12.06.2015 Views

Maternal variation in Huichol and Mixtec populations from Mexico

Maternal variation in Huichol and Mixtec populations from Mexico

Maternal variation in Huichol and Mixtec populations from Mexico

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

TARTU UNIVERSITY<br />

FACULTY OF SCIENCE AND TECHNOLOGY<br />

INSTITUTE OF MOLECULAR AND CELL BIOLOGY<br />

DEPARTMENT OF EVOLUTIONARY BIOLOGY<br />

Tatjana Tsõpova<br />

<strong>Maternal</strong> <strong>variation</strong> <strong>in</strong> <strong>Huichol</strong> <strong>and</strong> <strong>Mixtec</strong> <strong>populations</strong> <strong>from</strong> <strong>Mexico</strong><br />

Bachelor thesis<br />

Supervisors<br />

M.Sc Erika Tamm<br />

Ph.D Ene Metspalu<br />

TARTU 2012


TABLE OF CONTENTS<br />

ABBREVIATIONS .................................................................................................................... 3<br />

Def<strong>in</strong>ition of basic terms used <strong>in</strong> the thesis: ............................................................................... 3<br />

INTRODUCTION ...................................................................................................................... 4<br />

1. LITERATURE OVERVIEW ................................................................................................. 5<br />

1.2 Mitochondrial molecular clock ......................................................................................... 6<br />

1.3 Phylogenetic studies ......................................................................................................... 7<br />

1.4 World mtDNA haplogroups ............................................................................................. 8<br />

1.5 Native American mtDNA haplogroups ............................................................................ 8<br />

1.4 Migration theories .......................................................................................................... 10<br />

1.5 M<strong>in</strong>or founders ............................................................................................................... 11<br />

1.6 Middle America .............................................................................................................. 12<br />

2. EXPERIMENTAL STUDY ................................................................................................. 15<br />

2.1 Aims of this study ........................................................................................................... 15<br />

2.2 Materials <strong>and</strong> methods .................................................................................................... 16<br />

2.2.1 Samples .................................................................................................................... 16<br />

2.2.2 DNA amplification .................................................................................................. 16<br />

2.2.3 Product purification ................................................................................................. 17<br />

2.2.4. Sequenc<strong>in</strong>g reactions .............................................................................................. 18<br />

2.2.5 Statistical analysis ................................................................................................... 19<br />

2.3. RESULTS AND DISCUSSION ........................................................................................ 21<br />

2.3.1. Phylogenetic network ................................................................................................. 21<br />

2.3.2. C4c haplogroup .......................................................................................................... 29<br />

CONCLUSIONS ...................................................................................................................... 33<br />

KOKKUVÕTE ......................................................................................................................... 34<br />

References ................................................................................................................................ 37<br />

SUPPLEMENTARY MATERIALS ........................................................................................ 45<br />

2


ABBREVIATIONS<br />

bp - base pair<br />

D-loop - displacement loop<br />

HVS - Hypervariable Segment<br />

LGM - Last Glacial Maximum<br />

MRCA - Most Recent Common Ancestor<br />

mtDNA - Mitochondrial DNA<br />

SNP - S<strong>in</strong>gle Nucleotide Polymorphism<br />

nps - nucleotide position<br />

PCR - polymerase cha<strong>in</strong> reaction<br />

ybp - years before present<br />

BIM - Ber<strong>in</strong>gian <strong>in</strong>cubation model<br />

aDNA - ancient DNA<br />

Def<strong>in</strong>ition of basic terms used <strong>in</strong> the thesis:<br />

Haplotype- a specific mitochondrial genotype def<strong>in</strong>ed by a characteristic collection of<br />

mtDNA polymorphisms<br />

Haplogroup- a group of similar haplotypes, that share a common ancestor<br />

LGM- a period <strong>in</strong> the Earth's climate history when ice sheets were at their maximum<br />

extension, between 26,500 <strong>and</strong> 19,000–20,000 years ago<br />

3


INTRODUCTION<br />

For decades mitochondrial DNA is be<strong>in</strong>g used <strong>in</strong> human phylogenetic studies, lett<strong>in</strong>g us to<br />

reveal the evolutionary relationships between <strong>populations</strong>. Based on the mtDNA mutational<br />

pattern, all liv<strong>in</strong>g people can be divided <strong>in</strong>to different maternal l<strong>in</strong>eages, which are generally<br />

geographically specific. The l<strong>in</strong>eages` distribution pattern, frequency <strong>and</strong> diversity can tell us<br />

a lot about human migrations.<br />

The Americas were the last cont<strong>in</strong>ents reached by modern humans. Although studies for<br />

underst<strong>and</strong><strong>in</strong>g the peopl<strong>in</strong>g process of the Western Hemisphere have lasted for decades, it still<br />

is <strong>in</strong>trigu<strong>in</strong>g subject. Long time it was accepted that Clovis people were the first <strong>in</strong>habitants of<br />

the Americas. Now, with new archaeological f<strong>in</strong>d<strong>in</strong>gs <strong>and</strong> accumulat<strong>in</strong>g genetic <strong>variation</strong> data<br />

with higher resolution, the Clovis-First model has been challenged. The questions have<br />

rema<strong>in</strong>ed open.<br />

The less studied American region is Middle America. Be<strong>in</strong>g an important barrier for the gene<br />

flow between North <strong>and</strong> South America, this region represents the most ethnic <strong>and</strong> language<br />

diversity of the cont<strong>in</strong>ent. Cont<strong>in</strong>uously, most studies of Native Americans mtDNA <strong>in</strong> this<br />

region are based on the analysis of its control region; yet only high resolution analysis can<br />

provide sufficient <strong>in</strong>formation <strong>in</strong>to the early population history of Native Americans.<br />

This study is part of a larger project, which aim is to underst<strong>and</strong> the peopl<strong>in</strong>g process of<br />

Americas through analys<strong>in</strong>g valuable ancient DNA data <strong>and</strong> genetic <strong>variation</strong> <strong>in</strong><br />

contemporary population <strong>in</strong> high resolution. The purpose of present study is to characterize<br />

maternal variability of two <strong>in</strong>digenous <strong>populations</strong> <strong>from</strong> <strong>Mexico</strong> – <strong>Huichol</strong>s <strong>and</strong> <strong>Mixtec</strong>s.<br />

4


1. LITERATURE OVERVIEW<br />

1.1 Mitochondrial DNA<br />

Mitochondria are organelles that play an essential role <strong>in</strong> the biological activity of every<br />

eukaryotic cell. Mitochondrion has its own DNA different <strong>from</strong> nucleus genome. Human<br />

mitochondrial DNA (mtDNA) is a small, 16,569 base pairs (bp) long, circular, doublestr<strong>and</strong>ed<br />

molecule, which encodes for 37 genes (Anderson et al., 1981; Andrews et al., 1999)<br />

(Figure 1). The genome is very compact thanks to the absence of <strong>in</strong>trons <strong>and</strong> the lack of<br />

Figure 1. Human mtDNA genetic map. Genes that are transcribed <strong>from</strong> H (heavy)-str<strong>and</strong> are<br />

shown on the outer side of the circle, those that are transcribed <strong>from</strong> the L (light)-str<strong>and</strong> are<br />

positioned <strong>in</strong>side the circle. Genome encodes 12S <strong>and</strong> 16S rRNA genes, 22 tRNA genes <strong>and</strong><br />

13 respiratory cha<strong>in</strong> complexes genes (ND 1-6 <strong>and</strong> L4 of complex I, Cyt b of complex III,<br />

COX 1-3 subunits of cytochrome oxidase of complex IV, <strong>and</strong> the ATP 6 <strong>and</strong> ATP 8 of<br />

complex V). MtDNA replication orig<strong>in</strong>s <strong>and</strong> transcription promoters are shown by the arrows.<br />

Orig<strong>in</strong>: www.mitomap.org<br />

5


noncod<strong>in</strong>g sequences between the genes (Anderson et al., 1981). The only noncod<strong>in</strong>g region<br />

is the displacement loop (D-loop), or control region. It is a 1,121 bp sequence that is <strong>in</strong>volved<br />

<strong>in</strong> mtDNA replication <strong>and</strong> transcription. D-loop is the most polymorphic segment of mtDNA<br />

(Aquadro <strong>and</strong> Greenberg, 1983; Stonek<strong>in</strong>g et al., 1991). All polymorphisms <strong>in</strong> D-loop are<br />

concentrated <strong>in</strong> 3 hypervariable regions (HVS) (Vigilant et al., 1989): HVS- I (nps 16024-<br />

6365), HVS- II (nps 73-340) <strong>and</strong> HVS- III (nps 438-576). recent common ancestor (MRCA),<br />

or “mitochondrial Eve”. Secondly, the high copy number of mtDNA per cell (Alberts et al.,<br />

1989; Bogenhagen <strong>and</strong> Clayton, 1974) makes easy to use it <strong>in</strong> laboratory research, <strong>and</strong> also<br />

recover it <strong>from</strong> ancient biological material <strong>in</strong> sufficient quantities. F<strong>in</strong>ally, mtDNA is<br />

characterized by rapid evolution rate due to the lack of protective prote<strong>in</strong>s, <strong>in</strong>effective DNA<br />

reparation system, as well as the high concentration of oxidative radicals <strong>in</strong> the mitochondrion<br />

(Clayton, 1982; Richter et al., 1988). In comparison with nuclear DNA, mtDNA nucleotide<br />

substitution rate is 5 to 10 times higher <strong>and</strong> it is estimated 2-4% per site per million years<br />

(Brown et al., 1979; Wilson et al., 1985). And it is even higher (to 10 times) <strong>in</strong> the control<br />

region hence the presence of HVS sequences (Parsons et al., 1997). This entirely makes<br />

mtDNA an effective marker for evolutionary studies at recent levels of divergence (Avise et<br />

al., 1987).<br />

1.2 Mitochondrial molecular clock<br />

The molecular dat<strong>in</strong>g technique is an additional tool that can def<strong>in</strong>e the timel<strong>in</strong>e of human<br />

evolution if the archaeological or fossil records cannot provide thus. The basis for molecular<br />

clock hypothesis is that mutations tend to accumulate <strong>in</strong> DNA sequence at relatively constant<br />

rate. Estimates of the average rate at which human mtDNA mutates are very variable <strong>and</strong><br />

depend on the data <strong>and</strong> methods used for estimation. There are two ma<strong>in</strong> methods used: the<br />

pedigree <strong>and</strong> the phylogenetic methods. The pedigree method is based on the compar<strong>in</strong>g of<br />

parent/offspr<strong>in</strong>g pairs or analyz<strong>in</strong>g mtDNA sequences of <strong>in</strong>dividuals <strong>from</strong> a deep-rooted<br />

genealogy (Heyer et al., 2001). The phylogenetic method is based on the reconstruction of the<br />

haplotype of the MRCA <strong>from</strong> a sample with m<strong>in</strong>imum two genetic l<strong>in</strong>eages. For estimation of<br />

human mutation rate usually the ancestral haplotype of the human-chimpanzee common<br />

ancestor is reconstructed (Henn et al., 2009). The pedigree-based rates are much higher (to 10<br />

times) than those obta<strong>in</strong>ed by us<strong>in</strong>g phylogenies (Forster et al., 1996; Howell et al., 2003).<br />

6


One of the reasons may be, that pedigree method estimates mutation rate only on the depth of<br />

few generations, while the phylogeny uses timescale of thous<strong>and</strong>s or millions of years. That is<br />

why the phylogenetic method is more widely used <strong>in</strong> study<strong>in</strong>g population formation <strong>and</strong><br />

human migrations. The problem is that molecular clock is not l<strong>in</strong>ear- mutations appear with<br />

different rates, because of the hyper-variability of control region, potential <strong>in</strong>fluence of<br />

purify<strong>in</strong>g selection for cod<strong>in</strong>g region <strong>and</strong> repeated occurrence of mutations <strong>in</strong> one site<br />

(mutational saturation) (Howell et al., 2003). Lately the issue has been tried to be solved.<br />

Loogväli et al. consider <strong>in</strong> calibration only synonymous mutations (Loogväli et al., 2009).<br />

Soares et al., take <strong>in</strong>to account both cod<strong>in</strong>g <strong>and</strong> control regions, but apply<strong>in</strong>g the correction<br />

for purify<strong>in</strong>g selection (Soares et al., 2009). In phylogenetic researches of the whole<br />

mitochondrial genomes mutation rate of 1 transition per 3624 years is mostly used (Soares et<br />

al., 2009).<br />

1.3 Phylogenetic studies<br />

In phylogenetic studies mtDNA is used for show<strong>in</strong>g genetic relationships among human<br />

ethnic groups. Phylogenetic analysis is based upon the comparison of mtDNA with<strong>in</strong> <strong>and</strong><br />

between <strong>populations</strong>. First mtDNA diversity researches were based on analyz<strong>in</strong>g s<strong>in</strong>gle<br />

nucleotide polymorphisms (SNP) determ<strong>in</strong>ed by restriction fragment length polymorphism<br />

(RFLP) analysis, <strong>and</strong> on the analysis of the control region. Nowadays the sequenc<strong>in</strong>g of<br />

whole mitochondrial genome is becom<strong>in</strong>g more <strong>and</strong> more popular, because the <strong>in</strong>formation<br />

that we get with it is more precise <strong>and</strong> let us watch deeper <strong>in</strong>to human maternal phylogeny<br />

(Torroni et al., 2006).<br />

MtDNA variety is due to accumulated mutations <strong>and</strong> their fixation with genetic drift. Accord<strong>in</strong>g<br />

to them, the world-wide mtDNA <strong>variation</strong>s form different l<strong>in</strong>eages, or haplotypes. Haplotypes,<br />

that share common ancestor, hav<strong>in</strong>g particular SNPs, form haplogroup. The ma<strong>in</strong> haplogroups<br />

are marked with capital letters (A-Z), first by Antonio Torroni <strong>and</strong> colleagues (Torroni et al.,<br />

1993), <strong>and</strong> are further divided to subclades. Haplogroups are geographically specified: certa<strong>in</strong><br />

haplogroups are found only <strong>in</strong> certa<strong>in</strong> parts of the world.<br />

7


1.4 World mtDNA haplogroups<br />

The most common way to represent phylogenetic relations is to reconstruct phylogenetic trees<br />

of mtDNA l<strong>in</strong>eages. In the root of the global mtDNA tree is the „mitochondrial Eve“, who<br />

lived approximately 150,000-200,000 years before present (ybp) (Ingman et al., 2001; Soares<br />

et al., 2009), which is very close to the age of the earliest modern humans estimated <strong>from</strong><br />

fossil data ~195,000 ybp (McDougall et al., 2005). This MRCA gave rise to exclusively<br />

African major haplogroups L0-6. Only one of them, haplogroup L3, is shared by Africans<br />

with the rest of the world (Vigilant et al., 1991; Chen YS et al., 1995; Brown, 1980). In<br />

addition to other branches, In addition to others branches, L3 gave rise to macro-haplogroups<br />

