12.07.2015 Views

Ivancevic_Applied-Diff-Geom

Ivancevic_Applied-Diff-Geom

Ivancevic_Applied-Diff-Geom

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Applied</strong> Manifold <strong>Geom</strong>etry 233itly:(P˙v1 1 = P13 max1 + v1min+ sign(P1 2 ) vmax 1 + v1min22P˙1 2 = P1(− 3 ωmax 1 + ω min1− sign(P1 1 ) ωmax2(P˙ω1 3 = P12 max1 + ω min1+ sign(P1 1 ) ωmax2),1 − ω min121 − ω min12(P˙v2 1 = P23 max2 + v2min+ sign(P2 2 ) vmax 2 + v2min22P˙2 2 = P2(− 3 ωmax 2 + ω min2− sign(P2 1 ) ωmax2(P˙ω2 3 = P22 max2 + ω min2+ sign(P2 1 ) ωmax2),),2 − ω min222 − ω min22).),),The final conditions for the variables P j 1 (t) and P j 2 (t) are get from theboundary of the safe set asP j 1 (0) =< d 1l(g), g 1 ξ j >, P j 2 (0) =< d 2l(g), g 2 ξ j >,where d 1 is the derivative of l taken with respect to its first argument g 1 only(and similarly for d 2 ). In this way, P j 1 (t) and P j 2 (t) are get for t ≤ 0. Oncethis has been calculated, the optimal input u ∗ (t) and the worst disturbanced ∗ (t) are given respectively as⎧ { ω⎪⎨ ω ∗ max1 if P1 1 (t) > 01(t) =u ∗ ω min1 if P1 1 (t) < 0(t) = { v ⎪⎩ v1(t) ∗ max1 if P1 2 (t) > 0=v1 min if P1 2 (t) < 0⎧ { ω⎪⎨ ω ∗ max2 if P2 1 (t) > 02(t) =d ∗ ω min2 if P2 1 (t) < 0(t) = { v ⎪⎩ v2(t) ∗ max2 if P2 2 (t) > 0=v2 min if P2 2 (t) < 03.8.5.4 Nash Solutions for Multi–Vehicle ManoeuvresThe methodology introduced in the previous sections can be generalized tofind conflict–resolutions for multi–vehicle manoeuvres. Consider the three–.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!