26.11.2012 Views

Peptide-Based Drug Design

Peptide-Based Drug Design

Peptide-Based Drug Design

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Cationic Antimicrobial <strong>Peptide</strong>s 155<br />

6. Iwanaga, S. and Kawabata, S. (1998) Evolution and phylogeny of defense molecules<br />

associated with innate immunity in horseshoe crab. Front. Biosci. 3, D973–D984.<br />

7. Imler, J.L. and Bulet, P. (2005) Antimicrobial peptides in Drosophila: structures,<br />

activities and gene regulation. Chem. Immunol. Allergy 86, 1–21.<br />

8. Cannon, J.P., Haire, R.N. and Litman G.W. (2002) Identification of diversified genes<br />

that contain immunoglobulin-like variable regions in a protochordate. Nat. Immunol.<br />

3, 1200–1207.<br />

9. Litman, G.W., Anderson, M.K. and Rast, J.P. (1999) Evolution of antigen binding<br />

receptors. Annu. Rev. Immunol. 17, 109–147.<br />

10. Nochi, T. and Kiyono, H. (2006) Innate immunity in the mucosal immune system.<br />

Curr. Pharm. Des. 12, 4203–4213.<br />

11. Yang, D., Biragyn, A., Hoover, D.M., Lubkowski, J. and Oppenheim, J.J. (2004)<br />

Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived<br />

neurotoxin in host defense. Annu. Rev. Immunol. 22, 181–215.<br />

12. Li, J., Xu, X., Xu, C., et al. (2007) Anti-infection peptidomics of amphibian skin.<br />

Mol. Cell. Proteomics. Epub ahead of print, Jan 31, 2007.<br />

13. Yang, D., Biragyn, A., Kwak, L.W. and Oppenheim, J.J. (2002) Mammalian<br />

defensins in immunity: more than just microbicidal. Trends Immunol. 23, 291–296.<br />

14. Jenssen, H., Hamill, P. and Hancock, R.E.W. (2006) <strong>Peptide</strong> antimicrobial agents.<br />

Clin. Microbiol. Rev. 19, 491–511.<br />

15. Papo, N. and Shai, Y. (2005) Host defense peptides as new weapons in cancer<br />

treatment. Cell. Mol. Life Sci. 62, 784–790.<br />

16. Gallo, R.L., Ono, M., Povsic, T., et al. (1994) Syndecans, cell surface heparan sulfate<br />

proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds.<br />

Proc. Natl. Acad. Sci. USA 91, 11035–11039.<br />

17. Hancock, R.E.W. and Rozek, A. (2002) Role of membranes in the activities of<br />

antimicrobial cationic peptides. FEMS Microbiol. Lett. 206, 143–149.<br />

18. Mani, R., Cady, S.D., Tang, M., Waring, A.J., Lehrer, R.I. and Hong, M. (2006)<br />

Membrane-dependent oligomeric structure and pore formation of a beta-hairpin<br />

antimicrobial peptide in lipid bilayers from solid-state NMR. Proc. Natl. Acad. Sci.<br />

USA 103, 16242–16247.<br />

19. Hwang, P.M. and Vogel, H.J. (1998) Structure-function relationships of antimicrobial<br />

peptides. Biochem. Cell. Biol. 76, 235–246.<br />

20. Gazit, E., Miller, I.R., Biggin, P.C., Sansom, M.S.P., and Shai, Y. (1996) Structure<br />

and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid<br />

membranes. J. Mol. Biol. 258, 860–870.<br />

21. Brogden, K.A. (2005) Antimicrobial peptides: pore formers or metabolic inhibitors<br />

in bacteria? Nat. Rev. Microbiol. 3, 238–250.<br />

22. Paschke, M. (2006) Phage display systems and their applications. Appl. Microbiol.<br />

Biotechnol. 70, 2–11.<br />

23. Westerlund-Wikstrom, B. (2000) <strong>Peptide</strong> display on bacterial flagella: principles<br />

and applications. Int. J. Med. Microbiol. 290, 223–230.<br />

24. Yan, X. and Xu, Z. (2006) Ribosome-display technology: applications for directed<br />

evolution of functional proteins. <strong>Drug</strong> Discov. Today 11, 911–916.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!