M, N, <strong>and</strong> N subgroup R, which are ancestors of all non-African mtDNA l<strong>in</strong>eages. The<br />

found<strong>in</strong>g ages of the correspond<strong>in</strong>g root types of M, N <strong>and</strong> R clades are very similar, about<br />

60,000 years (Macaulay et al., 2005), rais<strong>in</strong>g the possibility that M <strong>and</strong> N haplogroups are<br />

derived <strong>from</strong> a s<strong>in</strong>gle African migration, which took place ~ 65,000-70,000 ybp <strong>from</strong> eastern<br />

Africa (Forster, 2001; Soares et al., 2009;). The haplogroup N (<strong>in</strong>clud<strong>in</strong>g R) has spread all<br />

over Eurasia, <strong>in</strong> contrast to haplogroup M, which is found <strong>in</strong> Eastern Eurasia but is virtually<br />

absent <strong>in</strong> Europe (Metspalu et al., 2004). Macro-haplogroup M gave rise to different M<br />

haplogroups (M1-M25) <strong>and</strong> to haplogroups D, C, E, G, Q <strong>and</strong> Z. Macro-haplogroup N gave<br />

rise to haplogroups A, I, O, S, W, X <strong>and</strong> Y. From haplogroup R derive haplogroups B, F, J, H,<br />

K, P, T, HV, V, <strong>and</strong> U.<br />

As confirms the archaeological data, already by 40,000 ybp modern humans were <strong>in</strong> southern<br />

Siberia <strong>and</strong> by 30,000 ybp have spread to the arctic Siberia (Goebel, 1999; Pitulko et al.,<br />

2004). The data when humans moved <strong>from</strong> Asia to America is still debatable, but this could<br />

happen between 30,000 <strong>and</strong> 13,000 ybp (Goebel et al., 2008).<br />

1.5 Native American mtDNA haplogroups<br />

America was the last cont<strong>in</strong>ent reached by anatomically modern humans. In early studies,<br />

based on RFLP analysis <strong>and</strong> through sequenc<strong>in</strong>g of the HVS-I region, 4 dist<strong>in</strong>ct haplogroup<br />

clusters were recognized, <strong>in</strong>itially named A, B, C <strong>and</strong> D (Schurr et al., 1990; Torroni et al.,<br />

1993); the X haplogroup was identified a few years later (Brown et al., 1998). Today they are<br />

termed as A2, B2, C1, D1 <strong>and</strong> X2a haplogroups (Achilli et al., 2008; Perego et al., 2009;<br />

Tamm et al., 2007). The study of complete Amer<strong>in</strong>dian mtDNA sequences has allowed<br />

<strong>in</strong>vestigators to exam<strong>in</strong>e mtDNA <strong>variation</strong> <strong>in</strong> the Americas with much greater resolution.<br />

8


Figure 2. Diagnostic markers of Native Americans mtDNA l<strong>in</strong>eages. Characteristic<br />

mutational positions are relative to rCRS <strong>and</strong> marked with red. Orig<strong>in</strong>: modified Perego et al.,<br />

2010.<br />

9


Thus, the new American maternal l<strong>in</strong>eages were recognized, lead<strong>in</strong>g the number of found<strong>in</strong>g<br />

l<strong>in</strong>eages <strong>from</strong> 4 to 15: A2*, A2a, A2b, B2, C1b, C1c, C1d*, C1d1, C4c, D1, D2a, D3,<br />

Dd4h3a, X2a <strong>and</strong> X2g (Achilli et al., 2008; Tamm et al., 2007; Fagundes et al., 2008; Perego<br />

et al., 2009, 2010; Malhi et al., 2010; Hooshiar Kashani et al., 2012). The def<strong>in</strong><strong>in</strong>g mutations<br />

for all 15 haplogroups are present <strong>in</strong> Figure 2.<br />

Haplogroups A2, B2, C1 (<strong>in</strong>clud<strong>in</strong>g it subgroups) <strong>and</strong> D1 are called major pan-American<br />

founder haplogroups because of their frequency <strong>and</strong> the distribution pattern all over the<br />

Americas. The rest are the m<strong>in</strong>or found<strong>in</strong>g haplogroups, which are present <strong>in</strong> a lower quantity<br />

<strong>and</strong> are geographically restricted.<br />

1.4 Migration theories<br />

Although <strong>in</strong> the last decade the studies of Native American mtDNA have shed light to<br />

population movements <strong>in</strong>to the Western Hemisphere, the arrival time(s), the migration routes<br />

<strong>and</strong> number of expansion events <strong>in</strong> the Americas rema<strong>in</strong> controversial.<br />

After the discovery of the Clovis culture <strong>in</strong> New <strong>Mexico</strong> <strong>in</strong> 1929, there has for many years<br />

been a predom<strong>in</strong>ant hypothesis among archaeologists, that Clovis people were the first<br />

<strong>in</strong>habitants of the Americas, liv<strong>in</strong>g 11,500-10,900 ybp (Haynes et al., 1992, 2005). Clovis was<br />

the first well-established human culture <strong>in</strong> the Americas. The Clovis-first theory was<br />

supported with the discovery of a number of other Clovis sites <strong>in</strong> wide area <strong>from</strong> Southern<br />

Canada to <strong>Mexico</strong>, possibly to Southern America (Pearson <strong>and</strong> Ream, 2005). However, there<br />

have been found other ancient sites which <strong>in</strong>dicated human presence <strong>in</strong> the Americas much<br />

earlier, for example: the Monte-Verde site <strong>in</strong> Chile with the estimated age of ~14,600 ybp<br />

(Dillehay, 2008), the Meadowcroft Rockshelter <strong>in</strong> Pennsylvania dat<strong>in</strong>g to 22,000-18,000 ybp<br />

(Adovasio <strong>and</strong> Pedler, 2004), the Buttermilk Creek Complex <strong>in</strong> Texas which shows that<br />

people already lived <strong>in</strong> North America 15,500 ybp (Waters et al., 2011). F<strong>in</strong>d<strong>in</strong>gs over the<br />

past few years <strong>and</strong> a re-exam<strong>in</strong>ation of old ones have conv<strong>in</strong>c<strong>in</strong>gly shown that humans were<br />

present <strong>in</strong> the Americas before Clovis culture arose. Pre-Clovis occupation model is <strong>in</strong><br />

agreement with genetic data.<br />

The high diversity level <strong>and</strong> the distribution pattern of the major Pan-American haplogroups<br />

together with their similar coalescence time estimates, has been used to support a s<strong>in</strong>glemigration<br />

model (Forster et al.,1996; Bonatto <strong>and</strong> Salzano, 1997; Merriwether et al., 1995).<br />

10


Accord<strong>in</strong>g to it, only one small group of people came <strong>from</strong> Asia to Ber<strong>in</strong>gia - a l<strong>and</strong>bridge<br />

connect<strong>in</strong>g Asian <strong>and</strong> American cont<strong>in</strong>ents dur<strong>in</strong>g the cold periods due to lowered see level -<br />

where it probably settled before the eventual expansion <strong>in</strong>to the Americas, (Tamm et al.,<br />

2007; Fagundez et al., 2008). The „Ber<strong>in</strong>gian <strong>in</strong>cubation model“ (BIM) (Tamm et al., 2007)<br />

<strong>and</strong> its variants (Bonatto <strong>and</strong> Solzano, 1997; Kitchen et al., 2008; Mulligan eta al., 2008)<br />

po<strong>in</strong>t out that American found<strong>in</strong>g population could have reached Ber<strong>in</strong>gia by 30,000 ybp,<br />

support<strong>in</strong>g this with the evidence of the earliest human habitation signs <strong>in</strong> Yana Rh<strong>in</strong>oceros<br />

Horn Site <strong>in</strong> Northeastern Siberia (Pitulko et al., 2004). The found<strong>in</strong>g <strong>populations</strong> rema<strong>in</strong>ed <strong>in</strong><br />

Ber<strong>in</strong>gian refugium for ~5,000-15,000 ybp lead<strong>in</strong>g to the separation of the American founder<br />

l<strong>in</strong>eages <strong>from</strong> their Asian sister-clades. The autochthonous patterns of <strong>variation</strong> with<strong>in</strong> the<br />

cont<strong>in</strong>ental founder haplogroups testifies that after the retreat of the ice-sheets the exp<strong>and</strong><strong>in</strong>g<br />

<strong>populations</strong> colonized the double cont<strong>in</strong>ent around 14,000-16,000 ybp with a very rapid speed<br />

(Tamm et al., 2007; Kitchen et al., 2008; Mulligan eta al., 2008).<br />

The analysis of maternal variability <strong>in</strong> higher resolution (completely sequenced mitochondrial<br />

genomes), have revealed greater number of American founder haplogroups. Their<br />

distribution, frequency <strong>and</strong> age make us to reconsider the number <strong>and</strong> migrations routes <strong>in</strong>to<br />

the Americas.<br />

1.5 M<strong>in</strong>or founders<br />

M<strong>in</strong>or haplogroups A2a, A2b, D2a <strong>and</strong> D3 are restricted <strong>in</strong> arctic regions of the Siberia,<br />

Alaska, the Canada <strong>and</strong> the Greenl<strong>and</strong> (Torroni et al, 1993; Helgason et al., 2006; Derenko et<br />

al., 2007; Tamm et al., 2007; Gilbert et al., 2008; Derbeneva et al., 2002; Volodko et al.,<br />

2008; Saillard et al., 2000; Starikovskaja et al., 2005). The proposed reason for the presence<br />

of partly different sub-haplogroups <strong>in</strong> arctic <strong>populations</strong> is that they diversified <strong>in</strong> Ber<strong>in</strong>gia<br />

after the <strong>in</strong>itial migration <strong>in</strong>to the Americas had occurred (Tamm et al., 2007).<br />

Recent years, a s<strong>in</strong>gle-migration model of first humans com<strong>in</strong>g to the North America through<br />

the ice-free corridor, is be<strong>in</strong>g changed to the other one: first Americans (Paleo-Indians)<br />

dispersal along the deglaciated Pacific coastl<strong>in</strong>e (Schurr <strong>and</strong> Sherry, 2004; Dillehay, 2008;<br />

Goebel et al., 2008; Gilbert et al., 2008). The theory is strongly supported by genetic evidence<br />

(founder haplogroups are autochthonous over cont<strong>in</strong>ent) <strong>and</strong> archaeological discoveries (e.g.<br />

Monte-Verde site <strong>in</strong> Chile). The Pacific coastl<strong>in</strong>e migration model was confirmed while<br />

11


study<strong>in</strong>g m<strong>in</strong>or haplogroup D4h3a (Perego et al., 2009). Haplogroup D4h3a is spread only<br />

along the Pacific coast of the cont<strong>in</strong>ent, with a higher frequency <strong>in</strong> the South America. The<br />

coalescence age of D4h3a is <strong>in</strong> agreement with the age when pan-American haplogroups<br />

started their distribution all over both Americas. Thus D4h3a had rapidly with the others<br />

founders migrated <strong>from</strong> Ber<strong>in</strong>gia along the Pacific coast (Perego et al., 2009). However, now<br />

the genetic studies have revealed an existence of both simultaneous routes (Perego et al.,<br />

2009; Haashiar Kashani et al., 2011).<br />

The X2a <strong>and</strong> recently determ<strong>in</strong>ed C4c haplogroups share a very similar phylogeography <strong>and</strong><br />

coalescence age estimates. X2a is restricted to northern North America, without any samples<br />

found <strong>in</strong> south of USA. C4c is also distributed <strong>in</strong> North America, except two <strong>in</strong>dividuals <strong>from</strong><br />

Columbia. Both haplogroups have higher frequency <strong>in</strong> the Great Pla<strong>in</strong>s region. The estimated<br />

age of C4c is 13,800 ± 3,800 ybp <strong>and</strong> the age of X2a is 18,600 ± 5,500 ybp, which is similar<br />

when tak<strong>in</strong>g <strong>in</strong>to account the st<strong>and</strong>ard errors. The contrast<strong>in</strong>g distribution pattern of these two<br />

rare haplogroups with D4h3a leads to a conclusion that there have been two migration paths -<br />

X2a <strong>and</strong> C4c arrived to North America through an ice-free corridor between Laurentide <strong>and</strong><br />

Cordilleran ice sheets, while D4h3 was carried to southward along coastal migration (Perego<br />

et al., 2009; Haashiar Kashani et al., 2011).<br />

1.6 Middle America<br />

Middle America, <strong>in</strong> a broad mean<strong>in</strong>g, represents territories <strong>from</strong> the North to the South<br />

America. It comprises the Southwestern USA, <strong>Mexico</strong> (<strong>in</strong>clud<strong>in</strong>g the Mesoamerica) <strong>and</strong> the<br />

Central America, sometimes also Northeastern part of South America is <strong>in</strong>cluded. The<br />

Southwestern USA, Central America <strong>and</strong> Northeast of South America are geographic areas,<br />

while the Mesoamerica is def<strong>in</strong>ed as a l<strong>in</strong>guistic <strong>and</strong> cultural region, which extends <strong>from</strong><br />

middle southern <strong>Mexico</strong> to Costa Rica (because Mesoamerica is largely overlapp<strong>in</strong>g with<br />

Central America, henceforth I will use term Mesoamerica also <strong>in</strong>ferr<strong>in</strong>g to Central America)<br />

(Figure 3). Although geographically close, northern <strong>and</strong> southern parts of Middle America<br />

have had different roles <strong>in</strong> shap<strong>in</strong>g population <strong>variation</strong> <strong>in</strong> this region.<br />

Mesoamerica has been seen as geographical barrier between North <strong>and</strong> South Americas. It<br />

played an important role dur<strong>in</strong>g the colonization of the Americas, restrict<strong>in</strong>g the gene flow<br />

between North <strong>and</strong> South America <strong>and</strong> thus shap<strong>in</strong>g the diversity of founder haplogroups on<br />

12


their way down to the South America (S<strong>and</strong>oval et al., 2009). It has been suggested that the<br />

migration of the first Paleo-Indians was rapid, probably mov<strong>in</strong>g along Pacific coast. The first<br />

settlers <strong>in</strong>habited the unoccupied l<strong>and</strong>, diversified creat<strong>in</strong>g local <strong>variation</strong>, but had m<strong>in</strong>imum<br />

contacts later. This is exemplified <strong>in</strong> genetic pattern where diversity is very high, but most<br />

mtDNA l<strong>in</strong>eages are largely population specific. Mesoamerica has also one of the richest<br />

l<strong>in</strong>guistic <strong>and</strong> ethnic diversities of the (Nichols et al., 1990). In present day <strong>Mexico</strong>, which<br />

covers most of the Mesoamerica, has eleven language families <strong>in</strong>clud<strong>in</strong>g 291 liv<strong>in</strong>g languages<br />

