03.12.2012 Views

special - Alu-web.de

special - Alu-web.de

special - Alu-web.de

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Giesel Verlag GmbH · Postfach 120158 · D-30907 Isernhagen · www.alu-<strong>web</strong>.<strong>de</strong> – PVST H 13410 – Dt. Post AG – Entgelt bezahlt<br />

Norsk Hydro<br />

Volume 84 · January / February 2008<br />

International Journal for Industry, Research and Application<br />

OFFICIAL MEDIA PARTNER<br />

OFFICIAL INTERNATIONAL<br />

MEDIA SPONSOR<br />

Special 2008<br />

The international<br />

smelting industry<br />

Zero fuel baking –<br />

the total heat<br />

recovery concept<br />

Auto control system<br />

for quality casting<br />

Ebner: <strong>de</strong>manding heat<br />

treatment applications<br />

1/2


Billets ready for shipment.<br />

Continuous<br />

Homogenizing Plant<br />

Continuous Homogenizing Plant.<br />

There are many benefits in one-stop shopping –<br />

even for industrial goods. Reliable, cooperative<br />

planning, specifications, which meet exactly your<br />

<strong>de</strong>mands and individual service-packages to operate<br />

on first-class level throughout the whole lifetime of<br />

the plant – this can be realized by one of the most<br />

experienced suppliers: Hertwich Engineering.<br />

Major benefits<br />

Hertwich Engineering is <strong>de</strong>dicated to leading technology<br />

in the aluminum casthouse. We add value<br />

by <strong>de</strong>signing integrated turnkey solutions. From<br />

melting and remelting to testing and packing. The<br />

results are convincing: highest quality of products<br />

at lowest cost-of-ownership. This has been proven<br />

by numerous plants all over the world.<br />

HERTWICH ENGINEERING GMBH<br />

Weinbergerstrasse 6<br />

5280 Braunau, Austria<br />

Leading technology in the aluminum casthouse.<br />

Phone: +43 (0) 7722 806-0<br />

Fax: +43 (0) 7722 806-122<br />

Continuous Homogenizing Plant.<br />

Continuous Homogenizing Plant<br />

Reliable, maximum homogenizing quality,<br />

uniform for all billets<br />

Lowest labour costs, full automation<br />

Best log straightness, no <strong>de</strong>ep surface marks<br />

Extremly reliable operation, little down-time,<br />

low repair costs<br />

Lowest energy consumption, low power ratings<br />

Flexibility of plant layout<br />

More than 80 plants in operation<br />

E-mail: info@hertwich.com<br />

Internet: www.hertwich.com<br />

We will exhibit at:<br />

TMS 2008<br />

137th Annual International<br />

Meeting & Exhibition<br />

Booth No. 708<br />

March 9 to 13<br />

New Orleans, Louisiana, USA<br />

MEETING your EXPECTATIONS


Volker Karow<br />

Chefredakteur<br />

Editor in Chief<br />

Die <strong>Alu</strong>miniumindustrie<br />

im Sog<br />

<strong>de</strong>r Globalisierung<br />

The aluminium industry<br />

in the wake<br />

of globalisation<br />

Die Globalisierung von Wirtschaft, Politik<br />

und Kultur ist in aller Mun<strong>de</strong>. Neu<br />

ist das Phänomen wahrlich nicht, man<br />

<strong>de</strong>nke nur an <strong>de</strong>n einzigartigen Aufstieg<br />

<strong>de</strong>r Fugger-Dynastie im 15./16.<br />

Jahrhun<strong>de</strong>rt, <strong>de</strong>r auf <strong>de</strong>r Entwicklung<br />

eines internationalen Han<strong>de</strong>ls- und<br />

Bergbaugeschäftes grün<strong>de</strong>te. Zweifellos<br />

nehmen sich diese frühen Ausprägungen<br />

<strong>de</strong>r „Globalisierung“ beschei<strong>de</strong>n<br />

aus, verglichen mit <strong>de</strong>nen unserer<br />

Zeit. Interessant ist <strong>de</strong>r historische<br />

Rekurs <strong>de</strong>nnoch: sind es doch gera<strong>de</strong><br />

in jüngster Zeit die Rohstoffkonzerne,<br />

die wie<strong>de</strong>r ins Blickfeld <strong>de</strong>s Wirtschaftsgeschehens<br />

