18.11.2012 Views

Symmetric Monoidal Categories for Operads - Index of

Symmetric Monoidal Categories for Operads - Index of

Symmetric Monoidal Categories for Operads - Index of

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3.1 Recollections: <strong>Operads</strong> 55<br />

In the point-set context, we use the notation p(q1,...,qr) ∈ P(n1+···+nr)<br />

to refer to the composite <strong>of</strong> the elements p ∈ P(r) andq1 ∈ P(n1),...,qr ∈<br />

P(nr) in the operad. The unit morphism is determined by a unit element<br />

1 ∈ P(1).<br />

3.1.3 Partial Composites. We also use partial composites<br />

defined by composites<br />

P(r) ⊗ P(s) ◦e<br />

−→ P(r + s − 1),<br />

P(r) ⊗ P(s) � P(r) ⊗ (1 ⊗···⊗P(s) ⊗···⊗1)<br />

→ P(r) ⊗ (P(1) ⊗···⊗P(s) ⊗···⊗P(1)) μ −→ P(r + s − 1),<br />

where operad units η : I → P(1) are applied at positions k �= e <strong>of</strong> the tensor<br />

product. In the point-set context, we have p ◦e q = p(1,...,q,...,1), where<br />

q ∈ P(s) issetattheeth entry <strong>of</strong> p ∈ P(r).<br />

The unit and associativity relations imply that the composition morphism<br />

<strong>of</strong> an operad is determined by its partial composition products. The unit<br />

and associativity relations <strong>of</strong> the composition morphism have an equivalent<br />

<strong>for</strong>mulation in terms <strong>of</strong> partial composition products (see [46]).<br />

3.1.4 The Intuitive Interpretation <strong>of</strong> <strong>Operads</strong>. The elements <strong>of</strong> an<br />

operad p ∈ P(n) have to be interpreted as operations <strong>of</strong> n-variables<br />

p = p(x1,...,xn).<br />

The composition morphism <strong>of</strong> an operad models composites <strong>of</strong> such operations.<br />

The partial composites represent composites <strong>of</strong> the <strong>for</strong>m<br />

p ◦e q = p(x1,...,xe−1,q(xe,...,xe+n−1),xi+n,...,xm+n−1),<br />

<strong>for</strong> p ∈ P(m), q ∈ P(n). The action <strong>of</strong> permutations w ∈ Σn on P(n) models<br />

permutations <strong>of</strong> variables:<br />

wp = p(x w(1),...,x w(n)).<br />

The unit element 1 ∈ P(1) has to be interpreted as an identity operation<br />

1(x1) =x1.<br />

3.1.5 Free <strong>Operads</strong>. The obvious <strong>for</strong>getful functor U : O → M from<br />

operads to Σ∗-objects has a left adjoint F : M→Owhich maps any Σ∗object<br />

M to an associated free operad F(M).<br />

In the point-set context, the free operad F(M) onaΣ∗-object M consists<br />

roughly <strong>of</strong> all <strong>for</strong>mal composites<br />

(···((ξ1 ◦e2 ξ2) ◦e3 ···) ◦er ξr

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!