(Inali 2007). Such great language diversity on relatively small territory like Mesoamerica<br />

supports the previous ideas for formation of population structure. The already occupied l<strong>and</strong><br />

<strong>in</strong> narrow territory was the barrier for later migrations com<strong>in</strong>g <strong>from</strong> northward. This expla<strong>in</strong>s<br />

the pattern of distribution of some mtDNA haplogroups (e.g. X2a <strong>and</strong> C4c).<br />

Figure 3. Map show<strong>in</strong>g the Mesoamerica, Central America <strong>and</strong> Middle America regions.<br />

.<br />

Northern part of Middle America is genetically more closely connected to North America<br />

than to Central <strong>and</strong> South America (S<strong>and</strong>oval et al., 2009). This could be due to later<br />

migrations, for example driven by the spread of agriculture. Archaeological f<strong>in</strong>d<strong>in</strong>gs confirm<br />

that maize was domesticated <strong>in</strong> Mesoamerica ~7,000-6,000 ybp (Pohl et al., 2007) <strong>from</strong><br />

where it was <strong>in</strong>troduced to US Southwest by 4,000 ybr (Merrill et al., 2009). However, the<br />

search for identical sequences between <strong>Mexico</strong> <strong>and</strong> US shows that the connection cannot be<br />

located with a certa<strong>in</strong> regions. Haplogroup B is frequent <strong>and</strong> with clear star-like structure <strong>in</strong><br />

13


American Southwest <strong>in</strong>dicat<strong>in</strong>g recent expansion <strong>in</strong> this region. It is hypothesied that later<br />

migrations <strong>and</strong> expansions have blurred the pre-exist<strong>in</strong>g mtDNA structure, at least <strong>in</strong> this<br />

region, <strong>and</strong> provides us to see preexist<strong>in</strong>g mtDNA structure (Kemp et al., 2010).<br />

Today <strong>in</strong>habitants of <strong>Mexico</strong> <strong>and</strong> Mesoamerica could be divided <strong>in</strong>to ma<strong>in</strong>ly two dist<strong>in</strong>ct<br />

groups: mestizos (<strong>in</strong>dividuals with recent admixed ancestry) <strong>and</strong> native <strong>in</strong>digenous groups.<br />

Although mestizos represent nearly 95% of total population, the Native American component<br />

is highly prevalent <strong>in</strong> their gene pool. It varies by region depend<strong>in</strong>g of recent postcolonisational<br />

demographic history, but generally maternal component could be up to 100%<br />

Native American while paternal is mostly European.<br />

14


2. EXPERIMENTAL STUDY<br />

2.1 Aims of this study<br />

This study is a part of the TÜMRI Evolution Department co project together with Dr. Eske<br />

Willerslev <strong>from</strong> the Copenhagen laboratory. The aim of the project to research human ancient<br />

rema<strong>in</strong>s, found <strong>in</strong> New <strong>Mexico</strong>, which are representatives of Clovis culture. Our partners<br />

make an ancient DNA (aDNA) analysis, us<strong>in</strong>g autosomal <strong>and</strong> mitochondrial DNA. The<br />

mission of our laboratory is to create a base system for the research for future data<br />

comparison. This <strong>in</strong>cludes the high-resolution analysis of mtDNA <strong>and</strong> autosomal<br />

chromosomes of <strong>Mexico</strong> extant <strong>populations</strong>. aDNA researches are still <strong>in</strong> progress, <strong>and</strong> the<br />

results are not yet available.<br />

The aim of the present study is to describe the mtDNA variety of two <strong>in</strong>digenous <strong>populations</strong><br />

<strong>from</strong> Middle America, <strong>Huichol</strong>s <strong>and</strong> <strong>Mixtec</strong>s:<br />

1. To determ<strong>in</strong>e mitochondrial haplogroups <strong>and</strong> haplotypes.<br />

2. To compare these <strong>populations</strong> with the published data <strong>and</strong> describe them <strong>in</strong> the context of<br />

maternal genetic <strong>variation</strong> of Middle America.<br />

3. To make a full sequence analysis for possibly <strong>in</strong>terest<strong>in</strong>g Native American haplotypes.<br />

15


2.2 Materials <strong>and</strong> methods<br />

2.2.1 Samples<br />

The samples used <strong>in</strong> this study were collected <strong>from</strong> 2 <strong>in</strong>digenous <strong>populations</strong> (<strong>Mixtec</strong>, n=29<br />

<strong>and</strong> <strong>Huichol</strong>, n=15) <strong>from</strong> <strong>Mexico</strong> <strong>and</strong> k<strong>in</strong>dly provided to us through prof. Eske Willerslev.<br />

<strong>Mixtec</strong>s are <strong>in</strong>digenous ethnic group that is localised <strong>in</strong> the middle South <strong>Mexico</strong> (Oaxaca,<br />

Guerrero <strong>and</strong> Puebla states). <strong>Mixtec</strong> language belongs to Otomanguean language family <strong>and</strong><br />

there are about half a million speakers.<br />

<strong>Huichol</strong> is <strong>in</strong>digenous population <strong>in</strong> the Northwest <strong>Mexico</strong> (Nayarit, Jalisco, Zacatecas, <strong>and</strong><br />

Durango states). The number of extant <strong>Huichol</strong> people is ~26,000. <strong>Huichol</strong> languge belongs<br />

to Uto-Aztecan language family.<br />

It is commonly accepted that all haplogroup-s A, B, C <strong>and</strong> D variants found <strong>in</strong> Americas can<br />

be referred as American sub-l<strong>in</strong>eages A2, B2, C1 <strong>and</strong> D1. However, the data <strong>from</strong> only HVS<br />

regions cannot differentiate Native American specific haplogroups <strong>from</strong> their closest Asian<br />

neighbours.<br />

In this study, firstly, haplogroup of each sample was determ<strong>in</strong>ed through sequenc<strong>in</strong>g control<br />

region HVSI <strong>and</strong> II regions (nps 16024-684). Then, def<strong>in</strong><strong>in</strong>g cod<strong>in</strong>g region markers specific<br />

for Native American haplogroups <strong>and</strong> subhaplogroups were checked (Figure2).<br />

One <strong>Huichol</strong> sample was completely sequenced with 24 overlap<strong>in</strong>g fragments.<br />

2.2.2 DNA amplification<br />

Amplification reactions were performed us<strong>in</strong>g a thermocycler „Biometra UNO 11“.<br />

PCR was carried out <strong>in</strong> 25 μl volume:<br />

<br />

17-18 μl distillate water<br />

5 μl 5x FIREPol ® Master Mix Ready to Load (with 12.5 mM MgCl 2 )<br />

0.5 μl F primer (10 pmol/μl)<br />

0.5 μl R primer (10 pmol/μl)<br />

1-2 μl template DNA (10pmol/μl)<br />

16


To determ<strong>in</strong>e possible contam<strong>in</strong>ation, negative control was added to every experiment.<br />

Primers used for PCR for HVS1, 2, cod<strong>in</strong>g region <strong>and</strong> full sequence are listed <strong>in</strong><br />

Supplementary materials (Suppl. Table 1.1, 1.2 <strong>and</strong> 3 accord<strong>in</strong>gly).<br />

PCR programme for control-region <strong>and</strong> SNP check<strong>in</strong>g:<br />

* primary denaturation 94ºC 1m<strong>in</strong>30s<br />

* denaturation 94ºC 15s<br />

* primer anneal<strong>in</strong>g 56(52) ºC 30s 36-38 cycles<br />

* primer extension 72 ºC 1-2m<strong>in</strong><br />

* f<strong>in</strong>al extension 72 ºC 2-4m<strong>in</strong><br />

Anneal<strong>in</strong>g temperature <strong>and</strong> number of cycles depend on primer specificity <strong>and</strong> quality of<br />

template DNA. Primer extension time depends on the sequence length (1000bp~1m<strong>in</strong>).<br />

PCR products were visualized <strong>in</strong> 1,5 % agarose gel electrophoresis with ethidium bromide<br />

sta<strong>in</strong><strong>in</strong>g.<br />

2.2.3 Product purification<br />

Before sequenc<strong>in</strong>g, the amplified products were purified for to remove all the residual primers<br />

<strong>and</strong> un<strong>in</strong>corporated nucleotides (dNTP). 1 μl of purify<strong>in</strong>g mixture was added to every<br />

product:<br />

0,9 μl SAP (Shrimp alkal<strong>in</strong>e phosphatase) (1U/μl)<br />

0,1 μl ExoI (Exonuclease I) (1U/μl)<br />

Purification programme:<br />

* dNTP dephosphorylation <strong>and</strong> degradation of one-str<strong>and</strong> DNA 37ºC 20m<strong>in</strong><br />

* <strong>in</strong>activation of enzymes 80ºC 15m<strong>in</strong><br />

17


2.2.4 Sequenc<strong>in</strong>g reactions<br />

The amplicons were used as templates <strong>in</strong> cycle sequenc<strong>in</strong>g reactions us<strong>in</strong>g the BigDye R<br />

Term<strong>in</strong>ator v3.1 Cycle Sequenc<strong>in</strong>g Ready Reaction Kit.<br />

Sequenc<strong>in</strong>g reactions were carried out <strong>in</strong> 10 μl volume:<br />

4,65 μl distillate water<br />

2 μl Sequenc<strong>in</strong>g buffer 5x<br />

1,6 μl primer (1pmol/μl)<br />

0,75 BigDye (BigDye R Term<strong>in</strong>ator v3.1 Cycle Sequenc<strong>in</strong>g Ready Reaction Kit)<br />

1 μl DNA product<br />

Primers used for sequenc<strong>in</strong>g reactions for HVS1, 2, cod<strong>in</strong>g region <strong>and</strong> full mitochondrial<br />

genome are listed <strong>in</strong> Supplementary materials (Suppl. Table 2.1, 2.2 <strong>and</strong> 3 accord<strong>in</strong>gly).<br />

BigDye programme:<br />

* primary denaturation 94ºC 1m<strong>in</strong><br />

* denaturation 94ºC 15s<br />

* primer anneal<strong>in</strong>g 50-58ºC 10s 30-32 cycles<br />

* extension 60ºC 1m<strong>in</strong><br />

Anneal<strong>in</strong>g temperature <strong>and</strong> number of cycles depend on primer specificity <strong>and</strong> quality of<br />

template DNA.<br />

Ethanol Precipitation of Sequenc<strong>in</strong>g Reactions<br />

* product+ 2 μl dextran + 30 μl 96% ethanol hold at -20ºC for 10m<strong>in</strong><br />

* centrifuge 10m<strong>in</strong> x 13000rmp remove supernatant<br />

* add 200 μl 70% ethanol<br />

* centrifuge 5-7m<strong>in</strong> x 13000 rmp remove supernatant<br />

(* add 200 μl 70% ethanol)<br />

( * centrifuge 5-7m<strong>in</strong> x 13000 rmp remove supernatant)<br />

18


* let dry at 37ºC for 5 m<strong>in</strong><br />

*add 10 μl formamide<br />

hold at room tºC<br />

* suspend load on the sequenc<strong>in</strong>g plat<br />

The reaction products were sequenced with an Applied Biosystems ABI 3730xl 96-capillary<br />

DNA analyzer.<br />

2.2.5 Statistical analysis<br />

Mutations were scored relative to the revised Cambridge Reference Sequence (rCRS)<br />

cover<strong>in</strong>g the nucleotide positions 16024- 680 (Andrews et al., 1999). For DNA sequence<br />

assembly <strong>and</strong> analysis software Sequencer 4.10.1 was used. Each deviation was confirmed by<br />

manual check<strong>in</strong>g on electropherogrammes. For reconstruct<strong>in</strong>g phylogenetic networks<br />

Network (version 4.6.1.0) <strong>and</strong> Network Publisher (version 1.1.0.7) software were used<br />

(B<strong>and</strong>elt et al., 1999).<br />

Haplogroup frequencies for Middle American <strong>populations</strong> are based on HVS I data <strong>and</strong> are<br />

comb<strong>in</strong>ed <strong>from</strong> current study <strong>and</strong> literature. They are shown <strong>in</strong> Figure 4. The detailed<br />

<strong>in</strong>formation for frequencies <strong>and</strong> references are <strong>in</strong> Supplementary materials (Suppl. Table1).<br />

For network analysis <strong>in</strong> addition to present study 658 published sequences <strong>from</strong> USA<br />

Southwest <strong>and</strong> <strong>Mexico</strong> <strong>populations</strong> were used (Table 1). The data was provided by Dr. Brian<br />

M. Kemp <strong>and</strong> has been previously published (Kemp et al., 2010). We restricted our haplotype<br />

analysis with this data to <strong>in</strong>clude samples where both, HVS 1 <strong>and</strong> 2, are available to <strong>in</strong>crease<br />

the resolution of analysis. The location of <strong>populations</strong> <strong>and</strong> their language families <strong>from</strong> Kemp<br />

et al., 2010 are shown <strong>in</strong> Table1.<br />

Median-jo<strong>in</strong><strong>in</strong>g haplotype networks were constructed separately for haplogroups A2, B2, C1<br />

<strong>and</strong> D1. The X haplogroup data was removed <strong>from</strong> the analysis, because it did not occur <strong>in</strong><br />

my analysed samples. The positions nps 16519, 16188.1, 16193.1, 16193.2, 309.1, 309.2,<br />

309.3, 315.1, 573.1, 573.2, 573.3, 573.4 were removed <strong>from</strong> the analysis because of their<br />

recurrent nature.<br />

19


Table 1. The sample size, location <strong>and</strong> language families of <strong>populations</strong> used <strong>in</strong> network<br />

analysis.<br />

Populatsions<br />

N<br />

Language<br />

Family Location Country References<br />

Mixe 49 Mixe-Zoguean Mesoamerica <strong>Mexico</strong> Kemp et al., 2010<br />

<strong>Mixtec</strong> 65 Otomanguean Mesoamerica <strong>Mexico</strong> Kemp et al., 2010<br />

<strong>Mixtec</strong> 29 Otomanguean Mesoamerica <strong>Mexico</strong> present study<br />

Zapotec 72 Otomanguean Mesoamerica <strong>Mexico</strong> Kemp et al., 2010<br />

Cora 72 Uto-Aztecan Mesoamerica <strong>Mexico</strong> Kemp et al., 2010<br />

<strong>Huichol</strong> 56 Uto-Aztecan Mesoamerica <strong>Mexico</strong> Kemp et al., 2010<br />

<strong>Huichol</strong> 15 Uto-Aztecan Mesoamerica <strong>Mexico</strong> present study<br />

Nahua-Atopcan 44 Uto-Aztecan Mesoamerica <strong>Mexico</strong> Kemp et al., 2010<br />

Nahua-Cuetzalan 29 Uto-Aztecan Mesoamerica <strong>Mexico</strong> Kemp et al., 2010<br />

