18.11.2012 Views

Symmetric Monoidal Categories for Operads - Index of

Symmetric Monoidal Categories for Operads - Index of

Symmetric Monoidal Categories for Operads - Index of

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

4.3 Enveloping Algebras 87<br />

4.2.4 Examples: The Case <strong>of</strong> Classical <strong>Operads</strong> in k-Modules. In the<br />

usual examples <strong>of</strong> operads in k-modules, P = C, L, A, the equivalence <strong>of</strong> §4.2.3<br />

returns the following assertions:<br />

(a) Let A be any commutative algebra in k-modules. The structure <strong>of</strong> a<br />

representation <strong>of</strong> A is determined by morphisms μ : E ⊗ A → E and μ :<br />

A ⊗ E → E so that we have the symmetry relation μ(a, x) =μ(x, a), <strong>for</strong> all<br />

a ∈ A, x ∈ E, and the associativity relations<br />

μ(μ(a, b),x)=μ(a, μ(b, x)), μ(μ(a, x),b)=μ(a, μ(x, b)),<br />

μ(μ(x, a),b)=μ(x, a · b),<br />

<strong>for</strong> all a, b ∈ A, x ∈ E, where we also use the notation μ(a, b) =a·b to denote<br />

the product <strong>of</strong> A. As a consequence, the category <strong>of</strong> representations RC(A),<br />

where A is any commutative algebra, is isomorphic to the usual category <strong>of</strong><br />

left A-modules.<br />

(b) Let A be any associative algebra in k-modules. The structure <strong>of</strong> a representation<br />

<strong>of</strong> A is determined by morphisms μ : E⊗A → E and μ : A⊗E → E<br />

so that we have the associativity relations<br />

μ(μ(a, b),x)=μ(a, μ(b, x)), μ(μ(a, x),b)=μ(a, μ(x, b)),<br />

μ(μ(x, a),b)=μ(x, μ(a, b)),<br />

<strong>for</strong> all a, b ∈ A, x ∈ E, where we also use the notation μ(a, b) =a·b to denote<br />

the product <strong>of</strong> A. Hence the category <strong>of</strong> representations RA(A), where A is<br />

any associative algebra, is isomorphic to the usual category <strong>of</strong> A-bimodules.<br />

(c) Let G be any Lie algebra in k-modules. The structure <strong>of</strong> a representation<br />

<strong>of</strong> G is determined by morphisms γ : E ⊗ G → E and γ : G ⊗E → E so that<br />

we have the antisymmetry relation γ(g, x) =γ(x, g), <strong>for</strong> all g ∈ G, x ∈ E,<br />

and the Jacobi relations<br />

γ(γ(g, h),x)+γ(γ(h, x),g)+γ(γ(x, g),h)=0<br />

<strong>for</strong> all g, h ∈ G, x ∈ E, where we also use the notation γ(g, h) =[g, h]todenote<br />

the Lie bracket <strong>of</strong> G. Hence the category <strong>of</strong> representations RL(G), where G is<br />

any Lie algebra, is isomorphic to the usual category <strong>of</strong> representations <strong>of</strong> the<br />

Lie algebra G.<br />

4.3 Enveloping Algebras<br />

The enveloping algebra <strong>of</strong> a P-algebra A is the term UP(A)(1) <strong>of</strong> the enveloping<br />

operad UP(A). The first purpose <strong>of</strong> this section is to prove that<br />

the category <strong>of</strong> representations <strong>of</strong> A is isomorphic to the category <strong>of</strong> left<br />

UP(A)(1)-modules. Then we determine the enveloping algebra <strong>of</strong> algebras

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!