18.11.2012 Views

Symmetric Monoidal Categories for Operads - Index of

Symmetric Monoidal Categories for Operads - Index of

Symmetric Monoidal Categories for Operads - Index of

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

210 13 The (Co)homology <strong>of</strong> Algebras over <strong>Operads</strong><br />

DerP(QA,E)=Hom UP(QA)Mod(Ω 1 P (QA),E)=Hom UP(A)Mod(T 1 P (QA),E)<br />

and E ⊗ UP(QA) Ω 1 P (QA) =E ⊗ UP(A) T 1 P (QA),<br />

where T 1 P (QA) =UP(A) ⊗ UP(QA) Ω 1 P (QA).<br />

The idea is to apply the standard hypercohomology spectral sequence<br />

E st<br />

2 =Ext s UP(A)(Ht(T 1 P (QA)),E),<br />

respectively the standard hyperhomology spectral sequence<br />

E 2 st =TorUP(A) s (E,Ht(T 1 P (QA))),<br />

associated to this dg-hom, respectively tensor product, over the enveloping<br />

algebra UP(A).<br />

The object T 1 P (QA) <strong>for</strong>ms a c<strong>of</strong>ibrant left UP(A)-module by lemma 13.1.10.<br />

As a consequence, the hypercohomology spectral sequence abuts to the cohomology<br />

H ∗ (Hom UP(A)Mod(T 1 P (QA),E)), the hyperhomology spectral sequence<br />

abuts to the homology H∗(E⊗ UP(A)T 1 P (QA)). By definition <strong>of</strong> T 1 P (QA),<br />

we also have Ht(T 1 P (QA)) = H P t (A, UP(A)). Thus we obtain finally:<br />

13.2.2 Proposition (compare with [1, Propositions 5.3.2-5.3.3]). We have<br />

universal coefficient spectral sequences<br />

E 2 s,t =Tor UP(A)<br />

s (E,H P t (A, UP(A))) ⇒ H P s+t(A, E)<br />

and E s,t<br />

2 =Exts UP(A) (HP t (A, UP(A)),E) ⇒ H s−t<br />

P (A, E). ⊓⊔<br />

As a byproduct:<br />

13.2.3 Proposition (compare with [1, Remark 5.3.4] and with [64]). If the<br />

homology H P ∗ (A, UP(A)) vanishes in degree ∗ > 0, then we have<br />

H P ∗ (A, E) =TorUP(A) ∗ (E,Ω 1 P (A)) and H∗ P (A, E) =Ext∗UP(A) (Ω1 P (A),E).<br />

Pro<strong>of</strong>. The condition implies that the universal coefficients spectral sequences<br />

degenerate and the identities <strong>of</strong> the proposition follow. ⊓⊔<br />

Conversely, if the homology HP ∗ (A, E) is given by a Tor-functor over the<br />

enveloping algebra UP(A), then we have necessarily HP ∗(A, UP(A)) = 0, <strong>for</strong><br />

∗ > 0, since Tor UP(A)<br />

∗ (UP(A),F)vanishesindegree∗ > 0 <strong>for</strong> every left UP(A)module<br />

F .<br />

13.2.4 Classical Examples. The identities <strong>of</strong> proposition 13.2.3 are known<br />

to hold <strong>for</strong> the Hochschild (co)homology (case <strong>of</strong> the associative operad P = A)<br />

and <strong>for</strong> the Chevalley-Eilenberg (co)homology (case <strong>of</strong> the Lie operad P = L).<br />

The reader is referred to his favorite textbook. In §17.3, we prove that the<br />

assertion about Hochschild (co)homology is implied by the deeper property,<br />

checked in §10.3, that the module Ω1 A <strong>for</strong>ms a free right A-module, and similarly<br />

as regards the Chevalley (co)homology.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!