Zuni 30 Isolate Southwest USA Kemp et al., 2010<br />

Jemez 59 Kiowa-Tacoan Southwest USA Kemp et al., 2010<br />

Akimel<br />

O´odham 56 Uto-Aztecan Southwest USA Kemp et al., 2010<br />

Tohono<br />

O´odham 38 Uto-Aztecan Southwest USA/<strong>Mexico</strong> Kemp et al., 2010<br />

Tarahumara 55 Uto-Aztecan Southwest <strong>Mexico</strong> Kemp et al., 2010<br />

Hualapai 54 Yuman Southwest USA Kemp et al., 2010<br />

Initial network construction for haplogroup A, B <strong>and</strong> C revealed a large amount of reticulation<br />

(even with the removal of the poly-C <strong>and</strong> poly-A stretches). The reticulations on the networks<br />

are probably caused by mutational hotspots. In order to m<strong>in</strong>imize the reticulations the<br />

differential weight<strong>in</strong>g of mutational positions was perform. A weight of 1, 4 or 10 was chosen<br />

accord<strong>in</strong>g to mutational occurrence <strong>in</strong> larger dataset (Soares et al., 2009), giv<strong>in</strong>g the lowest<br />

value (1) to highly mutable positions. In haplogroup B were deleted mutations at nps 310, 146<br />

<strong>and</strong> 152, because repeated occurrence <strong>and</strong> backmutations caus<strong>in</strong>g a lot of reticulations.<br />

20


2.3 RESULTS AND DISCUSSION<br />

2.3.1 Phylogenetic network<br />

All <strong>Mixtec</strong> <strong>and</strong> <strong>Huichol</strong> samples belong to American founder haplogroups A2, B2, C1 <strong>and</strong><br />

D1, with the exception of one <strong>Huichol</strong> belong<strong>in</strong>g to m<strong>in</strong>or haplogroup C4c.<br />

The Southwest, Mesoamerica <strong>and</strong> Central America haplogroups frequencies <strong>in</strong> different<br />

<strong>populations</strong> are shown <strong>in</strong> Figure 4. In the Mesoamerica dom<strong>in</strong>ates haplogroup A, while <strong>in</strong> the<br />

Central America <strong>and</strong> <strong>in</strong> the Southwest the haplogroup A is less exposed, or even almost<br />

absent like <strong>in</strong> the Southwestern USA (e.g. Zuni, Akimel O´odham, Jemez, Hualapai<br />

<strong>populations</strong>). In several Mexican <strong>populations</strong> there has also not been found haplogroup A<br />

(Cochimi, Delta Yuman, River Yuman <strong>populations</strong>), but they a considered closer to<br />

Southwest. The haplogroup B is more frequent <strong>in</strong> the Southwest <strong>and</strong> Central America, than <strong>in</strong><br />

Mesoamerica. The haplogroup C frequency is relatively low <strong>in</strong> comparison with A <strong>and</strong> B<br />

haplogroups, but is mostly exhibit <strong>in</strong> the Southwest <strong>and</strong> Cental America. The D haplogroup is<br />

with the smallest frequency, but is found <strong>in</strong> small amount <strong>in</strong> some Mesoamerica, Southwest,<br />

<strong>and</strong> <strong>in</strong> one Central America population. Haplogroup X is found only <strong>in</strong> Jemez <strong>and</strong> Navajo<br />

<strong>populations</strong> <strong>from</strong> the Southwestern USA with really small frequency. The rare haplogroup<br />

D4h3 is detected <strong>in</strong> one Tarahumara population <strong>from</strong> the North <strong>Mexico</strong>.<br />

Present study of <strong>Mixtec</strong> <strong>and</strong> <strong>Huichol</strong> <strong>populations</strong> revealed results close to the published one.<br />

The <strong>Mixtec</strong>s mostly exhibit haplogroup A (62%), which is a little different <strong>from</strong> the<br />

previously published data (72%) (Kemp et al., 2010; Torroni et al., 1994; S<strong>and</strong>oval et al.,<br />

2009). Haplogroup B frequency is similar between published <strong>and</strong> present study (17%),<br />

haplogroup C frequencies vary <strong>from</strong> 14% (present study) to 7% (published) (Kemp et al.,<br />

2010; Torroni et al., 1994; S<strong>and</strong>oval et al., 2009). The haplogroup D frequencies are low: 7%<br />

<strong>and</strong> 3% accord<strong>in</strong>gly. A little variety among both data is probably due to the small number of<br />

samples studied. The haplogroup X was not found <strong>in</strong> <strong>Mixtec</strong> population.<br />

The <strong>Huichol</strong> mostly exhibit haplogroup B (47%), which is close to previously studied <strong>Huichol</strong><br />

haplogroup B frequency (53%). The population exhibits less haplogroup A (33% <strong>and</strong> 31%<br />

<strong>from</strong> both data). The haplogroup C frequency is only 16% <strong>and</strong> 20% accord<strong>in</strong>gly. The<br />

haplogroup D <strong>and</strong> haplogroup X are absent <strong>in</strong> <strong>Huichol</strong> population.<br />

21


Figure 4. The location of the <strong>populations</strong> used <strong>in</strong> this study <strong>and</strong> deception of their<br />

mitochondrial haplogroup frequencies. H The detailed Table 4 <strong>in</strong> Supplementary materials<br />

shows, the sample saize <strong>from</strong> every population, the haplogroup frequencies, the population<br />

location, <strong>and</strong> the languge family.<br />

The networks are shown <strong>in</strong> Figures 5-8. 358 mitochondrial haplotypes were identified among<br />

the 701 sequences. The majority of haplotypes are population specific or shared between<br />

geographically close <strong>populations</strong>. The networks are star-like <strong>and</strong> there is no clear pattern with<br />

nested structure there some <strong>populations</strong> would stem <strong>from</strong> others. This <strong>in</strong>dicates that <strong>variation</strong><br />

arose <strong>in</strong> situ <strong>from</strong> founder haplogroups – very common pattern observed <strong>in</strong> Native American<br />

mtDNA studies.<br />

The haplogroup A network conta<strong>in</strong>s 118 haplotypes. The network is star-like, with several<br />

reticulations. Reticulations propose possible different phylogenetic connections between<br />

haplotypes. Because HVS regions are highly mutable we cannot say exactly how branches are<br />

evolutionary connected <strong>in</strong> reticulations without cod<strong>in</strong>g region markers. Interest<strong>in</strong>gly, only<br />

four samples are positioned <strong>in</strong> the central node (1 Hualapai, 1 Zuni <strong>and</strong> 2 Zapotecs) show<strong>in</strong>g<br />

22


that <strong>populations</strong> have gone through diversification. Hg A is more frequent <strong>in</strong> Mesoamerican<br />

<strong>populations</strong>. One bigger node is def<strong>in</strong>ed by nps 16111, which comprises geographically close<br />

<strong>populations</strong> <strong>from</strong> different language families (Cora, <strong>Mixtec</strong>, <strong>Huichol</strong>, Zapotec, Nahua<br />

Atopcans). The sub-clade def<strong>in</strong>ed by 153 comprises <strong>populations</strong> of more distant geographic<br />

<strong>and</strong> l<strong>in</strong>guistic orig<strong>in</strong> (<strong>from</strong> <strong>Mexico</strong> Nahua-Atopcan, Nahua-Cuetzalan, Zapotec <strong>and</strong><br />

Tarahumara, <strong>from</strong> Southwestern USA Tohono O´odham <strong>and</strong> Zuni). However, such cluster<br />

could be due to hypervariable mutation at nps 153. The <strong>Mixtec</strong> <strong>and</strong> <strong>Huichol</strong> <strong>populations</strong> <strong>from</strong><br />

present study <strong>and</strong> Kemp et al.2010, mostly share common haplotypes with each other, or with<br />

geographically close Cora, Zapotec <strong>and</strong> <strong>Mixtec</strong> <strong>populations</strong>.<br />

The haplogroup B network conta<strong>in</strong>s 151 haplotypes. The network is star-like, with a lot of<br />

sole branches. Haplogroup B is presented mostly <strong>in</strong> the <strong>populations</strong> of the Southwestern USA.<br />

The biggest node, def<strong>in</strong>ed by 16483 <strong>and</strong> 16111 has been previously connected with<br />

population expansion <strong>in</strong> Southwest (Kemp et al., 2010, Malhi et al., 2003). The node is starlike<br />

<strong>and</strong> comprises all <strong>populations</strong> <strong>from</strong> Southwest <strong>and</strong> Tarahumaras <strong>and</strong> <strong>Huichol</strong>s.<br />

Tarahumaras <strong>and</strong> Coras are shown to be <strong>in</strong>termediate between Southwest <strong>and</strong> Mesoamerica.<br />

Interest<strong>in</strong>gly, Coras are more distantly related to others than <strong>Huichol</strong>s. The same is with<br />

branch def<strong>in</strong>ed by 16186. <strong>Huichol</strong>s claime themselves to come <strong>from</strong> North-Central <strong>Mexico</strong><br />

(Paez-Riberos et al., 2006 <strong>and</strong> references there<strong>in</strong>). Possible, they could be more related to the<br />

centre of expansion of haplogroup B. The branch with 195 <strong>and</strong> 16261 mutations connects<br />

Southwest <strong>populations</strong> with Coras, <strong>Mixtec</strong>s <strong>and</strong> <strong>Huichol</strong>s. This could be another branch<br />

destifieng expansion of haplogroup B, but due to backmutation <strong>in</strong> nps 195 its not evident if<br />

these samples are phylogenetically related.<br />

Interest<strong>in</strong>gly, <strong>Huichol</strong> <strong>and</strong> <strong>Mixtec</strong> samples <strong>from</strong> this study <strong>and</strong> Kemp et al., 2010 represent<br />

different haplotypes. This could be the effect of small sample size <strong>and</strong> collect<strong>in</strong>g samples<br />

<strong>from</strong> different locations.<br />

The haplogroup C network conta<strong>in</strong>s 75 haplotypes. There is three sub-branches of haplogroup<br />

C1. C1b is clearly divided <strong>from</strong> the rest sub-clades with def<strong>in</strong><strong>in</strong>g nps 493. The characteristic<br />

HVS mutations for C1d are 16051 <strong>and</strong> 194. Only three <strong>Huichol</strong>s, one Nahua Cuetzalan <strong>and</strong><br />

Akimel O´odham share these mutations. All the rest samples are likely C1c. We checked the<br />

C1c def<strong>in</strong><strong>in</strong>g mutation 15930 of our <strong>Huichol</strong> <strong>and</strong> <strong>Mixtec</strong> samples. Except one <strong>Huichol</strong> with<br />

493, all others harbour this mutation <strong>and</strong> cluster with Tarahumaras <strong>in</strong>to branch with nps 215.<br />

Generally, C1 sub-haplogroups have geographically specific branches <strong>and</strong> prevalently not<br />

23


shared between Southwest <strong>and</strong> Mesoamerica. Iterest<strong>in</strong>gly, Tarahumaras only have C1c <strong>and</strong><br />

Zapotecs C1b sub-clades.<br />

The haplogroup D network conta<strong>in</strong>s 14 haplotypes. The branches are long enough to assume<br />

that they separated long time ago. The network is specific to <strong>populations</strong> with the absent of<br />

variability. This is most likely because of the small number of samples, or low D haplogroup<br />

requency.<br />

24


Figure 5. Haplogroup A haplotype network. The central node exhibits the follow<strong>in</strong>g<br />

mutations relative to rCRS (Andrews et al., 1999): 16111, 16223, 16290, 16319, 16362,<br />

00064, 00073, 00146, 00153, 00235, <strong>and</strong> 00263. Mutational positions <strong>from</strong> this haplotype are<br />

noted <strong>in</strong> small pr<strong>in</strong>t. The colour scheme:Yellow st<strong>and</strong>s for the Mecixo <strong>populations</strong>, blue<br />

st<strong>and</strong>s for the Southwestern USA. Dark green st<strong>and</strong>s for <strong>Mixtec</strong> population <strong>from</strong> Kemp et al.,<br />

2010, light green st<strong>and</strong>s for <strong>Mixtec</strong> population studied <strong>in</strong> the present study. P<strong>in</strong>k colour st<strong>and</strong>s<br />

for <strong>Huichol</strong> population <strong>from</strong> Kemp et al., 2010. Darker p<strong>in</strong>k st<strong>and</strong>s for <strong>Huichol</strong> population<br />

studied <strong>in</strong> the present study.<br />

25


Figure 6. Haplogroup B haplotype network. The central node exhibits the follow<strong>in</strong>g<br />

mutations relative to rCRS (Andrews et al., 1999): 16111, 16223, 16290, 16319, 16362,<br />

00064, 00073, 00146, 00153, 00235, <strong>and</strong> 00263. Mutational positions <strong>from</strong> this haplotype are<br />

noted <strong>in</strong> small pr<strong>in</strong>t. The color scheme is the same as for the haplogroup A network.<br />

26


Figure 7. Haplogroup C haplotype network. The central node marked with blue, exhibits the<br />

follow<strong>in</strong>g mutations relative to rCRS (Andrews et al., 1999): 16223, 16298, 16325, 16327,<br />

00073, 00249d, 00263, 00290d, <strong>and</strong> 00291d. Mutational positions <strong>from</strong> this haplotype are<br />

noted <strong>in</strong> small pr<strong>in</strong>t. The color scheme is the same as for the haplogroup A network.<br />

27


Figure 8. Haplogroup D1 haplotype network. The green node <strong>in</strong> the middle, which <strong>in</strong>dicates<br />

the <strong>Mixtec</strong>s, is chosen to be the central node. It exhibits the follow<strong>in</strong>g mutations relative to<br />

rCRS (Andrews et al., 1999): 16223, 16325, 16362, 00073 <strong>and</strong> 00263. Mutational positions<br />

<strong>from</strong> this haplotype are noted <strong>in</strong> small pr<strong>in</strong>t. The color scheme is the same as for the<br />

haplogroup A network.<br />

28


2.3.2 C4c haplogroup<br />

One <strong>Huichol</strong> <strong>in</strong>dividual was determ<strong>in</strong>ed to belong to extremely rare C4c haplogroup. C4c has<br />

been reported so far only <strong>in</strong> North America <strong>and</strong> two samples <strong>in</strong> Ijka population <strong>from</strong><br />

Colombia. To determ<strong>in</strong>e the phylogenetic relationship with previously published data the<br />

mitochondrial genome of the <strong>Huichol</strong> sample was completely sequenced. Phylogenetic tree<br />

construction was performed follow<strong>in</strong>g a maximum parsimony approach. It was built us<strong>in</strong>g<br />

newly determ<strong>in</strong>ed full mtDNA genome <strong>and</strong> 16 previously published sequences. They<br />

<strong>in</strong>cluded: 1 by Tamm et al. (2007), 1 by Malhi et al. (2010) <strong>and</strong> 14 by Hooshiar Kashani et al.<br />

