17.05.2015 Views

Betatron Oscillations

Betatron Oscillations

Betatron Oscillations

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Physics 598ACC Accelerators: Theory and Applications<br />

Instructors: Fred Mills, Deborah Errede<br />

Lecture 4: <strong>Betatron</strong> <strong>Oscillations</strong><br />

19 Jun 2007 Accelerators: Theory and<br />

Applications<br />

1


Summary<br />

A. Mathieu-Hill equation<br />

B. Transfer matrix – properties<br />

C. Floquet theory solutions<br />

D. CSL invariant and emittance<br />

19 Jun 2007 Accelerators: Theory and<br />

Applications<br />

2


<strong>Betatron</strong> <strong>Oscillations</strong><br />

(see “Theory of the Alternating-Gradient Synchrotron”, E.D. Courant and H.S. Snyder)<br />

The equations of motion for betatron oscillations were found to be of the type<br />

4.1<br />

y ′ + Ks ( )y = 0<br />

where K(s) is a periodic function with period C = 2πR, or higher periodicity if the<br />

accelerator "lattice" has higher periodicity, as will usually be the case. In terms of the<br />

magnetic field, its gradient and the "magnetic rigidity” Bρ = P 0c<br />

, K = B 2<br />

⎛<br />

⎜ 0<br />

⎞<br />

⎟<br />

B ′<br />

+<br />

e ⎝ Βρ⎠<br />

Bρ<br />

for the horizontal plane, and K =− B ′ for the vertical plane.<br />

Bρ<br />

Then 4.1 is a Mathieu-Hill equation for y, and Floquet's theorem applies to the<br />

solutions, that is that the two linearly independent solutions can be written in the form<br />

exp[±iψ(s)]w(s), where w(s) is a periodic function of s. We will use this fact later, but<br />

first let us look at some general properties of the solutions.<br />

19 Jun 2007 Accelerators: Theory and<br />

Applications<br />

note<br />

B<br />

'<br />

∂B<br />

= ∂ x<br />

z<br />

3


Let N be the number of periods per revolution, and<br />

be the length of one period.<br />

Since the y equation is linear, the solutions at two points s and s 0 are linearly related. If<br />

Y is the column vector we can write<br />

4.2<br />

⎡ y ⎤<br />

⎢<br />

⎣ y ′ ⎥<br />

⎦<br />

Y()= s M s| s 0<br />

( )Ys 0<br />

( )<br />

L= C N<br />

( ) M( s 2<br />

s 1 )<br />

where M s 2<br />

s 1 is a 2x2 matrix . The determinant of is unity, since the<br />

*<br />

Wronskian determinant is constant because the coefficient of y' is zero in 4.1. We note<br />

that the transformations M form a group, since the identity Μ( s|s)= I exists, the<br />

inverse M −1 ( s | s 0 )= M( s 0<br />

| s) exists because det Μ ≠ 0 , and M( s| s 0 )= M( s| s 1 )M ( s 1<br />

| s 0 ).<br />

Some useful examples of M are when K is constant. For K=0 (drift),<br />

4.3<br />

M( ⎡<br />

s| s 0 )= 1 s− s ⎤<br />

0<br />

⎢<br />

⎣ 0 1 ⎥<br />

⎦<br />

19 Jun 2007 Accelerators: Theory and<br />

Applications<br />

*see notes<br />

4


Wronskians: (see, for example, Morse and Feshbach p. 524)<br />

for a differential equation of the form<br />

" '<br />

y + f(x)y + g(x)y=<br />

0<br />

y y<br />

W(y ,y ) = = y y −y y<br />

1 2 ' '<br />

1 2 ' ' 1 2 2 1<br />

y1 y2<br />

(y 1 ,y 2 solutions to the eqn above)<br />

for f(x), g(x) continuous on an open interval I, two solutions y 1 , y 2 are linearly<br />

independent if their Wronskian W is nonzero for any range of x in I.<br />

Also Abel’s Theorem states that for the above differential eqn the Wronskian of the two<br />

solutions is<br />

−∫f (z)dz<br />

W(y ,y )(x) = W(y ,y )(x )e = ce<br />

1 2 1 2 0<br />

note that if f(x)=0, the Wronskian is constant. (canonical Poisson brackets = 1, and components of the<br />

brackets almost correspond to the elements of the matrix M. The Poisson bracket is the determinant of M)<br />

