01.02.2015 Views

Advanced Abstract Algebra - Maharshi Dayanand University, Rohtak

Advanced Abstract Algebra - Maharshi Dayanand University, Rohtak

Advanced Abstract Algebra - Maharshi Dayanand University, Rohtak

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

UNIT-I<br />

47<br />

Remark :<br />

If G is abelian, then<br />

abelian group.<br />

Solution :<br />

(i) Given gug − 1<br />

∈U ∀ g ∈G<br />

, ∀ u ∈U . To show U ∃ ∆ G<br />

Θ<br />

is the subgroup generated by U.<br />

4<br />

could be simplified to ( a ) ( a ) 5<br />

, but this may not be true in the non<br />

in U}<br />

= {all finite products of integral powers of<br />

Θ∃ Θ 3 5 7<br />

ax<br />

gxg<br />

n n<br />

k<br />

i 1) 11−<br />

2 1 n n<br />

u1 u2<br />

(........<br />

a2<br />

gu<br />

1 n nk<br />

U( ∀G xyG′<br />

yxG′ ∃−<br />

gux ( = ′ = ) u<br />

( a 2<br />

iy xG ∈g G U′ ∃ ′ −1<br />

y −<br />

x yx x)<br />

= , i<br />

yx U∈<br />

U)<br />

G........<br />

1)<br />

∀′<br />

i ∈<br />

1 2k<br />

u<br />

I<br />

G′<br />

k<br />

= {all finite products of integral powers of element in U}<br />

Let x ∈U<br />

∃ ,<br />

, ui U i ∈ Z −1 n1 −1<br />

n2 1<br />

g = gu<br />

g g g<br />

nk<br />

−1<br />

1 u<br />

g.......<br />

g g<br />

2<br />

uk<br />

=<br />

−1 n1<br />

− 1 n2<br />

−1 n<br />

( gu1g<br />

) ( gu2g<br />

) ................. ( gu k<br />

g ) k<br />

∈U<br />

∃<br />

because<br />

Hence gxg<br />

∈U∃<br />

∀g<br />

∈G<br />

⇒ U ∃ ∆ G (i.e. G ∆ G )<br />

(ii) U =<br />

− −<br />

{ xy x y x,<br />

y ∈G}<br />

The Commutator subgroup of G<br />

From (1) U ∃ = G′∆ G .<br />

l<br />

(iii) G G′ = xG'| x ∈Gq, To show<br />

We must show xG′ yG′ =<br />

i.e.<br />

L.H.S.<br />

=<br />

=<br />

=<br />

(Θ<br />

abelian,<br />

1<br />

2<br />

− −<br />

is a commutator and so y x yxG′ = G′<br />

1 1<br />

)<br />

−1 −1<br />

= ( xyy x ) yxG′ = yxG′<br />

= yG′ xG′ = R.H.S.<br />

(iv)<br />

G N<br />

abelian ⇔ ′ ⊂<br />

To show<br />

G<br />

N<br />

−1 −1 −1 −1<br />

−1 −1 −1 −1<br />

−1 −1 −1 −1<br />

⇒ x Ny N = y Nx N x y N = y x N xyx y N = N xyx y ∈N<br />

i.e. every commutator to a group N, hence all finite products of integral powers of commutators are in<br />

N. ∴ G ′ ⊂ N.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!