(2011) (Figure 9).<br />

Figure 9. The map of <strong>populations</strong> where is found C4c haplogroup. With the green colour are<br />

shown the Canadian Native American <strong>populations</strong>. Red spots represent 12 <strong>populations</strong> <strong>from</strong><br />

the USA. The present study <strong>Huichol</strong> population`s location is marked with violet. With the<br />

grey colour are marked <strong>populations</strong> determ<strong>in</strong>ed by the HVS region analysis to carry C4c<br />

haplogroup: the Kickapoo population <strong>from</strong> Cansas city, Oklahoma, USA; the Cherokee <strong>from</strong><br />

North Carol<strong>in</strong>a, USA; the Chippewa <strong>from</strong> the Great Lakes, Canada; <strong>and</strong> the Oneota site,<br />

Ill<strong>in</strong>ois, USA. Orig<strong>in</strong>: modified <strong>from</strong> Hooshiar Kashani et al., 2011<br />

The phylogenetic tree of C4c haplogroup is seen on Figure4. The haplogroup C4c is<br />

characterized by the follow<strong>in</strong>g mutations: 2232 <strong>in</strong>sertion, 14433 <strong>and</strong> 15148. All haplotypes<br />

(except one Canadian, one American <strong>and</strong> one Columbian) are clustered <strong>in</strong>to C4c1 subclade by<br />

29


the def<strong>in</strong><strong>in</strong>g transition at nps 1243. The <strong>Huichol</strong> haplotype has a reversion at position 1243,<br />

but accord<strong>in</strong>g to the nps at 15629 <strong>and</strong> 16241, it is positioned to belong to C4c1a subclade of<br />

C4a1 subhaplogroup. It also has unique SNP at 9938 position <strong>and</strong> a transversion at nps 11861.<br />

The coalescent age estimates for C4c <strong>and</strong> C4c1 haplogroups were calculated by Rho (ρ)<br />

statistics. The calculations were performed on all substitutions exclud<strong>in</strong>g the 16182C,<br />

16183C, 16194C <strong>and</strong> 16519 mutations. Mutational distances were converted <strong>in</strong>to years us<strong>in</strong>g<br />

the corrected molecular clock proposed by Soares et al., (2009).<br />

The average distance (ρ) of the haplotypes <strong>from</strong> the root of C4c haplogroup was 5,059 with<br />

the st<strong>and</strong>ard error (σ) of 1,1. This corresponds to a divergence time of 13,500 ± 5,900 years<br />

accord<strong>in</strong>g to Soares et al., 2009. The estimated time for C4c1, with ρ=3,84 <strong>and</strong> σ=0,8,<br />

corresponds to a divergence time of 10,200 ± 4,300 years.<br />

The determ<strong>in</strong>ation of a founder micro-haplogroup C4c <strong>in</strong> the Central American population<br />

can lead to several conclusions. The distribution pattern of two m<strong>in</strong>or-haplogroups X2a <strong>and</strong><br />

C4c is very similar (especially <strong>in</strong> comparison with D4h3), except the presence of two<br />

Columbian C4c <strong>and</strong> one newly determ<strong>in</strong>ed Mexican C4c samples south <strong>from</strong> United States.<br />

The coalescence ages of both X2a <strong>and</strong> C4c founders are also similar, which supports the idea<br />

that these two l<strong>in</strong>eages arrived together <strong>from</strong> the Ber<strong>in</strong>gia through ice-free corridor after LGM<br />

(Hooshiar Kashani et al., 2011; Perego et al., 2009). The frequencies of C4c <strong>and</strong> X2a<br />

nowadays are very low. Because the C4c frequency <strong>in</strong> an ancient Oneota site <strong>in</strong> Western<br />

Ill<strong>in</strong>ois could have reached ~8,3% (Stone <strong>and</strong> Stonek<strong>in</strong>g, 1998), it is possible that the<br />

frequencies of X2a <strong>and</strong> C4c might be higher, <strong>and</strong> their geographic distribution could have<br />

been wider than today (Hooshiar Kashani et al., 2011). Because of the mtDNA sensibility to<br />

genetic drift, it is possible that X2a l<strong>in</strong>eages were more widely spread, but have gone through<br />

ext<strong>in</strong>ction <strong>and</strong> X2a is not present <strong>and</strong> C4c is extremely rare <strong>in</strong> modern <strong>populations</strong> <strong>from</strong> south<br />

of the USA. However, X2a <strong>and</strong> C4a could also have gone through, at least partly, separate<br />

demographic events.<br />

The newly sequenced <strong>Huichol</strong> belongs to C4c1a subclade (def<strong>in</strong><strong>in</strong>g mutations 15629 <strong>and</strong><br />

16241) together with three Cherokee <strong>from</strong> North Carol<strong>in</strong>a <strong>and</strong> Oklahoma (Figure 10). This<br />

shows that <strong>Huichol</strong> is more closely connected with the North America than with the South<br />

America, as it is previously described for Mexican Native Americans (S<strong>and</strong>oval et al., 2009).<br />

However, <strong>Huichol</strong> sample differs <strong>from</strong> them by its unique mutations: 1243 reversion, SNP at<br />

30


N<br />

12705s 16223<br />

R<br />

73 11719s<br />

R0<br />

14766ns<br />

HV<br />

2706~r 7028s<br />

H<br />

1438~r<br />

H2<br />

4769s<br />

H2a<br />

263 315+C 750~r<br />

8860ns 15326ns<br />

rCRS<br />

8701ns 9540s 10398ns<br />

489 10400s<br />

4715s 7196As 8584ns<br />

10873s 15301s L3 14783s 15043s M<br />

15487Ts 16298 M8<br />

249d<br />

CZ<br />

3552As 9545s 11914s<br />

13263s 14318ns 16327<br />

C<br />

6026s 11969ns 16325 522-523d<br />

15204ns 16519 290-291d<br />

C4 C1<br />

2232+A~r 144433ns 15148s<br />

13,535 (7,630-19,628)<br />

C4c<br />

10,189 (5,956-14,525) 1243~r<br />

C4c1 !73<br />

96<br />

16189<br />

105-110d<br />

16193+C 114<br />

15629s 189<br />

16241<br />

473<br />

C4Cab<br />

!1438~r<br />

1719~r<br />

15523s<br />

195 C4c1a<br />

16183C<br />

7084ns 310d !315+C<br />

980~r (16193.1)+C 13674s 5460ns<br />

!10873s<br />

1007~r !1243 14208ns 13781ns 6911s<br />

C4c2 11440s<br />

1413~r 11821s 9938 16203 14311s 207 7043s 8296s 13368s<br />

14180ns 12397ns 11861T 16354 16362 16265C 8027ns 7064s 16362 13153ns 16111Y 16245<br />

ShuswapCherokeeCherokee <strong>Huichol</strong> Ijka<br />

Sioux Chippewa Ottawa/ Chippewa Sioux unknown Metis Metis unknown Canada USA Creek <strong>Mexico</strong> USA USA Chippewaunknown USA USA Canada Canada USA Colombia<br />

USA USA<br />

unknown<br />

Cherokee USA<br />

Creek<br />

USA unknown<br />

USA<br />

Figure 10. Phylogeny of complete mtDNA sequences belong<strong>in</strong>g to C4c (one novel <strong>and</strong> 16<br />

previously published). The basal motif of Native American Haplogroup C1 is also <strong>in</strong>cluded.<br />

All mutations shown on the branches are transitions unless specified. The prefix “!” <strong>in</strong>dicates<br />

reversion, while the suffixes designate: transversions (A, C, G, T), deletions (d), <strong>in</strong>sertions<br />

(+), gene locus (~, r), synonymous or nonsynonymous changes (s or ns), T/C heteroplasmy<br />

(Y). The A/C stretch length polymorphism <strong>in</strong> regions 16180–16193 <strong>and</strong> 303–315, 522–523<br />

<strong>and</strong> mutation 16519, all known to be hypervariable, were disregarded for tree reconstruction.<br />

The geographical locations of the samples (when known) are identified with colours: green-<br />

Canada, red- USA, violet- <strong>Mexico</strong>, <strong>and</strong> yellow- Columbia. The coalescent ages of C4c <strong>and</strong><br />

4c1 are <strong>in</strong>dicated with red color.<br />

31


nps 9938 <strong>and</strong> 11861 transversion, propos<strong>in</strong>g that <strong>Huichol</strong> has separated <strong>from</strong> Cherokee a time<br />

ago <strong>and</strong> obta<strong>in</strong>ed its own variability.<br />

The analysis by Malhi et al. (2001) provides the HVS regions data of two Southwest<br />

<strong>populations</strong>: Cherokee <strong>and</strong> Kickapoo. Eight <strong>in</strong>dividuals out of 31 Cherokee as well as one<br />

<strong>in</strong>dividual out of five Kickapoo have a mutation at position 16241 with possible C4c<br />

background, thus potentially belong<strong>in</strong>g to a C4c1a subclade (Malhi et al., 2001). The<br />

Kickapoo population extends to North <strong>Mexico</strong> (Figure3). Curiously, <strong>Huichol</strong> traditions<br />

ma<strong>in</strong>ta<strong>in</strong> that they came <strong>from</strong> the North-Centre of <strong>Mexico</strong> <strong>in</strong> the state of San Luis Potosi to<br />

their current location <strong>in</strong> Nayarit Mounta<strong>in</strong>s. Thus, the high resolution analysis is needed to<br />

detect whether there are really more <strong>populations</strong> carry<strong>in</strong>g C4c haplogroup <strong>and</strong> whether, <strong>in</strong><br />

particular, Kickapoo belong to C4c1a subclade, which would allow us to suppose the<br />

migration of this founder haplogroup <strong>from</strong> the North to the South.<br />

32


CONCLUSIONS<br />

Mitochondrial DNA has been widely used <strong>in</strong> phylogenetic studies. Its unique qualities like<br />

uniparental <strong>in</strong>heritance, relatively high mutation rate, lack of recomb<strong>in</strong>ation <strong>and</strong> possibility to<br />

use for age estimations allow us to follow maternal l<strong>in</strong>eages back <strong>in</strong> time <strong>and</strong> make<br />

conclusions for demographic histories of <strong>populations</strong>.<br />

America was the last cont<strong>in</strong>ent <strong>in</strong>habited by anatomically modern humans. For decades<br />

scientists have tried to f<strong>in</strong>d answers to questions for peopl<strong>in</strong>g process of Western Hemisphere<br />

us<strong>in</strong>g anthropological, archaeological <strong>and</strong> genetic data. Dur<strong>in</strong>g the last years new<br />

archaeological f<strong>in</strong>d<strong>in</strong>gs confirm that humans arrived to Americas earlier than previously<br />

thought. Also, accumulat<strong>in</strong>g data of mtDNA genetic <strong>variation</strong> with higher resolution show<br />

that the diversity of founder <strong>populations</strong> was higher <strong>and</strong> more complex. These discoveries<br />

have raised new hypothesis <strong>and</strong> questions for the migration process.<br />

Middle America is connect<strong>in</strong>g l<strong>and</strong>-bridge between North <strong>and</strong> South America with<br />

exceptionally high ethnic <strong>and</strong> language diversity. This region has been considered a barrier<br />

for migrations <strong>from</strong> north to south. The aim of the present study was to describe maternal<br />

variability of two <strong>in</strong>digenous <strong>populations</strong>, <strong>Huichol</strong>s <strong>and</strong> <strong>Mixtec</strong>s, <strong>from</strong> this region.<br />

All analysed samples belonged to characteristic Native American haplogroups. The analyse of<br />

HVS region haplotypes confirmed previously published results, that haplotypes <strong>from</strong> this<br />

region are specific for <strong>populations</strong> or mostly shared with geographical neighbours.<br />

Interest<strong>in</strong>gly, for example <strong>in</strong> haplogroup B, <strong>Huichol</strong>s <strong>and</strong> Mistexs <strong>from</strong> this <strong>and</strong> previous<br />

study did not share common haplotypes, <strong>in</strong>dicat<strong>in</strong>g that large enough sample sizes are<br />

necessary to capture true genetic <strong>variation</strong>.<br />

One <strong>Huichol</strong> was determ<strong>in</strong>ed to belong to haplogroup C4c. This is exceptional f<strong>in</strong>d<strong>in</strong>g as<br />

frequency of C4c is extremely low <strong>and</strong> C4c has been detected only <strong>in</strong> North America <strong>and</strong> <strong>in</strong><br />

one Colombian population. The complete mitochondrial genome was sequenced to<br />

characterise the position of <strong>Huichol</strong> C4c l<strong>in</strong>eage <strong>in</strong> phylogenetic tree. <strong>Huichol</strong> C4c sample<br />

belongs to the same branch with native <strong>populations</strong> of North America. This f<strong>in</strong>d<strong>in</strong>g confirms<br />

that nations <strong>from</strong> North <strong>Mexico</strong> are more closely related to North than South America <strong>and</strong><br />

shows a possible migration way.<br />

33


KOKKUVÕTE (SUMMARY IN ESTONIAN)<br />

MtDNA on leidnud laia kasutust <strong>in</strong>imese evolutsiooni uur<strong>in</strong>gutes. Tänu oma unikaalsetele<br />

omadustele nagu uniparentaalne pär<strong>and</strong>um<strong>in</strong>e, kõrge mutatsioonide tekkimise kiirus ja<br />

rekomb<strong>in</strong>eerumise puudum<strong>in</strong>e, võime jälgida emali<strong>in</strong>ide ajalugu n<strong>in</strong>g teha järeldusi<br />

populatsioonide demograafilise arengu kohta.<br />

Ameerika oli viimane kont<strong>in</strong>ent, kuhu jõudis kaasaegne <strong>in</strong>imene. Juba aastakümneid on<br />

teadlased antropoloogiliste, arheoloogiliste ja geneetiliste meetoditega püüdnud leida vastust<br />

küsimustele kust, millal ja mitme la<strong>in</strong>ena esimesed <strong>in</strong>imesed tulid Ameerikasse n<strong>in</strong>g kuidas ja<br />

mis suundades toimusid migratsioonid üle kont<strong>in</strong>endi. Kaua aega arvati, et Clovise kultuuri<br />

es<strong>in</strong>dajad olid esimesed kaasaegsed <strong>in</strong>imesed Ameerika m<strong>and</strong>ril. Uued arheoloogilised leiud<br />

aga k<strong>in</strong>nitavad, et <strong>in</strong>imene jõudis Ameerikasse varem. Seda toetavad ka viimaste aastate<br />

geneetilise varieeruvuse analüüsid. Suurema resolutsiooniga läbi viidud uurimused on<br />

näidanud, et põlis-ameeriklaste emali<strong>in</strong>ide varieeruvus on palju suurem n<strong>in</strong>g kompleksem kui<br />

algselt arvati. Sellised avastused on tekitanud uued küsimused asustamise protsessi kohta.<br />

