18.11.2012 Views

Symmetric Monoidal Categories for Operads - Index of

Symmetric Monoidal Categories for Operads - Index of

Symmetric Monoidal Categories for Operads - Index of

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

15.2 Homotopy Invariance <strong>of</strong> Functors <strong>for</strong> C<strong>of</strong>ibrant Algebras 227<br />

j ⊗ Fr ◦ R : C ⊗ Fr ◦ R → D ⊗ Fr ◦ R<br />

since the functor (M,A) ↦→ SR(M,A) preserves colimits in M.<br />

Consider the more general case <strong>of</strong> a morphism <strong>of</strong> free right R-modules<br />

k ◦ R : K ◦ R → L ◦ R<br />

induced by a c<strong>of</strong>ibration (an acyclic c<strong>of</strong>ibration) <strong>of</strong> Σ∗-objects k : K → L. In<br />

the case <strong>of</strong> a right R-module <strong>of</strong> the <strong>for</strong>m M = K ◦ R, wehave<br />

SR(M,A) =SR(K ◦ R,A)=S(K, A)<br />

by theorem 7.1.1. There<strong>for</strong>e we obtain that the pushout-product<br />

(i∗,f∗) :SR(M,B) �<br />

SR(N,A) → SR(N,B)<br />

SR(M,A)<br />

is identified with the pushout-product<br />

(k∗,f∗) :S(K, B) �<br />

S(K,A)<br />

S(L, A) → S(L, B)<br />

<strong>of</strong> lemma 11.5.1. Thus we can deduce lemma 15.1.1 from the assertion <strong>of</strong><br />

lemma 11.5.1. ⊓⊔<br />

As a corollary, we obtain:<br />

15.1.2 Lemma.<br />

(a) Let M be a c<strong>of</strong>ibrant object in M R. If a morphism <strong>of</strong> R-algebras f : A →<br />

B, whereAis E-c<strong>of</strong>ibrant, <strong>for</strong>ms a E-c<strong>of</strong>ibration (respectively, an acyclic Ec<strong>of</strong>ibration),<br />

then the induced morphism SR(M,f) :SR(M,A) → SR(M,B)<br />

defines a c<strong>of</strong>ibration (respectively, an acyclic c<strong>of</strong>ibration) in E.<br />

(b) Let A be an E-c<strong>of</strong>ibrant R-algebra. The morphism SR(i, A) :SR(M,A) →<br />

SR(N,A) induced by a c<strong>of</strong>ibration (respectively, an acyclic c<strong>of</strong>ibration) <strong>of</strong> right<br />

R-modules i : M → N <strong>for</strong>ms a c<strong>of</strong>ibration (respectively, an acyclic c<strong>of</strong>ibration)<br />

in E. ⊓⊔<br />

And the claim <strong>of</strong> theorem 15.1.A follows immediately from Brown’s lemma.<br />

⊓⊔<br />

15.2 Homotopy Invariance <strong>of</strong> Functors <strong>for</strong> C<strong>of</strong>ibrant<br />

Algebras<br />

In this chapter, we study the homotopy invariance <strong>of</strong> the functors SR(M) :<br />

RE →Eassociated to right R-modules M which are not c<strong>of</strong>ibrant. Our main<br />

result reads:

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!