12.07.2015 Views

Ivancevic_Applied-Diff-Geom

Ivancevic_Applied-Diff-Geom

Ivancevic_Applied-Diff-Geom

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1282 <strong>Applied</strong> <strong>Diff</strong>erential <strong>Geom</strong>etry: A Modern IntroductionSeiberg-Witten monopoles. Int.J.Theor.Phys. 37, 925-956.Oja, E. (1982). A simplified neuron modeled as a principal component analyzer.J. Math. Biol. 15, 267–273.Olshanetsky, M.A., Perelomov, A.M. (1976). Completely integrable Hamiltoniansystems connected with semisimple Lie algebras, Inventiones Math. 37, 93-108.Olshanetsky, M.A., Perelomov, A.M. (1981). Classical integrable finitedimensionalsystems related to Lie algebras, Phys. Rep. 71C, 313-400.Olver, P.J. (1986). Applications of Lie Groups to <strong>Diff</strong>erential Equations (2nd ed.)Graduate Texts in Mathematics, vol. 107, Springer, New York.Omohundro, S.M. (1986). <strong>Geom</strong>etric Perturbation Theory in Physics. World Scientific,Singapore.Ooguri, H. (1992). Partition Functions and Topology-Changing Amplitudes inthe 3D Lattice Gravity of Ponzano and Regge. Nucl. Phys. B382, 276.Ooguri, H. (1992). Topological Lattice Models in Four Dimensions. Mod. Phys.Lett. A7, 2799-2810.Ooguri, H., Strominger, A., Vafa, C. (2004). Black hole attractors and the topologicalstring. Phys. Rev. D 70, 106007.Ori, A., Piran, T. (1987). Naked singularities in self-similar spherical gravitationalcollapse. Phys. Rev. Lett., 59, 2137–2140.Oriti, D. (2001). Spacetime geometry from algebra: Spin foam models for nonperturbativequantum gravity. Rept. Prog. Phys. 64, 1489–1544.Oseledets, V.I. (1968). A Multiplicative Ergodic Theorem: Characteristic LyapunovExponents of Dynamical Systems. Trans. Moscow Math. Soc., 19,197–231.Ott, E., Grebogi, C., Yorke, J.A. (1990). Controlling chaos. Phys. Rev. Lett., 64,1196–1199.Ozsvath, I. (1970). Dustfilled universes of class II and III. J. Math. Phys., 11,2871–2883.Pappas, G.J., Lafferriere, G., Sastry, S. (2000). Hierarchically consistent controlsystems. IEEE Trans. Aut. Con., 45(6), 1144–1160.Pappas, G.J., Simic, S. (2002). Consistent hierarchies of affine nonlinear systems.IEEE Trans. Aut. Con., 47(5), 745–756.Park, J., Chung, W.-K. (2005). <strong>Geom</strong>etric Integration on Euclidean Group WithApplication to Articulated Multibody Systems. IEEE Trans. Rob. 21(5),850–863.Park, J.K., Steiglitz, K. and Thurston, W.P., (1986). Soliton–like Behavior inAutomata. Physica D, 19, 423–432.Paufler, C., Römer, H. (2002). The geometry of Hamiltonian n–vector–fields inmultisymplectic field theory. J. <strong>Geom</strong>. Phys. 44(1), 52–69.Paul, W., Baschnagel, J. (1999). Stochastic Processes: from Physics to Finance.Springer, Berlin.Pearce, C.E.M., <strong>Ivancevic</strong>, V. (2003). A generalised Hamiltonian model for thedynamics of human motion. In <strong>Diff</strong>erential Equations and Applications,Vol. 2, Eds. Y.J. Cho, J.K. Kim and K.S. Ha, Nova Science, New York.Pearce, C.E.M., <strong>Ivancevic</strong>, V. (2004). A qualitative Hamiltonian model for the

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!