geraten, die zu<strong>de</strong>m<br />

weltumspannend agieren und zu <strong>de</strong>n<br />

höchst bewerteten zählen.<br />

Auch die <strong>Alu</strong>miniumindustrie ist<br />

in diesen Globalisierungstrend einbezogen<br />

– sowohl durch die Stoffströme<br />

vom Bauxitabbau über die Metallproduktion<br />

bis hin zur Vermarktung<br />

<strong>de</strong>r Endprodukte als auch durch <strong>de</strong>n<br />

Konzentrationsprozess, <strong>de</strong>r auf Unternehmensebene<br />

stattfin<strong>de</strong>t und bei<br />

<strong>de</strong>m es die internationalen Minengesellschaften<br />

sind, die <strong>de</strong>rzeit das<br />

Spiel diktieren. Dabei zeigt sich, dass<br />

es entlang <strong>de</strong>r Wertschöpfungskette<br />

in <strong>de</strong>r <strong>Alu</strong>miniumbranche durchaus<br />

unterschiedliche Ausprägungen und<br />

Arten <strong>de</strong>r Globalisierung gibt. Je nach<br />

<strong>de</strong>n spezifischen Wettbewerbsfaktoren<br />

und Marktbedingungen sind ihre<br />

treiben<strong>de</strong>n Impulse bei Hüttenbetrieben<br />

an<strong>de</strong>re als bei Halbzeugwerken<br />

o<strong>de</strong>r in <strong>de</strong>r Endfertigung, wenngleich<br />

das Streben nach Wachstum und Gewinnmaximierung<br />

schlussendlich bei<br />

allen gleich ist.<br />

Welche wirtschaftlichen Triebkräfte<br />

hinter <strong>de</strong>r Globalisierung stehen,<br />

welchen Verän<strong>de</strong>rungen die Branche<br />

in Zukunft ausgesetzt sein wird, ob<br />

integrierte <strong>Alu</strong>miniumkonzerne ein<br />

Auslaufmo<strong>de</strong>ll sind und kleine und<br />

mittlere Unternehmen eine Überlebenschance<br />

in einer globalisierten<br />

Wirtschaftswelt haben – diesen Fragen<br />

geht ein Beitrag von Bruno Rüttimann<br />

in dieser und <strong>de</strong>r nächsten<br />

Ausgabe <strong>de</strong>r ALUMINIUM nach, auf<br />

<strong>de</strong>n an dieser Stelle beson<strong>de</strong>rs hingewiesen<br />