Käesolev töö on osa suuremast projektist, mille eesmärk on uurida arheoloogilistelt<br />

uur<strong>in</strong>gutelt leitud iidse <strong>in</strong>imese DNA-d n<strong>in</strong>g suure resolutsiooniga kaasaegse <strong>in</strong>imese<br />

populatsioone, et tuua selgust Ameerika asustamise protsessi. Kesk-Ameerika on ühendav<br />

maakitsus Põhja- ja Lõuna-Ameerika vahel, mis on erakordselt rikkaliku etnilise ja keelelise<br />

diversiteediga. Seda on peetud barjääriks migratsioonidele liikumisel põhjast lõunasse. Antud<br />

töö eesmärgiks oli kirjeldada just selle piirkonna kahe põlisrahva, huitšolite ja misteekide,<br />

emali<strong>in</strong>ide varieeruvust.<br />

Analüüsis määrati huitšolite ja misteekide kuuluvus mtDNA haplogruppidesse n<strong>in</strong>g<br />

haplotüüpil<strong>in</strong>e varieeruvus. Selleks sekveneeris<strong>in</strong> mtDNA kontroll-regiooni n<strong>in</strong>g määras<strong>in</strong><br />

põlis-ameeriklastele iseloomulikud haplogruppide markerid. Kõik analüüsitud proovid<br />

kuulusid põlis-ameeriklaste haplogruppidesse. Haplotüüpide analüüs k<strong>in</strong>nitas varem<br />

avaldatud <strong>and</strong>meid, et haplotüübid on peamiselt populatsiooni-spetsiifilised või jagatud<br />

geograafiliselt lähedaste populatsioonidega. Huvitav leid oli, et näiteks haplogrupis B ei<br />

kattunud varem avaldatud ja antus töös analüüsitud haplotüübid huitšolite ja misteekide<br />

populatsioonidel.<br />

Huitšolide üks <strong>in</strong>diviid kuulub haplogruppi C4c. See on erakordne leid kuna C4c sagedus on<br />

väga väike n<strong>in</strong>g varem on C4c-d leitud a<strong>in</strong>ult Põhja-Ameerikas n<strong>in</strong>g ühel Kolumbia<br />

populatsioonil. Et määrata selle proovi paiknem<strong>in</strong>e fülogeneetilisel puul, sekveneeriti kogu<br />

34


mitokondriaalne DNA. Huitšoli proovi C4c kuulub samasse harusse Põhja-Ameerika<br />

rahvastega. See k<strong>in</strong>nitab varasemaid töödid näidates, et Kesk-Ameerika põhjaosa rahvad on<br />

rohkem seotud Põhja- kui Lõuna-Ameerikaga, aga näitab ka võiamlikku migratsiooni teed.<br />

Edaspidise töö eesmärk on analüüsida huitšoli ja misteeki populatsioonide mtDNA<br />

mitmekesisust veel põhjalikumalt. Selleks on plaanis valida välja antud töös määratud ka<br />

teistest põlis-ameeriklastele iseloomulikest haplogruppidest (A2, B2, C1 ja D1) huvitavamad<br />

haplotüüpid n<strong>in</strong>g teha neile täisjärjestuste analüüs.<br />

35


ACKNOWLEDGEMENT<br />

I would like express my s<strong>in</strong>cere thanks to my supervisors Erika Tamm <strong>and</strong> Ene Metspalu for<br />

their professional guidance <strong>and</strong> encourag<strong>in</strong>g. Special thanks to Erika Tamm for her guidance<br />

dur<strong>in</strong>g this study <strong>and</strong> for her time. Also, thanks to all co-workers for a pleasant atmosphere at<br />

our workplace.<br />

36


References<br />

Achilli, A, Perego, U. A., Bravi, C. M., Coble, M. D., Kong, Q. P., Woodward, S. R, Salas A,<br />

Torroni, A. <strong>and</strong> B<strong>and</strong>elt, H. J. (2008). The phylogeny of the four pan-American MtDNA<br />

haplogroups: implications for evolutionary <strong>and</strong> disease studies. PLoS One 3(3):e1764.<br />

Adovasio, J. M. <strong>and</strong> Pedler D. R. 2004. Pre Clovis Sites <strong>and</strong> Their Implications for Human<br />

Occupation before the Last Glacial Maximum, p. 139–158. In Enter<strong>in</strong>g Northeast Asia <strong>and</strong><br />

Ber<strong>in</strong>gia before the Last Glacial Maximum edited by David B. Madsen. University of Utah<br />

Press, Salt Lake City, Utah.<br />

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. <strong>and</strong> Watson, J. D. 1989. Molecular<br />

Biology of the Cell, 2nd ed., p. 341-404, Garl<strong>and</strong> Publish<strong>in</strong>g, New York, London.<br />

Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H. L., Coulson, A. R., Drou<strong>in</strong>, J.,<br />

Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J., Staden, R.<br />

<strong>and</strong> Young, I. G. (1981). Sequence <strong>and</strong> organization of the human mitochondrial genome.<br />

Nature 290: 457–465.<br />

Andrews, R. M., Kubacka, I., Ch<strong>in</strong>nery, P. F, Lightowlers, R. N., Turnbull, D. M. <strong>and</strong><br />

Howell, N. (1999). Reanalysis <strong>and</strong> revision of the Cambridge reference sequence for human<br />

mitochondrial DNA. Nature Genet. 23: 147.<br />

Aquadro, C. F. <strong>and</strong> Greenberg, B. D. (1983). Human mitochondrial DNA <strong>variation</strong> <strong>and</strong><br />

evolution: analysis of nucleotide sequences <strong>from</strong> seven <strong>in</strong>dividuals. Genetics 103: 287-312.<br />

Avise, J. C, Arnold, J., Ball, R. M., Berm<strong>in</strong>ghatm, E., Lamb, E., Neigel, J. E., Reeb, C. A. <strong>and</strong><br />

Saunders, N. C. (1987). Intraspecific phylogeography: the mitochondrial DNA bridge<br />

between population genetics <strong>and</strong> systematics. Annu. Rev. EcoI. Syst. 18: 489-522.<br />

Bogenhagen, D. <strong>and</strong> Clayton, D. A. (1974). The number of mitochondrial deoxyribonucleic<br />

acid genomes <strong>in</strong> mouse l <strong>and</strong> human HeLa cells. J. Biol. Chem. 249: 7991–7995.<br />

Bonatto, S. L. <strong>and</strong> Salzano, F. M. (1997). Diversity <strong>and</strong> age of the four major mtDNA<br />

haplogroups, <strong>and</strong> their implications for the peopl<strong>in</strong>g of the New World. Am J Hum Genet 61:<br />

1413–1423<br />

37


Brown, M. D., Hosse<strong>in</strong>i, S. H., Torroni, A., B<strong>and</strong>elt, H. J., Allen, J. C., Schurr, T. G.,<br />

Scozzari, R., Cruciani, F. <strong>and</strong> Wallace, D. C. (1998). mtDNA haplogroup X: An ancient l<strong>in</strong>k<br />

between Europe/Western Asia <strong>and</strong> North America? American Journal of Human Genetics 63:<br />

1852-1861.<br />

Brown, W. M. (1980). Polymorphism <strong>in</strong> mitochondrial DNA of humans as revealed by<br />

restriction endonuclease analysis. Proc. Natl. Acad. Sci. U.S.A. 77 (6): 3605–609.<br />

Brown, W. M., George, M. Jr. <strong>and</strong> Wilson, A. C. (1979). Rapid evolution of animal<br />

mitochondrial DNA. Proc. Natl. Acad. Sci. 76: 1967-1971.<br />

Chen, Y. S., Torroni, A., Excoffier, L., Santachiara-Benerecetti, A. S. <strong>and</strong> Wallace, D. C.<br />

(1995). Analysis of mtDNA <strong>variation</strong> <strong>in</strong> African <strong>populations</strong> reveals the most ancient of all<br />

human cont<strong>in</strong>ent-specific haplogroups. Am. J. Hum. Genet. 57: 133–149. Chicago Press.<br />

Clayton, D. A. (1982). Replication of animal mitochondrial DNA. Cell 28: 693–705.<br />

Derbeneva, O. A., Sukernik, R. I., Volodko, N. V., Hosse<strong>in</strong>i,S. H., Lott, M. T. <strong>and</strong> Wallace,<br />

D. C. (2002). Analysis of mitochondrial DNA diversity <strong>in</strong> the Aleuts of the Comm<strong>and</strong>er<br />

Isl<strong>and</strong>s <strong>and</strong> its implications for the genetic history of Ber<strong>in</strong>gia. Am. J. Hum. Genet, 71:. 415–<br />

421<br />

Derenko, M., Malyarchuk, B., Grzybowski, T., Denisova, G., Dambueva, I., Perkova, M.,<br />

Dorzhu, C., Luz<strong>in</strong>a, F., Lee, H. K., Vanecek, T., Villems, R. <strong>and</strong> Zakharov, I. (2007).<br />

Phylogeographic analysis of mitochondrial DNA <strong>in</strong> northern Asian <strong>populations</strong>. Am J Hum<br />

Genet 81(5):1025-1041.<br />

Dillehay, T. D., Ramirex, C., P<strong>in</strong>o, M., Coll<strong>in</strong>s, M.B., Rossen, J. <strong>and</strong> P<strong>in</strong>o-Navarro, J.D.<br />

(2008). Monte Verde: Seaweed, food, medic<strong>in</strong>e, <strong>and</strong> the peopl<strong>in</strong>g of South America. Science,<br />

320: 784-786.<br />

Fagundes, N. J., Kanitz, R., Eckert, R., Valls, A. C., Bogo, M. R., Salzano, F. M., Smith, D.<br />

G., Silva, W. A. Jr., Zago, M. A., Ribeiro-dos-Santos, A. K., Santos, S. E., Petzl-Erler, M.<br />

L.<strong>and</strong> Bonatto, S. L. (2008). Mitochondrial population genomics supports a s<strong>in</strong>gle pre-Clovis<br />

orig<strong>in</strong> with a coastal route for the peopl<strong>in</strong>g of the Americas. Am J Hum Genet 82(3):583-592.<br />

Forster, P., Hard<strong>in</strong>g, R., Torroni, A. <strong>and</strong> B<strong>and</strong>elt, H. J. (1996). Orig<strong>in</strong> <strong>and</strong> evolution of native<br />

American mDNA <strong>variation</strong>: a reappraisal. Am. J. Hum. Genet. 59: 935-945.<br />

38


Forster, P., Torroni, A., Renfrew, C. <strong>and</strong> Rõhl, A. (2001). Phylogenetic Star Contraction<br />

Applied to Asian <strong>and</strong> Papuan mtDNA Evolution. Mol. Biol. Evol. 18: 1864-1881.<br />

Gilbert MT, Kivisild T, Grønnow B, Andersen PK, Metspalu E, Reidla M, Tamm E, Axelsson<br />

E, Götherström A, Campos PF, Rasmussen M, Metspalu M, Higham TF, Schwenn<strong>in</strong>ger JL,<br />

Nathan R, De Hoog CJ, Koch A, Møller LN, Andreasen C, Meldgaard M, Villems R,<br />

Bendixen C, <strong>and</strong> Willerslev E. 2008. Paleo-Eskimo mtDNA genome reveals matril<strong>in</strong>eal<br />

discont<strong>in</strong>uity <strong>in</strong> Greenl<strong>and</strong>. Science 320(5884):1787-1789.<br />

Giles, R. E., Blanc, H., Cann, H. M. <strong>and</strong> Wallace, D.C. (1980). <strong>Maternal</strong> <strong>in</strong>heritance of human<br />

mitochondrial DNA. Proc. Natl. Acad. Sci. 77: 6715-6719.<br />

Goebel, T. (1999). Pleistocene human colonization of Siberia <strong>and</strong> peopl<strong>in</strong>g of the Americas:<br />

an ecological approach. Evolutionary Anthropology 8: 208-227.<br />

Goebel, T., Waters, M. R. <strong>and</strong> ORourke, D. H. (2008). The late Pleistocene dispersal of<br />

modern humans <strong>in</strong> the Americas. Science 319: 1497-1502.<br />

Haynes, C. V. 2005. Clovis, Pre-Clovis, Climate Change, <strong>and</strong> Ext<strong>in</strong>ction, p. 113–132. In<br />

Paleoamerican Orig<strong>in</strong>s: Beyond Clovis, edited by Robsen Bonnichsen, Bradley T. Lepper,<br />

Dennis Stanford, <strong>and</strong> Michael R. Waters, Center for the Study of the First Americans, Texas<br />

A&M University Press, College Station, Texas.<br />

Haynes, C.V., Jr. 1992. Contributions of radiocarbon dat<strong>in</strong>g to the geochronology of the<br />

peopl<strong>in</strong>g of the New World, p. 355–374. In R.E. Taylor, A. Long, & R.S. Kra (Eds.),<br />

Radiocarbon after four decades: An <strong>in</strong>terdiscipl<strong>in</strong>ary perspective. New York: Spr<strong>in</strong>ger-<br />

Verlag.<br />

Helgason A, Palsson G, Pedersen HS, Angulalik E, Gunnarsdottir ED, et al. (2006) MtDNA<br />

<strong>variation</strong> <strong>in</strong> Inuit <strong>populations</strong> of Greenl<strong>and</strong> <strong>and</strong> Canada: migration history <strong>and</strong> population<br />

structure. Am J Phys Anthropol 130: 123–134.<br />

Henn, B. M., Gignoux, C. R., Feldman, M. W. <strong>and</strong> Mounta<strong>in</strong>, J. L. (2009). "Characteriz<strong>in</strong>g<br />

the Time Dependency of Human Mitochondrial DNA Mutation Rate Estimates", Molecular<br />

Biology <strong>and</strong> Evolution 26 (1): 217–230<br />

39


Heyer, E., Zietkiewicz, E., Rochowski A., Yotova, V., Puymirat, J. <strong>and</strong> Labuda D. (2001).<br />

Phylogenetic <strong>and</strong> familial estimates of mitochondrial substitution rates: Study of control<br />

region mutations <strong>in</strong> deep-root<strong>in</strong>g pedigrees. Am. J. Hum. Genet 69: 1113-1126.<br />

Hooshiar Kashani, B., Perego, U. A., Olivieri, A., Angerhofer, N., G<strong>and</strong><strong>in</strong>i, F., Carossa, V.,<br />

Lancioni, H., Sem<strong>in</strong>o, O., Woodward, S. R., Achilli, A. <strong>and</strong> Torroni, A. ( 2011).<br />

Mitochondrial haplogroup C4c: a rare l<strong>in</strong>eage enter<strong>in</strong>g America through the ice-free corridor?<br />

Am J Phys Anthropol 000:000-000<br />

Howell, A., Dubrac, S., Andersen, K. K., Noone, D., Fert, J., Msadek, T. <strong>and</strong> Dev<strong>in</strong>e, K.<br />

(2003). Genes controlled by the essential YycG/YycF two-component system of Bacillus<br />

subtilis revealed through a novel hybrid regulator approach. Mol Microbiol 49, 1639–1655.<br />