x<br />

−<br />

0 0<br />

x<br />

∫<br />

f (z)dz<br />

19 Jun 2007 Accelerators: Theory and<br />

Applications<br />

5


When K is positive (F or focusing),<br />

4.4<br />

M( s| s 0 )=<br />

⎡<br />

cosφ<br />

⎢<br />

⎢<br />

⎣ − Ksinφ<br />

sinφ ⎤<br />

K<br />

⎥<br />

⎥<br />

cosφ⎦<br />

while if K is negative (D or defocusing),<br />

4.5<br />

M( s| s 0 )=<br />

⎡<br />

⎢<br />

⎢<br />

⎣<br />

coshψ<br />

-Ksinhψ<br />

sinhψ ⎤<br />

⎥<br />

-K<br />

⎥<br />

coshψ⎦<br />

( ) ψ= -K( s − s ) 0<br />

Here φ= K s − s 0 , and .<br />

19 Jun 2007 Accelerators: Theory and<br />

Applications<br />

6


Now let us define the matrix for one period<br />

4.6<br />

⎡a<br />

b⎤<br />

M(s + L | s ) = M(<br />

s)<br />

= ⎢<br />

c d ⎥<br />

⎣ ⎦<br />

The matrix for one revolution is Μ N ( s) , and for k revolutions is Μ kN ( s)<br />

. The motion<br />

will remain bounded if the matrix elements remain bounded as kN-> ∞. Consider the<br />

eigenvalues λ of M<br />

4.7 Μ Y =λY<br />

Solutions exist if<br />

4.8<br />

The equation for λ becomes<br />

4.9<br />

det Μ − λI = 0<br />

λ 2 −λ( a + d)+ 1 = 0<br />

19 Jun 2007 Accelerators: Theory and<br />

Applications<br />

7


Let<br />

4.10 cosμ = 1 2 Tr M = a + d<br />

2<br />

The two solutions of 4.8 become<br />

µ is real if<br />

4.12<br />

λ=cosμ ± isinμ<br />

4.11 *see homework<br />

a + d ≤ 2<br />

Now define α, β, and γ in the following way;<br />

a − d = 2αsinμ<br />

4.13 b =βsinμ<br />

c =−γsinμ<br />

det Μ =1<br />

implies that<br />

4.14<br />

γ = 1+α 2<br />

β<br />

19 Jun 2007 Accelerators: Theory and<br />

Applications<br />

8


for transfer matrix on p.10<br />

cosμ=<br />

αsin<br />

μ=<br />

a+<br />

d<br />

2<br />

a−<br />

d<br />

2<br />

b and c are given in 4.13.<br />

a+ d a−d<br />

a = + = cosμ+αsinμ<br />

2 2<br />

d= cosμ−αsinμ<br />

19 Jun 2007 Accelerators: Theory and<br />

Applications<br />

9


The transfer matrix is now<br />

* see notes p.9<br />

4.15<br />

⎡<br />

Μ()= s<br />

a b ⎤<br />

⎣<br />

⎢ c d⎦<br />

⎥<br />

⎡ cosμ + αsinμ<br />

= βsinμ<br />

⎣ ⎢ −γsinμ<br />

⎤<br />

cosμ - αsinμ⎦<br />

⎥ = I cosμ+Jsinμ<br />

⎡<br />

4.16 J = α β ⎤<br />

,<br />

⎣ ⎢ −γ −α⎦<br />

⎥ det J =1<br />

4.17<br />

M Nk = ( Icosμ +Jsinμ) Nk = IcosNkμ +JsinNkμ<br />

Then if µ is real, the matrix elements of M Nk remain bounded, and the motion is stable.<br />

We note that M()= 0 I,<br />

4.19<br />

M −1 ()= μ M( -μ),<br />

M( μ 1<br />

+μ 2 )= M( μ 1 )M( μ 2 )<br />

19 Jun 2007 Accelerators: Theory and<br />

Applications<br />

10


The definition of µ does not depend on the point s where the matrix is defined, for, if<br />

we calculate the matrix between s 1 and s 2 +L, first by going from s 1 to s 2 , then by going<br />

from s 2 to s 2 +L, if M s 2<br />

s 1 is the matrix connecting s 1 and s 2 ,<br />

while if we first go from s 1 to s 1 +L, and then from s 1 +L to s 2 +L,<br />

Then<br />

4.20<br />

4.21<br />

( )<br />

M( s 2<br />

+ Ls 1 )= M( s 2<br />

)M( s 2<br />

s 1 )<br />

( ) ( )<br />

(see definition 4.6)<br />

M(s + L | s) = M s + L| s + L M s = M(s | s) M(s)<br />

2 1 2 1 1 2 1 1<br />

M( s 2<br />

)= M( s 2<br />

s 1 )M( s 1<br />

)M −1 s 2<br />

s 1<br />

( )<br />

Thus the two matrices are related by a similarity transformation. Thus if M(s )Y = λY<br />