sein soll. Er bil<strong>de</strong>t das Pendant<br />

zu einem Überblicksartikel über die<br />

Branchenaktivitäten <strong>de</strong>s letzten Jahres<br />

nebst einer Reihe technisch orientierter<br />

Beiträge von namhaften Technologiepartnern<br />

und Ausrüstern <strong>de</strong>r<br />

Branche, die sich im Hütten-Special<br />

wie<strong>de</strong>rfin<strong>de</strong>n.<br />

EDITORIAL<br />

Globalisation of the economy, politics<br />

and culture is taking place all over<br />

the world. True, the phenomenon is<br />

not new: one need only think of the<br />

unprece<strong>de</strong>nted rise of the Fugger dynasty<br />

in the 15 th and 16 th centuries,<br />

which was based on the <strong>de</strong>velopment<br />

of an international trading and mining<br />

business. But there is no doubt that<br />

those early forms of ‘globalisation’<br />

were mo<strong>de</strong>st compared with what is<br />

happening in our own times. Still, the<br />

historical prece<strong>de</strong>nt is interesting: in<br />

very recent times it is precisely the<br />

raw materials concerns which are<br />

again at the focus of economic interest,<br />

which moreover are active across<br />

the world, and which are among the<br />

most highly valued.<br />

The aluminium industry too is<br />

involved in this globalisation trend<br />

– both due to the material flows<br />

from bauxite mining, through metal<br />

production and up to the marketing<br />

of end products, and also due to the<br />

concentration process that has been<br />

taking place at corporate level and<br />

in which it is the mining concerns<br />

which now call the shots. In this, it is<br />

evi<strong>de</strong>nt that along the value-addition<br />

chain in the aluminium industry there<br />

are quite different forms and types of<br />

globalisation. In accordance with the<br />

specific competition factors and market<br />

conditions, the driving impulses<br />

for smelter operation are different<br />

from those of semis plants or for finished-goods<br />

production, even though<br />

the striving for growth and maximum<br />

profits is ultimately common to them<br />

all.<br />

What are the economic driving<br />

forces behind globalisation, what<br />

changes will the branch be exposed<br />

to in times to come, are integrated aluminium<br />

concerns an outmo<strong>de</strong>d concept<br />

and do small and medium-sized<br />

enterprises have a chance to survive<br />

in a globalised economic world?<br />

These questions are <strong>de</strong>alt with in a<br />

contribution by Bruno Rüttimann in<br />

this and the next issue of ALUMIN-<br />

IUM, to which particular reference is<br />

ma<strong>de</strong> at this point. It forms the pendant<br />

to a review article on the branch<br />

activities of last year, besi<strong>de</strong>s a series<br />

of technically orientated contributions<br />

by noted technology partners<br />

and equipment suppliers of the aluminium<br />

branch, to be found in the<br />

Special on smelting.<br />

ALUMINIUM · 1-2/2008 3


INHALT<br />

Der ALUMINIUM-Branchentreff <strong>de</strong>s<br />

Giesel Verlags: www.alu-<strong>web</strong>.<strong>de</strong><br />

4<br />

28<br />

48<br />

56<br />

64<br />

EDITORIAL<br />

Die <strong>Alu</strong>miniumindustrie im Sog <strong>de</strong>r Globalisierung .......................3<br />

AKTUELLES<br />

Personen, Unternehmen, Märkte ............................................6<br />

WIRTSCHAFT<br />

Englischsprachige Artikel: s. nebenstehen<strong>de</strong>s Verzeichnis<br />

<strong>Alu</strong>miniumpreise .............................................................. 12<br />

Produktionsdaten <strong>de</strong>r <strong>de</strong>utschen <strong>Alu</strong>miniumindustrie .................. 14<br />

ECCA: Produktion von beschichtetem <strong>Alu</strong>miniumband legt erneut zu 25<br />

Otto Rudolf Fuchs begeht 80. Geburtstag ................................ 27<br />

EEG-Ausgleichsregelung für stromintensive Betriebe: Ersparnisse<br />

von mehr als einer halben Milliar<strong>de</strong> Euro ................................ 28<br />

SPECIAL 2008: DIE INTERNATIONALE<br />

ALUMINIUM-HÜTTENINDUSTRIE<br />

Englischsprachige Artikel: s. nebenstehen<strong>de</strong>s Verzeichnis ............. 30<br />

MARKT UND TECHNIK<br />

Englischsprachige Artikel: s. nebenstehen<strong>de</strong>s Verzeichnis<br />

Ebner Industrieofenbau: Anspruchsvolle Anwendungen bei<br />

<strong>de</strong>r Wärmebehandlung / Interview mit <strong>de</strong>r Geschäftsführung ........ 66<br />

Siemens liefert Fertigstraße für <strong>Alu</strong>minium-Walzwerk nach China ... 73<br />

UMWELT UND ÖKOLOGIE<br />

Frie<strong>de</strong>nsnobelpreis für IPCC: Ein Quäntchen Ehre auch für<br />

Halvor Kvan<strong>de</strong> ................................................................. 79<br />

BDI-Studie: CO2-Reduzierungspotenzial in NE-Branche nur zu<br />

Lasten <strong>de</strong>r Wettbewerbsfähigkeit möglich ............................... 82<br />

