18.11.2012 Views

Symmetric Monoidal Categories for Operads - Index of

Symmetric Monoidal Categories for Operads - Index of

Symmetric Monoidal Categories for Operads - Index of

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

140 10 Miscellaneous Examples<br />

10.1.1 Shifted <strong>Operads</strong>. Recall that the shifted operad R[ · ] consists <strong>of</strong> the<br />

collection <strong>of</strong> objects R[m](n) =R(m + n), m, n ∈ N.<br />

In §4.1.4, we use the action <strong>of</strong> Σn on {m +1,...,m+ n} ⊂{1,...,m+ n}<br />

to define an action <strong>of</strong> Σn on R(m + n), <strong>for</strong> every n ∈ N, and to give to the<br />

collection R[m](n), n ∈ N, the structure <strong>of</strong> a Σ∗-object. In the case <strong>of</strong> an<br />

operad, the composites at last positions<br />

R(r + s) ⊗ R(n1) ⊗···⊗R(ns) → R(r + n1 + ···+ ns)<br />

(insert operad units η : 1 → R(1)atpositions1,...,r) provide each object<br />

R[r], r ∈ N, with the additional structure <strong>of</strong> a right R-module.<br />

In §4.1.5, we also observe that the collection {R[r]}r∈N is equipped with<br />

the structure <strong>of</strong> an operad: the action <strong>of</strong> Σm on {1,...,m}⊂{1,...,m+ n}<br />

determines an action <strong>of</strong> Σm on R[m](n) =R(m + n), <strong>for</strong> every m, n ∈ N, and<br />

we use operadic composites at first positions<br />

R(r + s) ⊗ R(m1 + n1) ⊗···⊗R(mr + nr) → R(m1 + n1 + ···+ mr + nr + s)<br />

together with the action <strong>of</strong> appropriate bloc permutations<br />

R(m1 + n1 + ···+ mr + nr + s) � −→ R(m1 + ···+ mr + n1 + ···+ nr + s)<br />

to define composition products:<br />

R[r] ⊗ R[m1] ⊗···⊗R[mr] → R[m1 + ···+ mr].<br />

The axioms <strong>of</strong> operads (in May’s <strong>for</strong>m) imply immediately that the action <strong>of</strong><br />

permutations w ∈ Σm preserves the internal right R-module structure <strong>of</strong> R[m]<br />

and similarly regarding the composition products <strong>of</strong> R[ · ]. Finally, we obtain<br />

that the collection {R[r]}r∈N <strong>for</strong>ms an operad in the symmetric monoidal<br />

category <strong>of</strong> right R-modules.<br />

The morphism <strong>of</strong> §4.1.6<br />

η : R → R[ · ],<br />

which identifies R(m) with the constant part <strong>of</strong> R[m], <strong>for</strong>ms a morphism <strong>of</strong><br />

operads in right R-modules.<br />

In the sequel, we use the notation OR to refer to the category <strong>of</strong> operads<br />

in right R-modules, and the notation R / OR to refer to the comma category<br />

<strong>of</strong> objects under R ∈O, where we identify the objects P(m) underlying an<br />

operad P ∈Owith constant right R-modules to <strong>for</strong>m a functor O→OR. Our<br />

definition makes the operad R[ · ] an object <strong>of</strong> this category R/OR.<br />

10.1.2 Functors on <strong>Operads</strong>. In §4.1.5, we use that S : M ↦→ S(M) defines<br />

a functor <strong>of</strong> symmetric monoidal categories S : M→F to obtain that the<br />

collection {S(R[r],X)}r∈N, associated to any object X ∈E, <strong>for</strong>ms an operad<br />

in E. We obtain similarly that the collection {SR(R[r],A)}r∈N, associatedto<br />

any R-algebra A ∈ RE, <strong>for</strong>ms an operad in E.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!