,<br />

M<br />

' '<br />

(s<br />

2)Y =λY<br />

( ) ′<br />

also, where Y = M −1 s 2<br />

s 1<br />

Y . If det M( s 2<br />

)−λI = 0 then det M( s 1<br />

)− λI = 0<br />

also, and the two matrices have the same eigenvalues, hence the same value of µ.<br />

1<br />

19 Jun 2007 Accelerators: Theory and<br />

Applications<br />

11


Modern accelerators have lattices which are composed of successive regions of<br />

constant values of K (which might include curvature). The matrix for each region is<br />

one of the forms 4.3 to 4.5. Then we can find the one period matrix M(s) by matrix<br />

multiplication, and find µ from the trace of that matrix, and α, β, γ by using 4.13. On<br />

the other hand, to find α, β, γ at every point in the lattice by this method is tedious and<br />

time consuming. We will develop better means to calculate these functions, but first we<br />

need to learn more about them.<br />

Let us attempt a solution to 4.1 in the phase-amplitude form<br />

4.22<br />

where w and ψ are real, and w is periodic. Then<br />

4.23 y ′ + Ky = [ w ′ ± i2 ( w ′ ψ ′ + w ψ ′ )− w ( ψ ′) 2 + Kw]exp( iψ)= 0<br />

The exponent is not zero, in general, so both the real and imaginary parts of the bracket<br />

must vanish.<br />

y = ws ()exp[±iψ( s)]<br />

19 Jun 2007 Accelerators: Theory and<br />

Applications<br />

12


For the imaginary part,<br />

( ) ′ = 0 ′<br />

4.24 w 2 ψ ′ , or<br />

ψ = 1 w 2<br />

where we have taken the arbitrary constant of integration to be 1 by absorbing it into the<br />

definition of w. For the real part,<br />

w ′′<br />

+ Kw − 1 = 0<br />

w 3<br />

4.25 (using 4.24)<br />

We are now in a position to express M in terms of w and ψ. Any solution can be<br />

written as a linear combination of the two linearly independent solutions<br />

4.26<br />

y = Awcosψ + Bwsinψ<br />

⎛<br />

y ′ = A w ′ cosψ− sinψ ⎞<br />

⎝ w ⎠ + B ⎛<br />

w ′ sinψ+cosψ ⎞<br />

⎝ w ⎠<br />

19 Jun 2007 Accelerators: Theory and<br />

Applications<br />

13


We can evaluate A and B at s 1 , let ψ=0, y=y 1 , and y ' =y 1‘ . Then A = y 1<br />