Inali. 2007. Catalogo de las lenguas <strong>in</strong>digenas nacionales: Variantes l<strong>in</strong>guisticacs de mexico<br />

con sus autodenom<strong>in</strong>aciones y referencias geoestadisticas, <strong>Mexico</strong><br />

Ingman, M, Kaessmann, H, Pääbo, S. <strong>and</strong> Gyllensten, U. (2000). Mitochondrial genome<br />

<strong>variation</strong> <strong>and</strong> the orig<strong>in</strong> of modern humans. Nature 408:708-713<br />

Jorde, L. B. <strong>and</strong> Bamshad, M. (2000). Question<strong>in</strong>g evidence for recomb<strong>in</strong>ation <strong>in</strong> human<br />

mitochondrial DNA. Science 288: 1931.<br />

Kemp, B. M., Gonzalez-Oliver, A., Malhi, R., Monroe, C., Schroeder, K. B., McDonough, J.,<br />

Rhett, G., Resendez, A., Penaloza-Esp<strong>in</strong>osa, R. I., Buentello-Malo, L., Gorodesky, C. <strong>and</strong><br />

Smith, D. G. (2010) Evaluat<strong>in</strong>g the farm<strong>in</strong>g/language dispersal hypothesis with genetic<br />

<strong>variation</strong> exhibited by <strong>populations</strong> <strong>in</strong> the Southwest <strong>and</strong> Mesoamerica. PNAS USA 107, 6759-<br />

6764.<br />

Kitchen, A., Miyamoto, M. M. <strong>and</strong> Mulligan, C. J. (2008). A three-stage colonization model<br />

for the peopl<strong>in</strong>g of the Americas. PLoS ONE, 3: e1596.<br />

Kivisild, T. <strong>and</strong> Villems, R. (2000). Question<strong>in</strong>g evidence for recomb<strong>in</strong>ation <strong>in</strong> human<br />

mitochondrial DNA. Science 288: 1931.<br />

Kumar, S., Hedrick, P., Dowl<strong>in</strong>g, T. <strong>and</strong> Stonek<strong>in</strong>g, M. (2000). Question<strong>in</strong>g evidence for<br />

recomb<strong>in</strong>ation <strong>in</strong> human mitochondrial DNA. Science 288: 1931.<br />

40


Loogvali, E. L., Kivisild, T., Margus, T. <strong>and</strong> Villems, R. (2009). O'Rourke, D, ed.,<br />

"Expla<strong>in</strong><strong>in</strong>g the Imperfection of the Molecular Clock of Hom<strong>in</strong>id Mitochondria", PLoS ONE<br />

(PLoS ONE) 4 (12): e8260<br />

Lorenz, J. G. <strong>and</strong> Smith, D. G. (1996). Distribution of four found<strong>in</strong>g MtDNA haplogroups<br />

among native North Americans. Am. J Phys. Anthrop. 101, 307-23.<br />

Macaulay, V., Hill, C., Achilli, A., Rengo, C., Clarke, D., Meehan, W., Blackburn, J.,<br />

Sem<strong>in</strong>o, O., Scozzari, R., Cruciani, F., Taha, A., Shaari, N. K., Raja, J. M., Ismail, P.,<br />

Za<strong>in</strong>udd<strong>in</strong>, Z., Goodw<strong>in</strong>, W., Bulbeck, D., B<strong>and</strong>elt, H.–J., Oppenheimer, S., Torroni, A. <strong>and</strong><br />

Richards, M. (2005). S<strong>in</strong>gle, rapid coastal settlement of Asia revealed by analysis of complete<br />

mitochondrial genomes. Science 308: 1034–1036.<br />

Malhi, R. S., Cybulski, J. S., Tito, R. Y., Johnson, J., Harry, H. <strong>and</strong> Dan, C. (2010). Brief<br />

communication: Mitochondrial haplotype C4c confirmed as a found<strong>in</strong>g genome <strong>in</strong> the<br />

Americas. Am J Phys Anthropol 141(3):494-497.<br />

Malhi, R. S., Mortensen, H. M., Eshleman, J. A., Kemp, B. M., Lorenz, J. G., Kaestle, F. A,<br />

Johnson, J. R., Gorodezky, C. <strong>and</strong> Smith, D. G (2003). Native American mtDNA Prehistory<br />

<strong>in</strong> the American Southwest. American Journal of Physical Anthropology 120:108–24.<br />

McDougall , I., Brown, F. H. <strong>and</strong> Fleagle, J. G. (2005). Stratigraphic placement <strong>and</strong> age of<br />

modern humans <strong>from</strong> Kibish, Ethiopia. Nature 433: 733-736.<br />

Merrill W.L., Hard R.J., Mabry J.B., Fritz G.J., Adams K.R., Roney J.R. ans MacWilliams<br />

A.C. (2009). The diffusion of maize to the southwestern United States <strong>and</strong> its impact.<br />

Proceed<strong>in</strong>gs of the National Academy of Sciences of the United States of America, 106(50):<br />

21019–21026.<br />

Merriwether, D. A., Rothhammer, F. <strong>and</strong> Ferrell, R. E. (1995) Distribution of the four<br />

found<strong>in</strong>g l<strong>in</strong>eage haplotypes <strong>in</strong> Native Americans suggests a s<strong>in</strong>gle wave of migration for the<br />

New World. Am J Phys Anthropol 98:411–430<br />

Metspalu, M., Kivisild, T., Metspalu, E., Parik, J., Hudjashov, G., Kaldma, K., Serk, P.<br />

Karm<strong>in</strong>, M., Behar, D. M., Gilbert, M. T. P., Endicott, P., Mastana, S., Papiha, S. S.,<br />

Skorecki, K., Torroni, A. <strong>and</strong> Villems, R. (2004). Most of the extant mtDNA boundaries <strong>in</strong><br />

South <strong>and</strong> Southwest Asia were likely shaped dur<strong>in</strong>g the <strong>in</strong>itial settlement of Eurasia by<br />

anatomically modern humans. BMC Genet. 5: 26.<br />

41


Mulligan, C.J., Kitchen, A. <strong>and</strong> Miyamoto, M. M. (2008). Updated three stage model for the<br />

peopl<strong>in</strong>g of the Americas. PLoS ONE 3: e3199.<br />

Nichols, J. 1992. L<strong>in</strong>guistic Diversity <strong>in</strong> Space <strong>and</strong> Time. Chicago: University of<br />

Parsons, T. J., Muniec, D. S., Sullivan, K., Woodyatt, N., Alliston-Gre<strong>in</strong>er, R., Wilson, M. R.,<br />

Berry, D. L., Holl<strong>and</strong>, K. A., Weedn, V. W., Gill, P., Holl<strong>and</strong>, M. M. (1997). A high observed<br />

substitution rate <strong>in</strong> the human mitochondrial DNA control region. Nat. Genet. 15: 363-368.<br />

Pearson, G. <strong>and</strong> Ream, J. (2005). Clovis on the Caribbean Coast of Venezuela. Current<br />

Research <strong>in</strong> the Pleistocene 22: 28–31.<br />

Perego, U. A., Achilli, A., Angerhofer, N., Accetturo, M., Pala, M., Olivieri, A., Hooshiar<br />

Kashani, B., Ritchie, K. H., Scozzari R., Kong Q. P., Myres N. M., Salas, A., Sem<strong>in</strong>o, O.,<br />

B<strong>and</strong>elt, H. J., Woodward, S. R. <strong>and</strong> Torroni, A. (2009). Dist<strong>in</strong>ctive Paleo-Indian migration<br />

routes <strong>from</strong> Ber<strong>in</strong>gia marked by two rare mtDNA haplogroups. Curr Biol 19(1):1-8.<br />

Perego, U. A., Angerhofer, N., Pala, M., Olivieri, A., Lancioni, H., Hooshiar Kashani, B.,<br />

Carossa, V., Ek<strong>in</strong>s, J. E., Gómez-Carballa, A., Huber, G., Zimmermann, B., Corach, D.,<br />

Babudri, N , Panara, F., Myres, N. M. Parson, W., Sem<strong>in</strong>o, O., Salas, A., Woodward, S, R.,<br />

Achilli, A. <strong>and</strong> Torroni, A. (2010). The <strong>in</strong>itial peopl<strong>in</strong>g of the Americas: a grow<strong>in</strong>g number of<br />

found<strong>in</strong>g mitochondrial genomes <strong>from</strong> Ber<strong>in</strong>gia. Genome Res 20(9):1174-1179.<br />

Pitulko, V., Nikolsky, P. A., Girya, E. Y., Basilyan, A. E., Tumskoy, V. E., Koulakov, S. A.,<br />

Astakhov, S. N., Pavlova, E. Y. <strong>and</strong> Anisimov, M. A. (2004). The Yana RHS Site: Humans <strong>in</strong><br />

the Arctic before the Last Glacial Maximum. Science 303: 52–56.<br />

Pohl, M., von Nagy, C., Perrett, A. <strong>and</strong> Pope, K. (2004) "Olmec Civilization at San Andres,<br />

Tabasco, <strong>Mexico</strong>", Foundation for the Advancement of Mesoamerican Studies, Inc. (FAMSI),<br />

accessed October 2007.<br />

Richter, C., Park, J. W. <strong>and</strong> Ames, B. N. (1988). Normal oxidative damage to mitochondrial<br />

<strong>and</strong> nuclear DNA is extensive. Proc. Natl. Acad. Sci. 85: 6465–6467.<br />

Saillard, J., Forster, P., Lynnerup, N., B<strong>and</strong>elt, H.-J. <strong>and</strong> Nørby, S. (2000). mtDNA <strong>variation</strong><br />

among Greenl<strong>and</strong> Eskimos: The edge of the Ber<strong>in</strong>gian expansion. Am. J. Hum. Genet. 67:<br />

718-726.<br />

42


S<strong>and</strong>oval, K., Buentello-Malo, L., Peñaloza-Esp<strong>in</strong>osa, R., Avel<strong>in</strong>o, H., Salas, A., Calafell, F.<br />

<strong>and</strong> Comas, D. (2009). L<strong>in</strong>guistic <strong>and</strong> maternal genetic diversity are not correlated <strong>in</strong> Native<br />

Mexicans. Hum Genet 126: 521–531.<br />

Schurr, T. G. <strong>and</strong> Sherry, S. T. (2004) Mitochondrial DNA <strong>and</strong> Y chromosome diversity <strong>and</strong><br />

the peopl<strong>in</strong>g of the Americas: evolutionary <strong>and</strong> demographic evidence. Am J Hum Biol 16:<br />

420–439.<br />

Schurr, T. G., Ball<strong>in</strong>ger, S. W., Gan, Y. Y., Hodge, J. A., Merriwether, D. A., Lawrence, D.<br />

N., Knowler, W. C., Weiss, K. M. <strong>and</strong> Wallace, D. C. (1990). Amer<strong>in</strong>dian Mitochondrial<br />

DNAs Have Rare Asian Mutations at High Frequencies, Suggest<strong>in</strong>g They Derived <strong>from</strong> Four<br />

Primary <strong>Maternal</strong> L<strong>in</strong>eages. American Journal of Human Genetics 46: 613-623.<br />

Soares, P., Erm<strong>in</strong>i, L., Thoson, N., Morm<strong>in</strong>a, M., Rito, T., Röhl, A., Salas, A., Oppenheimer,<br />

A., Macalay, V. <strong>and</strong> Richards, M. B. (2009). Correct<strong>in</strong>g for purify<strong>in</strong>g selection: An improved<br />

human mitochondrial molecular clock. Am. J. Hum. Genet. 84: 740–759.<br />

Starikovskaya EB, Sukernik RI, Derbeneva OA, Volodko NV, Ruiz-Pes<strong>in</strong>i E, Torroni A,<br />

Brown MD, Lott MT, Hosse<strong>in</strong>i SH, Huoponen K <strong>and</strong> Wallace DC. (2005). Mitochondrial<br />

DNA diversity <strong>in</strong> <strong>in</strong>digenous <strong>populations</strong> of the southern extent of Siberia, <strong>and</strong> the orig<strong>in</strong>s of<br />

Native American haplogroups. Ann Hum Genet 69(Pt 1):67-89.<br />

Stonek<strong>in</strong>g, M., Hedgecock, D., Higuchi, R. G., Vigilant, L. <strong>and</strong> Erlich, H. A. (1991).<br />

Population <strong>variation</strong> of human mtDNA control region sequences detected by enzymatic<br />

amplification <strong>and</strong> sequence-specific oligonucleotide probes. Am. J. Hum. Genet. 48: 370–<br />

382.<br />

Tamm, E, Kivisild, T, Reidla, M, Metspalu, M, Smith DG, Mulligan, C. J., Bravi, C. M.,<br />

Rickards, O., Mart<strong>in</strong>ez-Labarga, C., Knusbutd<strong>in</strong>ova, E. K., Fedorova, S.A., Golubenko, M.<br />

V., Stepanov, V. A., Gub<strong>in</strong>a, M. A., Zhadanov, S. I., Ossipova, L. P., Damba, L., Voevoda,<br />

M. I., Dipierri, J. E., Villems, R. <strong>and</strong> Malhi, R. S. (2007). Ber<strong>in</strong>gian st<strong>and</strong>still <strong>and</strong> spread of<br />

Native American founders. PLoS ONE 2: e829.<br />

Torroni A et al. (1994a) Mitochondrial DNA <strong>and</strong> Y chromosome polymorphisms <strong>in</strong> 4 Native<br />

American <strong>populations</strong> <strong>from</strong> Southern <strong>Mexico</strong>. Am. J Hum. Gen. 54, 303-18.<br />

Torroni, A., Achilli A., Macaulay V., Richards, M. <strong>and</strong> B<strong>and</strong>elt, H-J. (2006). Harvest<strong>in</strong>g the<br />

fruit of the human mtDNA tree. Trends Genet 22:339–345.<br />

43


Torroni, A., Schurr, T. G., Cabell, M. F., Brown, M. D., Neel, J. V., et al. (1993). Asian<br />

aff<strong>in</strong>ities <strong>and</strong> cont<strong>in</strong>ental radiation of the four found<strong>in</strong>g Native American mtDNAs. Am. J.<br />

Hum. Genet. 53: 563–590.<br />

Torroni, A., Sukernik, R. I., Schurr, T. G., Starikorskaya, Y. B., Cabell, M. F., et al. (1993).<br />

mtDNA <strong>variation</strong> of aborig<strong>in</strong>al Siberians reveals dist<strong>in</strong>ct genetic aff<strong>in</strong>ities with Native<br />

Americans. Am. J. Hum. Genet. 53: 591–608.<br />

Vigilant, L., Penn<strong>in</strong>gton, R., Harpend<strong>in</strong>g, H., Kocher, T. D. <strong>and</strong> Wilson, A. C. (1989).<br />