INTERNATIONALE BRANCHENNEWS ................... 83<br />

FORSCHUNG<br />

Englischsprachige Artikel: s. nebenstehen<strong>de</strong>s Verzeichnis<br />

Entstehung von CO2-Emissionen bei <strong>de</strong>r Herstellung von<br />

<strong>Alu</strong>minium-Walzprodukten vor <strong>de</strong>m Hintergrund <strong>de</strong>s nationalen<br />

Emissionshan<strong>de</strong>lssystems ................................................... 96<br />

VERANSTALTUNGEN<br />

RWTH Seminar: Einführung in die Technologie <strong>de</strong>s <strong>Alu</strong>miniums ....102<br />

Termine, Fortbildung ........................................................103<br />

DOKUMENTATION<br />

Neue Bücher ..................................................................100<br />

Literaturservice ...............................................................105<br />

Patente ........................................................................108<br />

Impressum ....................................................................129<br />

Vorschau.......................................................................130<br />

STELLENANGEBOT ...............................................................89<br />

BEZUGSQUELLENVERZEICHNIS .........................112<br />

ALUMINIUM · 1-2/2008


EDITORIAL<br />

The aluminium industry in the wake of globalisation ....................3<br />

NEWS IN BRIEF<br />

People, companies, markets ..................................................7<br />

ECONOMICS<br />

Which globalisation for the aluminium industry? – Part I ............. 16<br />

Marubeni predicts aluminium surplus in 2008 ........................... 23<br />

Rio’s outlook for metals and minerals ..................................... 23<br />

China sets gui<strong>de</strong>lines for domestic aluminium and alumina projects 24<br />

ECCA: production of strip-coated aluminium gains new momentum 25<br />

SPECIAL 2008: THE INTERNATIONAL<br />

ALUMINIUM SMELTING INDUSTRY<br />

Primary aluminium activities at the turn of the year 2007/08 ........ 30<br />

Self-lifting crane mo<strong>de</strong>rnizes ol<strong>de</strong>r potlines .............................. 39<br />

Hydraulic pressing of prebaked ano<strong>de</strong>s for aluminium smelters ...... 40<br />

Zero fuel baking – the total heat recovery concept .................... 44<br />

Best available technology for the fume treatment of ano<strong>de</strong><br />

production plants ............................................................. 48<br />

New generation of FLSmidth Möller direct pot feeding system ...... 54<br />

Metal treatment update ..................................................... 56<br />

Auto control system for quality casting ................................... 61<br />

History of intensive mixing for ano<strong>de</strong> paste used in<br />

aluminium electrolysis ........................................................ 64<br />

MARKETS AND TECHNOLOGY<br />

Ebner Industrieofenbau: Demanding heat treatment applications /<br />

Interview with Ebner management board ....................................66<br />

Siemens supplies new aluminium foil finishing mill .................... 73<br />

<strong>Alu</strong>minium for building and construction in China ...................... 74<br />

European <strong>Alu</strong>minium Renovation Award 2007 .......................... 77<br />

ENVIRONMENT AND ECOLOGY<br />

Articles in German, see in<strong>de</strong>x of contents on the left<br />

Nobel Peace Prize for IPCC: a small slice of glory also for<br />

Halvor Kvan<strong>de</strong> ..........................................................................79<br />

COMPANY NEWS WORLDWIDE<br />

<strong>Alu</strong>minium smelting industry ............................................... 83<br />

Bauxite and alumina activities .............................................. 85<br />

Recycling and secondary smelting ......................................... 86<br />

<strong>Alu</strong>minium semis .............................................................. 88<br />

Suppliers........................................................................ 91<br />

RESEARCH<br />

Articles in German, see in<strong>de</strong>x of contents on the left<br />

Multi-temperature measurement of thermoelectric power for<br />

character isation of solute levels in multi-component industrial<br />

aluminium alloys .............................................................. 92<br />

EVENTS<br />

Review: Incal 2007 – 3 rd International Conference on <strong>Alu</strong>minium ..102<br />

