01.02.2015 Views

Advanced Abstract Algebra - Maharshi Dayanand University, Rohtak

Advanced Abstract Algebra - Maharshi Dayanand University, Rohtak

Advanced Abstract Algebra - Maharshi Dayanand University, Rohtak

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

UNIT-IV 99<br />

x 3 = (0, 0, 0, 1,…)<br />

. . . . . . . .. . . . . . .<br />

. . . . . . . .. . . . . . .<br />

x n = ( 0<br />

1<br />

,0,0,....,0 1, 0,….)<br />

4 2 43<br />

n terms<br />

Therefore for (a, 0, 0, ….) ∈ Q we have<br />

(a, 0, 0,…) x = (0, a, 0, …..)<br />

(a, 0, 0, …) x 2 = (0, 0, a, ….)<br />

. . . . . . . .. . . . . . . . . . . . . . .<br />

(a, 0, 0, ….) x n = ( 0<br />

1<br />

,0,0,....,0<br />

4 2 43<br />

, a, 0, ….) (ii)<br />

n terms<br />

If (a 0 , a 1 , .., a n , 0, …) be any arbitrary element of the polynomial ring P, then by (ii) we have<br />

(a 0 , a 1 , a 2 ,…., a n , 0, …) = (a 0 , 0, ….) + (0, a 1 ,…) + … + ( 0<br />

1<br />

,0,0,....,0<br />

4 2 43<br />

, a n , 0, ….)<br />

n terms<br />

= (a 0 , 0, …) + (a 1 , 0, ….) (0, 1, 0,…) + ….<br />

+ (a n , 0, 0,…) ( ( 0,0,0,...,0,0, 1, 0,…)<br />

1 4 2 4 43<br />

n terms<br />

= (a 0 , 0, …) + (a 1 , 0, 0, …) x + … + (a n , 0, 0,…) x n<br />

= a 0 + a 1 x + a n x n (by (i))<br />

Hence every element (a 0 , a 1 , a 2 ,…) of P can be denoted by<br />

a 0 + a 1 x + a 2 x 2 + … a n x n .<br />

* The numbers a 0 , a 1 ,…, a n are called coefficients of the polynomial. If the coefficient a n of x n is nonzero,<br />

then it is called leading coefficient of a 0 + a 1 x + … + a n x n .<br />

* A polynomial consisting of only one term a 0 is called constant polynomial.<br />

Example. If R is a commutative ring with unity, prove that R[x] is also a commutative ring with unity.<br />

Degree of Polynomial. Let f(x) = a 0 + a 1 x + … a n x n be a polynomial. If a n ≠ 0 , then n is called the<br />

degree of f(x). We denote it by deg f(x) = n.<br />

It is clear that degree of a constant polynomial is zero.<br />

If<br />

and<br />

f(x) = a 0 + a 1 x + a 2 x 2 + … a m x m , a m ≠ 0<br />

g(x) = b 0 + b 1 x + … b n x n , b n ≠ 0<br />

are two elements of R[x], then<br />

deg f(x) = m and deg g(x) = n and<br />

f(x) + g(x) = (a 0 + a 1 x + a 2 x 2 + … + a m x m ) + (b 0 +b 1 x+b 2 x 2 + … + b n x n )<br />

If m = n and a m + b n ≠ 0, then<br />

f(x) + g(x) = (a 0 + b 0 ) + (a 1 +b 1 )x + … + (a m + b m )x m<br />

Therefore in this case<br />

deg [f(x) + g(x)] = m.<br />

It is also clear that if m = n and a m + b m = 0 , then<br />

deg [f(x) + g(x)] < m.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!