01.02.2015 Views

Advanced Abstract Algebra - Maharshi Dayanand University, Rohtak

Advanced Abstract Algebra - Maharshi Dayanand University, Rohtak

Advanced Abstract Algebra - Maharshi Dayanand University, Rohtak

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

UNIT-I<br />

19<br />

( G )<br />

N G<br />

( H )<br />

≅<br />

H<br />

N<br />

Define<br />

f : G N<br />

by<br />

Na<br />

Ha<br />

is well-defined, since Na = Nbfor<br />

we get<br />

. Since N ⊆ H,<br />

thus gives<br />

and so<br />

Ha = Hb. f is a homomorphism:<br />

the identity of<br />

⇔ Ha = H<br />

⇔ a ∈ H<br />

Hence ker . As ker f ∆ G ,<br />

N so H ∆G<br />

N N<br />

The fundamental homomorphism theorem for groups implies that<br />

G<br />

N<br />

ker<br />

≅ Im f = G<br />

f<br />

N<br />

( ) ) ( ) ( ) ( ) ( H ) f ( Nb)<br />

∈<br />

∀f G<br />

⇔ker<br />

−1<br />

,b<br />

G,<br />

= H<br />

HN<br />

Na f<br />

Ha<br />

∩,∀<br />

, ∈Na<br />

bf<br />

Nker<br />

a<br />

= Nb ∆<br />

f = , ⇔f<br />

fNab<br />

( ) = HabH<br />

, = HaHb = f Na<br />

a b<br />

H<br />

≅<br />

∈Nab<br />

HN<br />

∩=<br />

NNaNb<br />

= f a f b ∀a,<br />

b∈<br />

N ( H ∩ N ) G<br />

⇔ a ∈ N and a ∈ H∴<br />

N ≅ G<br />

H H<br />

⇔ a ∈ H ∩ N<br />

N<br />

Theorem 6 (Second Isomorphism Theorem)<br />

Let G be a group, and let N ∆G,<br />

let H be any subgroup of g. Then HN is a subgroup of G,<br />

and<br />

Proof:<br />

Define f:H<br />

by a<br />

is a homomorphism since<br />

a ∈ ker f ⇔ f ( a) = N,<br />

the identity element of HN and a<br />

H<br />

So

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!