Dates ...........................................................................103<br />

DOCUMENTATION<br />

New books ....................................................................100<br />

Literature service .............................................................105<br />

Imprint .........................................................................129<br />

Preview ........................................................................130<br />

JOB ADVERTISEMENT ...................................... 89<br />

SOURCE OF SUPPLY LISTING ...........................112<br />

ALUMINIUM · 1-2/2008<br />

Inserenten<br />

dieser Ausgabe<br />

List of advertisers<br />

CONTENTS<br />

This issue contains<br />

an enclosure from<br />

Reed Exhibitions<br />

Deutschland GmbH<br />

to which we draw<br />

your kind attention.<br />

66<br />

ABB Switzerland Ltd., Schweiz 31<br />

Alcutec Engineering GmbH 37<br />

Almeq Norway A.S., Norwegen 65<br />

Böhler E<strong>de</strong>lstahl GmbH & Co. KG, Österreich 47<br />

Buss ChemTech AG, Schweiz 55<br />

Coiltec Maschinenvertriebs GmbH 75<br />

Drache Umwelttechnik GmbH 33<br />

Edimet S.p.A., Italien 11<br />

El-Net Consulting AG – Stellenangebot 89<br />

Gesamtverband <strong>de</strong>r <strong>Alu</strong>miniumindustrie e.V. 23<br />

Glama Maschinenbau GmbH 13<br />

Haarmann Holding GmbH 69<br />

Hertwich Engineering GmbH, Österreich 2<br />

High Performance Industrie-Technik GmbH,<br />

Österreich 57<br />

Innovatherm Prof. Dr. Leisenberg<br />

GmbH & Co. KG 53<br />

Inotherm Industrieofen- und<br />

Wärmetechnik GmbH 22, 82<br />

Lucky-Winsun Enterprise Co., Ltd., Taiwan 63<br />

Maschinenfabrik Gustav Eirich<br />

GmbH & Co. KG 43<br />

O.M.S. Impianti Srl, Italien 49<br />

Pa<strong>de</strong>lttherm GmbH 67<br />

Reed Exhibitions Deutschland GmbH 21<br />

Reed Exhibitions India 29<br />

Seco/Warwick S.A., Polen 59<br />

Shanghai Jieru Heavy Industry<br />

Equipment Co. Ltd., China 35<br />

SMS Demag AG 132<br />

5


AKTUELLES<br />

Günter Kirchner<br />

feiert VAR-Jubiläum<br />

Anfang Januar dieses Jahres konnte<br />

Günter Kirchner, Geschäftsführer und<br />

Vorstandsmitglied <strong>de</strong>s Verban<strong>de</strong>s <strong>de</strong>r<br />