,<br />

and B = w 1<br />

y ′ 1<br />

− w ′ 1<br />

y 1<br />

. Introduce the values of A and B into 4.26 and<br />

collect coefficients of y 1 and y 1<br />

'<br />

to find<br />

4.27<br />

M( s 2<br />

s 1 )=<br />

⎡<br />

⎢<br />

⎢ ⎛<br />

cosψ⎜<br />

⎣<br />

⎢ ⎝<br />

w ′ 2<br />

−<br />

w 1<br />

cosψ w 2<br />

− w 2<br />

w 1<br />

′ sinψ<br />

w 1<br />

w 1<br />

′<br />

w 2<br />

⎞<br />

⎟ − sinψ<br />

⎠<br />

w 1<br />

⎤<br />

w 1<br />

w 2<br />

sinψ<br />

⎥<br />

⎛<br />

⎜<br />

1 ⎞<br />

+ w 1<br />

′ w ′ 2<br />

⎟ cosψ w 1<br />

⎥<br />

+ sinψ w 1<br />

′ w<br />

2′<br />

⎝ w 1<br />

w 2<br />

⎠ w 2<br />

⎥<br />

⎦<br />

Now we evaluate M in the case s 2 = s 1 +L, and require w 1 = w 2 = w<br />

4.28<br />

M( s 2<br />

)=<br />

⎡ cosψ − w w ′ sinψ w 2 sinψ ⎤<br />

⎢<br />

− ⎛ 1 ⎝ w + ( w ′ ⎞<br />

2 )2<br />

⎠<br />

sinψ cosψ+w w ′<br />

⎣<br />

sinψ ⎥<br />

⎦<br />

19 Jun 2007 Accelerators: Theory and<br />

Applications<br />

14


Now we compare 4.28 with 4.15, and we can find the following relations<br />

4.29<br />

w 2 = β<br />

w w ′ =−α<br />

α=− β ′<br />

2<br />

μ=ψ( s + Ls)−ψs<br />

()=<br />

α ′ = Kβ−γ<br />

1<br />

γ= +<br />

2<br />

w<br />

s + L<br />

∫<br />

s<br />

ds<br />

β<br />

'<br />

( w ) 2<br />

s+<br />

L<br />

= ∫<br />

s<br />

dψ<br />

ds<br />

ds<br />

(see 4.24)<br />

(use 4.25)<br />

The last equation follows from 4.25 and the relations between w, α, and β. Another<br />

useful differential relationship exists for γ, although α, β, and γ are related by 4.14,<br />

4.30<br />

γ ′ =2Kα<br />

19 Jun 2007 Accelerators: Theory and<br />

Applications<br />

15


We can now use 4.29 and 4.30 in 4.27 to find a general transfer matrix between any<br />

two points 1 and 2 in the lattice,<br />

4.31<br />

⎡<br />

⎢<br />

M( s 2<br />

s 1 )= ⎢<br />

⎢<br />

⎣<br />

β 2<br />

β 1<br />

( cosψ +α 1<br />

sinψ ) β 1<br />

β 2<br />

sinψ<br />

⎛<br />

cosψ α 1<br />

−α 2<br />

⎞ ⎛<br />

⎜ ⎟ − sinψ 1+α 1α 2<br />

⎞<br />

⎜ ⎟<br />

⎝ β 1<br />

β 2 ⎠ ⎝ β 1<br />

β 2 ⎠<br />

β 1<br />

β 2<br />

⎤<br />

⎥<br />

⎥<br />

( cosψ−α 2<br />

sinψ)<br />

⎥<br />

⎦<br />

We will use these differential relationships together with matrix properties to solve for<br />

lattice parameters. First we wish to define an important quantity, ν, which is related to<br />

the phase advance µ, but is a property of the whole accelerator.<br />

4.32<br />

ν= Nμ<br />

2π =<br />

19 Jun 2007 Accelerators: Theory and<br />

Applications<br />

∫<br />

s<br />

s+ C<br />

ds<br />

2πβ<br />

ν is the total number of<br />

betatron oscillations in one<br />

revolution (in the y coordinate).<br />

see 4.29<br />

16


We can also find a constant of the linear motion, W,<br />

called the CSL (Courant, Livingston, and Snyder) invariant.<br />

Any solution can be written, by virtue of 4.29,<br />

4.33<br />

y= Wβcos( ψ+δ)<br />

W<br />

β<br />

[ ]<br />

'<br />

y = sin( ψ+δ) −αcos( ψ+δ)<br />

where W and δ are constants. Solving for cos and sin, squaring and adding,<br />

4.34 W = y2 +β′ ( y +αy) 2<br />

β<br />

=γy 2 + 2αy y ′ +β y ′<br />

2<br />

19 Jun 2007 Accelerators: Theory and<br />

Applications<br />

17


This is the equation of an ellipse of area πW in y,y ' space. The ellipse is upright when<br />

α = 0 and tilted otherwise. The maximum value of y at a given point in the lattice is<br />

βW<br />

because of 4.33. If βW is the maximum amplitude of betatron oscillation<br />

of particles in a beam, then the beam "emittance", which is the area enclosing all the<br />

beam particles, is πW. Note that πWP is the projected area of the orbit in phase space,<br />

and will tend to remain constant as the particles are accelerated (adiabatic invariant).<br />

19 Jun 2007 Accelerators: Theory and<br />

Applications<br />

18


End of Lecture<br />

19 Jun 2007 Accelerators: Theory and<br />

Applications<br />

19


19 Jun 2007 Accelerators: Theory and<br />

Applications<br />

20

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!