+ 1<br />

)<br />

HG I 2.<br />

i K J F p p<br />

y<br />

y<br />

p<br />

+ ) = + ............<br />

i!<br />

H GI K J F<br />

+<br />

HG I is irreducible over Q, since p = 5 ,<br />

5 4 3<br />

5 2 ×<br />

3 n<br />

( S fy ( = + ×<br />

x<br />

y{ )<br />

20 1 + a= 4 3 2<br />

) 1 ,)<br />

3x a+ 2x (........... −y p+ p − K J<br />

−15 1) xa + n 15, − )( 20 y -20, + x−<br />

12<br />

) + 10, + ( xy<br />

20.<br />

+ 20 1)<br />

+ 1<br />

1 1<br />

3.<br />

is irreducible over Q, p is a prime number.<br />

4 3 2<br />

4. f ( x) = x + x + x + x + 1 is irreducible over Q. Put x = ( y + 1)<br />

=<br />

,<br />

, 5 divide,<br />

Take p = 5 , so<br />

Field Extensions<br />

Definition<br />

4 3 2<br />

= y + 5 y + 10 y + 10 y + 5<br />

is irreducible over Q, hence<br />

Let k be a field. A field K is calld an extension of k if k is subfield of K.<br />

is irreducible over Q.<br />

Let S be a subset of K. k(S) is defined by smallest subfield of k, which contains both k and S.k(S) is an<br />

extension of k. We say k(S) is obtained by adjoining S to k. If<br />

k ( S) : = k( a1, a2 ,........., a n<br />

) .<br />

a finite set, then<br />

If K is an extension of k, then K is a vector space over k. so K has a dimension over k, it may be infinite. The<br />

dimension of K, as a vector space over k is called degree of K over k. Denote it by<br />

dim K k<br />

= degree of K over k<br />

= [ K: k]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!