12.07.2015 Views

TCSPC for FLIM and FRET in - Boston Electronics Corporation

TCSPC for FLIM and FRET in - Boston Electronics Corporation

TCSPC for FLIM and FRET in - Boston Electronics Corporation

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

[19] P.T.C. So, T. French, E. Gratton, A frequency doma<strong>in</strong> microscope us<strong>in</strong>g a fast-scan CCD camera. Proc. SPIE 2137(1994) 83-92[20] M. Straub, S. W. Hell, Fluorescence lifetime three-dimensional microscopy with picosecond precision us<strong>in</strong>g amultifocal multiphoton mocroscope. Appl. Phys. Lett. 73 (1998) 1769-1771[21] A. Squire, P.J. Verveer, P.I.H. Bastiaens: Multiple frequency fluorescence lifetime imag<strong>in</strong>g microscopy. J.Microsc. 197, 136-149 (2000).[22] M.A. Neil, A. Squire, R. Juskaitas, P.I. Bastiaens, T. Wilson, Wide-field fluorescence microscopy with laserillum<strong>in</strong>ation. J. Microsc. 197 (2000) 1-4[23] M.J. Cole, J.Siegel, R. Dowl<strong>in</strong>g, M.J. Dayel, D. Parsons-Karavassilis, P.M. French, M.J. Lever, L.O. Sucharov,M.A. Neil, R. Juskaitas, T. Wilson, Time-doma<strong>in</strong> whole-field lifetime imag<strong>in</strong>g with optical section<strong>in</strong>g. J. Microsc.203 (2001) 246-257[24] Betzig, E., Trautmann, J.K., Near-field optics: Microscopy, spectroscopy <strong>and</strong> surface modification beyond thediffraction limit. Science 257, 189-195[25] Betzig, E., Trautmann, J.K.,Harris, T.D., We<strong>in</strong>er, J.S., Kostelak, R.L., Break<strong>in</strong>g the diffraction barrier: Opticalmicroscopy on a nanometric scale. Science 251 (1991) 1468-1470[26] Dunn, R.C. Near-field scann<strong>in</strong>g optical microscopy. Chem. Rev. 99 (1999) 2891-2928[27] Hollars, C.W., Dunn, R.C., Submicron fluorescence, topology, <strong>and</strong> compliance measurements of phase-separatedlipid monolayers us<strong>in</strong>g tapp<strong>in</strong>g-mode near-fiel scann<strong>in</strong>g optical microscopy. J. Phys. Chem. B. 101, 6313-6317[28] Kirsch, A.K., Subramaniam, V., Jenei, A., Jov<strong>in</strong>, T.M., Fluorescence Resonance transfer detected by scann<strong>in</strong>g nearfieldoptical microscopy. J. Microsc. 194 (1999) 448-454[29] Femtolight series fiber lasers, IMRA America Inc., www.imra.com[30] Pulsed diode lasers, PicoQuant GmbH, www.picoquant.com[31] BDL-450 picosecond diode laser. www.becker-hickl.com[32] BHL-250 pulsed diode lasers. www.becker-hickl.com[33] M. Kress, Th. Meier, T. A. A. El-Tayeb, R. Kemkemer, R. Ste<strong>in</strong>er, A. Rück, Short-pulsed diode lasers as anexcitation source <strong>for</strong> time-resolved fluorescence applications <strong>and</strong> confocal laser scann<strong>in</strong>g microscopy <strong>in</strong> PDT, Proc.SPIE 4431(2001)[33a] A. Rück, F. Dolp, C. Happ, R. Ste<strong>in</strong>er, M. Beil, Fluorescence lifetime imag<strong>in</strong>g (<strong>FLIM</strong>) us<strong>in</strong>g ps pulsed diodelasers <strong>in</strong> laser scann<strong>in</strong>g microscopy. Proc. SPIE 4962-44 (2003)[34] Hidehiro Kume (Chief Editor), Photomultiplier Tube, Hamamatsu Photonics K.K., 1994[35] SPCM-AQR series. www.perk<strong>in</strong>elmer.com/opto[36] S. Cova, S. Lacaiti, M.Ghioni, G. Ripamonti, T.A. Louis, 20-ps tim<strong>in</strong>g resolution with s<strong>in</strong>gle-photon avalanchephotodiodes, Rev. Sci. Instrum. 60, 1989, 1104-1110[37] M. Nagorni, S. W. Hell, 4Pi-confocal microscopy provides three-dimensional images of the microtubule networkwith 100- to 150-nm resolution. J. of Structural Biology 123 (1998) 236-247[38] Ballew, R.M., Demas, J.N., An error analysis of the rapid lifeetime determ<strong>in</strong>ation method <strong>for</strong> the evaluation ofs<strong>in</strong>gle exponential decays. Anal. Chem. 61 (1989) 30-33[39] K. Carlsson, J.P. Philip, Theoretical Investigation of the Signal-to-Noise ratio <strong>for</strong> different fluorescence lifetimeimag<strong>in</strong>g techniques. Proc. SPIE 4622-08 (2002)[40] J. Widengreen, R. Rigler, Mechanisms of photobleach<strong>in</strong>g <strong>in</strong>vestigated by fluorescence correlation spectroscopy.Bioimag<strong>in</strong>g 4 (1996) 149-157[41] A.A. Heikal, W.W. Webb, One- <strong>and</strong> two-photon time-resolved fluorescence spectroscopy of selected fluorescentmarkers: photobleach<strong>in</strong>g, triple-, <strong>and</strong> s<strong>in</strong>glet-state dynamics. Biophys. J. 73 (1999) 260[42 E.J. Sánchez, L. Novotny, G.R. Holtom, X.S. Xie. Room-Temperature fluorescence imag<strong>in</strong>g <strong>and</strong> spectroscopy ofs<strong>in</strong>gle molecules by two-photon fluorescence. J. Phys. Chem. A 101 (1997) 7019-7023[43] G.H. Patterson, D.W. Piston, Photobleach<strong>in</strong>g <strong>in</strong> two-photon exciatation microscopy. Biophys. J. 78 (2000) 2159-216239

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!