<strong>Alu</strong>miniumrecycling-Industrie e.V.<br />

(VAR), Düsseldorf, auf eine 25-jährige<br />

Tätigkeit für <strong>de</strong>n Verband blicken.<br />

Der gelernte Jurist und Rechtsanwalt<br />

wechselte 1983 zur damaligen Vereinigung<br />

<strong>de</strong>r <strong>de</strong>utschen Schmelzhütten<br />

(VDS), nach<strong>de</strong>m er zuvor drei Jahre als<br />

Geschäftsführer <strong>de</strong>s Vereins <strong>de</strong>utscher<br />

Metallhändler (VDM) sein “Handwerk“<br />

in <strong>de</strong>r Welt <strong>de</strong>r NE-Metalle erlernt<br />

hatte. Seit 24 Jahren ist Kirchner<br />

außer<strong>de</strong>m als Generalsekretär in <strong>de</strong>r<br />

Organisation of European <strong>Alu</strong>minium<br />

Refiners and Remelters (OEA) tätig.<br />

Die Redaktion ALUMINIUM gratuliert.<br />

EU plant Emissionshan<strong>de</strong>lspflicht für NE-Metallindustrie<br />

Die EU-Kommission beabsichtigt, das<br />

europäische Emissionshan<strong>de</strong>lssystem<br />

(ETS) auf an<strong>de</strong>re Treibhausgase neben<br />

CO 2 auszu<strong>de</strong>hnen und zusätzliche<br />

Industriebranchen in <strong>de</strong>n Emissionshan<strong>de</strong>l<br />

aufzunehmen. Dazu zählt<br />

auch die Erzeugung und Bearbeitung<br />

von NE-Metallen. So sollen die Produktion<br />

von <strong>Alu</strong>minium (primär und<br />

sekundär) und die Erzeugung und<br />

Bearbeitung von NE-Metallen einschließlich<br />

Gießereien ab 2013 <strong>de</strong>r<br />

Emissionshan<strong>de</strong>lspflicht unterliegen.<br />

Konkret wer<strong>de</strong>n voraussichtlich nur<br />

Anlagen von min<strong>de</strong>stens 20 MW<br />

thermischer Leistung betroffen sein.<br />

Bei Anlagen <strong>de</strong>r <strong>Alu</strong>miniumindustrie<br />

sollen zusätzlich zum Kohlendioxid<br />

die perfluorierten Kohlenstoffe (PFC)<br />

han<strong>de</strong>lspflichtig wer<strong>de</strong>n.<br />

Mit <strong>de</strong>r Integration in <strong>de</strong>n Emissionshan<strong>de</strong>l<br />

wäre für die <strong>de</strong>utsche<br />

<strong>Alu</strong>miniumindustrie eine zusätzliche<br />

Kostenbelastung verbun<strong>de</strong>n, die im<br />

internationalen Wettbewerb nicht<br />

auf die Kun<strong>de</strong>n überwälzt wer<strong>de</strong>n<br />

kann. Die EU-Kommission sieht die<br />

Integration <strong>de</strong>r NE-Metalle in <strong>de</strong>n<br />

Emissionshan<strong>de</strong>l als einen Lösungsweg,<br />

um einen Ausgleich für <strong>de</strong>n<br />

Strompreiseffekt <strong>de</strong>s Emissionshan-<br />

Foto: Scheben<br />

Hamburger Trimet-Hütte<br />

wie<strong>de</strong>r unter Vollauslastung<br />

Seit En<strong>de</strong> 2007 wie<strong>de</strong>r mit voller Kapazität<br />

unterwegs – die Trimet-Hütte in Hamburg<br />

Schneller als angekündigt arbeitet<br />

die Hamburger <strong>Alu</strong>miniumhütte <strong>de</strong>r<br />

Trimet <strong>Alu</strong>minium AG wie<strong>de</strong>r unter<br />

Volllast. Am 14. Dezember 2007 wur<strong>de</strong><br />

<strong>de</strong>r letzte <strong>de</strong>r 270 Elektrolyseöfen<br />

in Betrieb genommen. Damit hat das<br />

<strong>de</strong>ls zu schaffen. Dazu müssten jedoch<br />

stromintensive Prozesse wie die<br />

Erzeugung von Primäraluminium ein<br />

Vielfaches ihrer direkten CO 2 -Emissionen<br />

kostenlos zugeteilt bekommen,<br />

um einen vollständigen Ausgleich für<br />

die Einpreisung <strong>de</strong>r CO 2 -Zertifikate<br />

in <strong>de</strong>n Strompreis zu erreichen.<br />

Zu Jahresbeginn hat die EU-Kommission<br />

bei <strong>de</strong>r Kompensation <strong>de</strong>s<br />

Strompreiseffektes einen Rückzieher<br />

gemacht. Der betreffen<strong>de</strong> Passus über<br />

die kostenlose Überzuteilung von<br />

Zertifikaten an stromintensive Branchen,<br />

die im internationalen Wettbewerb<br />

stehen, wur<strong>de</strong> aus <strong>de</strong>m Entwurf<br />

<strong>de</strong>r Emissionshan<strong>de</strong>lsrichtlinie gestrichen.<br />