Mitochondrial DNA sequences <strong>in</strong> s<strong>in</strong>gle hairs <strong>from</strong> a southern African population. Proc. Natl.<br />

Acad. Sci. 86: 9350-9354.<br />

Vigilant, L., Stonek<strong>in</strong>g, M., Harpend<strong>in</strong>g, H., Hawkes, K. <strong>and</strong> Wilson, A. C. (1991). African<br />

<strong>populations</strong> <strong>and</strong> the evolution of human mitochondrial DNA. Science 253: 1503–1507.<br />

Volodko, N. V., Starikovskaya, E. B., Mazun<strong>in</strong>, I. O., Eltsov, N. P., Naidenko, P. V., Wallace,<br />

D. C. <strong>and</strong> Sukernik, R. I. 2008. Mitochondrial genome diversity <strong>in</strong> arctic Siberians, with<br />

particular reference to the evolutionary history of Ber<strong>in</strong>gia <strong>and</strong> Pleistocenic peopl<strong>in</strong>g of the<br />

Americas. Am J Hum Genet 82(5):1084-1100.<br />

Waters, M. R. (2011). The Buttermilk Creek Complex <strong>and</strong> the Orig<strong>in</strong>s of Clovis at the Debra<br />

L. Friedk<strong>in</strong> Site, Texas. Science 331:1599-1603.<br />

Wilson, A. C., Cann, R. L., Carr, S. M., George, M., Gyllensten, U. B., Helm-Bychowski, K.<br />

M., Higuchi, R. G., Palumbi, S. R., Prager, E. M., Sage, R. D. <strong>and</strong> Stonek<strong>in</strong>g, M. (1985).<br />

Mitochondrial DNA <strong>and</strong> two perspectives on evolutionary genetics. Biol. J. L<strong>in</strong>n. 2: 375-400.<br />

44


SUPPLEMENTARY MATERIALS<br />

Tabel 1.1. Primers for PCR (HVS regions)<br />

23F (Rieder) 5´TCA TTG GAC AAG TAG CAT CC 3´<br />

24R (Rieder) 5´AGG CTA AGC GTT TTG AGC TG 3´<br />

F15909 5´ ACA CCA GTC TTG TAA ACC GGA 3´<br />

R580 5´ TTG AGG AGG TAA GCT 3´<br />

Tabel 1.2. Primers for PCR (cod<strong>in</strong>g region)<br />

F7 (Rieder) 5´ ACTAATTAATCCCCTGGCCC 3´<br />

R7 (Rieder) 5´ AATGGGGTGGGTTTTGTATG 3´<br />

F1615 5´AAC ACA AAG CAC CCA ACT TAC AC 3´<br />

R2216 5´TGT TGA GCT TGA ACG CTT TC 3´<br />

Tabel 2.1. Primers for sequence reaction (HVS regions)<br />

R727 5´ AGG GTG AAC TCA CTG 3´<br />

F15909 5´ ACA CCA GTC TTG TAA ACC GGA 3´<br />

F48 5´ CAT TTG GTA TTT TCGTCTGG 3´<br />

R505 5´ GGT GTG TGT GTC TGG GTA GG 3´<br />

F15975 5´ CTC CAC CAT TAG CAC CCA AA 3´<br />

R5 5´ GAG TGG TTA ATA GGG 3´<br />

F(L)16209 5´ CCA TGC TTA CAA GCA 3´<br />

R370 5´ GGT TCT TTG TCT TTT TGG GGT 3´<br />

F244 5´ ATTGAAT GTCTGCACAG CCACT 3´<br />

R(H)15975 5´CTC CAC CAT TAG CAC CCA AA 3´<br />

R477 5´ AGT AGT ATG GGA GTG GGA GGG 3´<br />

R580 5´ TTG AGG AGG TAA GCT 3´<br />

Tabel 2.2. Primers for sequence reaction (cod<strong>in</strong>g region)<br />

F4711 5´ CCG GAC AAT GAA CCA TAA CCA 3´<br />

R5171 5´ TCA GGT GCG AGA TAG TAG TAG TAG 3´<br />

F1615 5´AAC ACA AAG CAC CCA ACT TAC AC 3´<br />

R2216 5´TGT TGA GCT TGA ACG CTT TC 3´<br />

45


Tabel 3. Primers for PCR <strong>and</strong> sequence reaction for full sequence (Rieder et al.,1998)<br />

1F 5´ CTCCTCAAAGCAATACACTG 3´ 1R 5´ TGCTAAATCCACCTTCGACC 3´<br />

2F 5´ CGATCAACCTCACCACCTCT 3´ 2R 5´ TGGACAACCAGCTATCACCA 3´<br />

3F 5´GGACTAACCCCTATACCTTCTGC 3´ 3R 5´ GGCAGGTCAATTTCACTGGT 3´<br />

4F 5´ AAATCTTACCCCGCCTGTTT 3´ 4R 5´ AGGAATGCCATTGCGATTAG 3´<br />

5F 5´ TACTTCACAAAGCGCCTTCC 3´ 5R 5´ ATGAAGAATAGGGCGAAGGG 3´<br />

6F 5´ TGGCTCCTTTAACCTCTCCA 3´ 6R 5´ AAGGATTATGGATGCGGTTG 3´<br />

7F 5´ ACTAATTAATCCCCTGGCCC 3´ 7R 5´ AATGGGGTGGGTTTTGTATG 3´<br />

8F 5´ CTAACCGGCTTTTTGCCC 3´ 8R 5´ ACCTAGAAGGTTGCCTGGCT 3´<br />

9F 5´ GAGGCCTAACCCCTGTCTTT 3´ 9R 5´ ATTCCGAAGCCTGGTAGGAT 3´<br />

10F 5´ CTCTTCGTCTGATCCGTCCT 3´ 10R 5´ AGCGAAGGCTTCTCAAATCA 3´<br />

11F 5´ ACGCCAAAATCCATTTCACT 3´ 11R 5´ CGGGAATTGCATCTGTTTTT 3´<br />

12F 5´ ACGAGTACACCGACTACGGC 3´ 12R 5´ TGGGTGGTTGGTGTAAATGA 3´<br />

13F 5´ TTTCCCCCTCTATTGATCCC 3´ 13R 5´ GTGGCCTTGGTATGTGCTTT 3´<br />

14F 5´ CCCACCAATCACATGCCTAT 3´ 14R 5´ TGTAGCCGTTGAGTTGTGGT 3´<br />

15F 5´ TCTCCATCTATTGATGAGGGTCT 3´ 15R 5´ AATTAGGCTGTGGGTGGTTG 3´<br />

16F 5´ GCCATACTAGTCTTTGCCGC 3´ 16R 5´ TTGAGAATGAGTGTGAGGCG 3´<br />

17F 5´ TCACTCTCACTGCCCAAGAA 3´ 17R 5´ GGAGAATGGGGGATAGGTGT 3´<br />

18F 5´ TATCACTCTCCTACTTACAG 3´ 18R 5´ AGAAGGATATAATTCCTACG 3´<br />

19F 5´ AAACAACCCAGCTCTCCCTAA 3´ 19R 5´ TCGATGATGTGGTCTTTGGA 3´<br />

20F 5´ ACATCTGTACCCACGCCTTC 3´ 20R 5´ AGAGGGGTCAGGGTTGATTC 3´<br />

21F 5´ GCATAATTAAACTTTACTTC 3´ 21R 5´ AGAATATTGAGGCGCCATTG 3´<br />

22F 5´ TGAAACTTCGGCTCACTCCT 3´ 22R 5´ AGCTTTGGGTGCTAATGGTG 3´<br />

23F 5´ TCATTGGACAAGTAGCATCC 3´ 23R 5´ GAGTGGTTAATAGGGTGATAG 3´<br />

24F 5´ CACCATCCTCCGTGAAATCA 3´ 24R 5´ AGGCTAAGCGTTTTGAGCTG 3´<br />

46


Table 4.Data used for haplogroups frequency table<br />

Populatsions<br />

Haplogroups<br />

Language<br />

Family Location Country References<br />

n A B C D X D4h3<br />

Kuna 113 82 31 0 0 0 0 Chibchan<br />

Central<br />

America Panama Tamm 2007, Batista 1995, Torroni 1993a<br />

Central<br />

Embera 83 19 44 20 0 0 0 Choco America Panama/Colombia Tamm 2007, Kolman 1997<br />

Waunana 88 27 27 30 4 0 0 Choco<br />

Central<br />

America Panama/Colombia Tamm 2007, Kolman 1997<br />

Guatuso (Male´ku<br />

Jai´ka)<br />

20 17 3 0 0 0 0 Chibchan Mesoamerica Costa Rica Torroni 94<br />

Boruca 14 3 10 0 1 0 0 Chibchan Mesoamerica Costa Rica Torroni 93a<br />

Bribri/Cabecar 24 13 11 0 0 0 0 Chibchan Mesoamerica Costa Rica Torroni 93a<br />

Huetar 27 19 1 0 7 0 0 Chibchan Mesoamerica Costa Rica Santos 94<br />

Guaymi 16 11 5 0 0 0 0 Chibchan Mesoamerica Panama/Costa Rica Torroni 93a<br />

Ngöbe 123 80 43 0 0 0 0 Chibchan Mesoamerica Panama/Costa Rica Tamm 2007, Kolman 1997<br />

Teribe 20 16 4 0 0 0 0 Chibchan Mesoamerica Panama/Costa Rica Torroni 94<br />

Purépecha 34 20 3 8 3 0 0 isolate Mesoamerica <strong>Mexico</strong> S<strong>and</strong>oval et al., 2009<br />

Maya(contemporary) 78 46 15 12 5 0 0 Mayan Mesoamerica <strong>Mexico</strong>? Schurr 1990, Torroni 1993, S<strong>and</strong>oval et al., 2009<br />

Maya-Xcaret 24 21 1 2 0 0 0 Mayan Mesoamerica Mecico Gonzàlez-Oliver 2001<br />

Mixe 68 26 20 16 6 0 0 Mixe-Zoguean Mesoamerica <strong>Mexico</strong> Kemp 2010, Torroni 1994<br />

<strong>Mixtec</strong> 115 84 19 8 4 0 0 Otomanguean Mesoamerica <strong>Mexico</strong> Kemp 2010, Torroni 1994, S<strong>and</strong>oval et al., 2009<br />

<strong>Mixtec</strong> 29 18 5 4 2 0 0 Otomanguean Mesoamerica <strong>Mexico</strong> present study<br />

Otomí 68 27 17 20 4 0 0 Otomanguean Mesoamerica <strong>Mexico</strong> S<strong>and</strong>oval et al., 2009<br />

Triqui 107 77 30 0 0 0 0 Otomanguean Mesoamerica <strong>Mexico</strong> S<strong>and</strong>oval et al., 2009<br />

Zapotec 103 41 24 30 5 0 0 Otomanguean Mesoamerica <strong>Mexico</strong> Kemp 2010, Torroni 1994<br />

Aztecs 37 23 6 2 6 0 0 Uto-Aztecan Mesoamerica <strong>Mexico</strong> De la Cruz 2008, Kemp 2005<br />

1


Cora 72 22 37 10 3 0 0 Uto-Aztecan Mesoamerica <strong>Mexico</strong> Kemp 2010<br />

<strong>Huichol</strong> 62 19 33 10 0 0 0 Uto-Aztecan Mesoamerica <strong>Mexico</strong> Kemp 2010,<br />

<strong>Huichol</strong> 15 5 7 3 0 0 0 Uto-Aztecan Mesoamerica <strong>Mexico</strong> present study<br />

Nahua-Atopcan 50 19 20 9 2 0 0 Uto-Aztecan Mesoamerica <strong>Mexico</strong> Kemp 2010<br />

Nahua-Cuetzalan 46 29 9 7 1 0 0 Uto-Aztecan Mesoamerica <strong>Mexico</strong> Kemp 2010, Malhi 2003<br />

Xochimilco Nahua 35 27 5 3 0 0 0 Uto-Aztecan Mesoamerica <strong>Mexico</strong> S<strong>and</strong>oval et al., 2009<br />

Zitlala Nahua 14 14 0 0 0 0 0 Uto-Aztecan Mesoamerica <strong>Mexico</strong> S<strong>and</strong>oval et al., 2009<br />

Nahua-Veracruz 35 16 14 3 0 0 2 Uto-Aztecan Mesoamerica <strong>Mexico</strong> S<strong>and</strong>oval et al., 2009<br />

Pima 97 10 3 83 1 0 0 Uto-Aztecan Mesoamerica <strong>Mexico</strong> S<strong>and</strong>oval et al., 2009<br />

Anasazi 25 6 15 0 4 0 0 ? Southwest USA/<strong>Mexico</strong> Forster 1996<br />

Apache 38 24 5 7 2 0 0 Athapaskan Southwest USA Torroni 1993, Lozerenz <strong>and</strong> Smith 1996, Malhi 2003(9)<br />

Navajo 64 33 26 3 0 2 0 Athapaskan Southwest USA Torroni 1993, Lozerenz <strong>and</strong> Smith 1996, Malhi 2003(8)<br />

Zuni 50 8 38 4 0 0 0 Isolate Southwest USA Kemp 2010, Malhi 2003<br />

Jemez 71 0 61 3 0 7 0 Kiowa-Tacoan Southwest USA Kemp 2010, Malhi 2003,<br />

Akimel O´odham 99 4 48 45 1 0 0 Uto-Aztecan Southwest USA Kemp 2010, Malhi 2003<br />

N.Paiute/Shoshoni 94 0 40 9 45 0 0 Uto-Aztecan Southwest USA Kaestle <strong>and</strong> Smith 2001<br />

Tohono O´odham 42 3 24 15 0 0 0 Uto-Aztecan Southwest USA/<strong>Mexico</strong> Kemp 2010, Malhi 2003<br />

Tarahumara 88 27 22 34 4 0 1 Uto-Aztecan Southwest <strong>Mexico</strong> Kemp 2010, Malhi 2008, S<strong>and</strong>oval et al., 2009<br />

Hualapai 76 1 38 37 0 0 0 Yuman Southwest USA Kemp 2010<br />

Cochimi 13 1 6 6 0 0 0 Yuman Southwest <strong>Mexico</strong> Lorenz <strong>and</strong> Smith 1996, Smith et al.2000, Malhi 2003(3)<br />

Delta Yuman 23 0 13 10 0 0 0 Yuman Southwest <strong>Mexico</strong> Lorenz <strong>and</strong> Smith 1996, Smith et al.2000, Malhi 2003(20)<br />

Pai Yuman 27 20 18 7 0 0 0 Yuman Southwest <strong>Mexico</strong> Lorenz <strong>and</strong> Smith 1996, Smith et al.2000, Malhi 2003(11)<br />

River Yuman 22 0 14 8 0 0 0 Yuman Southwest <strong>Mexico</strong> Lorenz <strong>and</strong> Smith 1996, Smith et al.2000, Malhi 2003(1)<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!