18.11.2012 Views

Symmetric Monoidal Categories for Operads - Index of

Symmetric Monoidal Categories for Operads - Index of

Symmetric Monoidal Categories for Operads - Index of

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

170 11 <strong>Symmetric</strong> <strong>Monoidal</strong> Model <strong>Categories</strong> <strong>for</strong> <strong>Operads</strong><br />

defines a weak-equivalence <strong>for</strong> any c<strong>of</strong>ibrant R-module E.Thisassertionisimmediate<br />

<strong>for</strong> a free R-module E = R⊗C,becausewehaveS⊗R(R⊗C) =S⊗C<br />

and η(R ⊗ C) is identified with the morphism ψ ⊗ C : R ⊗ C → S ⊗ C. The<br />

assertion can easily be generalized to c<strong>of</strong>ibrant cell R-modules (by using an<br />

induction on the cell decomposition), because the functors U : R Mod →<br />

dg k Mod and U(ψ ∗ ψ!−) : R Mod → dg k Mod map cell attachments in<br />

R-module to pushouts in dg-modules. Use that any c<strong>of</strong>ibrant R-module is<br />

a retract <strong>of</strong> a c<strong>of</strong>ibrant cell R-module to conclude.<br />

Let F be any left S-module. Let E ∼ −→ ψ ∗ F be a c<strong>of</strong>ibrant replacement <strong>of</strong><br />

ψ ∗ F in the category <strong>of</strong> left R-modules. Use the commutative diagram<br />

η(E)<br />

E<br />

to prove that the composite<br />

∼<br />

η(ψ ∗ (F ))<br />

ψ ∗ (F )<br />

ψ ∗ ψ!(E) ψ ∗ ψ!ψ ∗ (F )<br />

ψ ∗ (ɛ(F ))<br />

ψ ∗ (F )<br />

ψ!(E) → ψ!ψ ∗ (F )<br />

ɛ(F )<br />

−−−→ F<br />

is a weak-equivalence if η(E) :E → ψ ∗ ψ!(E) isso(see§16.1.5).<br />

From these verifications, we conclude that the pair (ψ!,ψ ∗ ) <strong>for</strong>ms a Quillen<br />

equivalence if ψ is a weak-equivalence. ⊓⊔<br />

11.3 <strong>Symmetric</strong> <strong>Monoidal</strong> Model <strong>Categories</strong> over a Base<br />

In the context <strong>of</strong> operads, we use model categories equipped with a symmetric<br />

monoidal structure. With a view to applications in homotopy theory, we have<br />

to put appropriate conditions on the tensor product and to introduce a suitable<br />

notion <strong>of</strong> a symmetric monoidal model category. Good axioms are <strong>for</strong>malized<br />

in [28, §§4.1-4.2]. The purpose <strong>of</strong> this section is to review these axioms<br />

in the relative context <strong>of</strong> symmetric monoidal categories over a base and to<br />

specify which axioms are really necessary <strong>for</strong> our needs.<br />

11.3.1 The Pushout-Product. The pushout-product gives a way to assemble<br />

tensor products <strong>of</strong> (acyclic) c<strong>of</strong>ibrations in symmetric monoidal model<br />

categories. The definition <strong>of</strong> the pushout-product makes sense <strong>for</strong> any bifunctor<br />

T : A×B →X where X is a category with colimits. The pushout-product<br />

<strong>of</strong> morphisms f : A → B and g : C → D is just the morphism<br />

id

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!