Auch die I<strong>de</strong>e, mittels einer<br />

Besteuerung an <strong>de</strong>r EU-Außengrenze<br />

<strong>de</strong>n Produktionskostennachteil innerhalb<br />

<strong>de</strong>r EU für <strong>Alu</strong>minium und<br />

an<strong>de</strong>re energieintensive Produkte<br />

auszugleichen, hat die EU unter Vorbehalt<br />

gestellt. So ist vor <strong>de</strong>m Start<br />

<strong>de</strong>r dritten Phase <strong>de</strong>s Emissionshan<strong>de</strong>ls<br />

eine Prüfung vorgesehen, ob ein<br />

erhebliches Risiko <strong>de</strong>r Abwan<strong>de</strong>rung<br />

von energieintensiven Branchen infolge<br />

<strong>de</strong>r Kostensteigerungen <strong>de</strong>s<br />

Emissionshan<strong>de</strong>ls zu erwarten ist.<br />

Für die Planungs- und Investitions-<br />

Werk seine ursprüngliche Kapazität<br />

von 130.000 Tonnen Primäraluminium<br />

im Jahr erreicht. Die Produktion<br />

<strong>de</strong>r ersten Öfen war am 9. Mai 2007<br />

feierlich gestartet wor<strong>de</strong>n.<br />

Am 1. Dezember 2006 hatte die Trimet<br />

das stillgelegte Werk von Hydro<br />

übernommen. Im Jahresverlauf wur<strong>de</strong>n<br />

250 Mitarbeiter eingestellt. 2008<br />

will Trimet am Hamburger Standort<br />

25 Mio. Euro in die Mo<strong>de</strong>rnisierung<br />

<strong>de</strong>r Ano<strong>de</strong>nfabrik investieren. Dort<br />

wird ein neuer Brennofen mit größerer<br />

Kapazität in Betrieb gehen, <strong>de</strong>r<br />

die Versorgung <strong>de</strong>r Hütte mit Ano<strong>de</strong>n<br />

sicherstellen wird. Auch <strong>de</strong>r Standort<br />

Essen, wo Trimet eine weitere <strong>Alu</strong>miniumhütte<br />

betreibt, wird dann von<br />

Hamburg aus beliefert wer<strong>de</strong>n.<br />

sicherheit <strong>de</strong>r gesamten NE-Metallindustrie<br />

ist es unabdingbar, bereits<br />

heute die Wettbewerbsfähigkeit durch<br />

geeignete Maßnahmen zu sichern<br />

und diese in <strong>de</strong>r Emissionshan<strong>de</strong>lsrichtlinie<br />

zu verankern. Gemeinsam<br />

mit Eurometaux, <strong>de</strong>m europäischen<br />

Dachverband <strong>de</strong>r NE-Metallindustrie,<br />

for<strong>de</strong>rt die WVM zu allererst eine<br />

wirksame Kompensation <strong>de</strong>s Strompreiseffektes.<br />

Dies könnte durch drei<br />

Optionen geschehen:<br />

• die kostenlose Zuteilung von Zertifikaten<br />

direkt an energieintensive<br />

Unternehmen<br />

• die kostenlose Weitergabe <strong>de</strong>r<br />

Zertifikate an energieintensive Unternehmen<br />

im Rahmen von Langfristverträgen<br />

mit <strong>de</strong>r Energiewirtschaft<br />

• die Rückvergütung von Auktionserlösen<br />

an energieintensive Unternehmen.<br />

En<strong>de</strong> Januar 2008 (Anm.: nach Redaktionsschluss)<br />

legt die EU-Kommission<br />

ihren Vorschlag zur Fortsetzung<br />

<strong>de</strong>s Emissionshan<strong>de</strong>ls ab 2013 vor. Wie<br />

bereits im Vorfeld wird sich die WVM<br />

gemeinsam mit <strong>de</strong>n europäischen<br />

Verbän<strong>de</strong>n in Brüssel und Berlin für<br />

eine Kompensation <strong>de</strong>s Strompreiseffektes<br />

einsetzen. Michael Niese, WVM<br />

6 ALUMINIUM · 1-2/2008


Alcoa sells packaging and<br />

consumer businesses to New-Zealand’s Rank Group<br />

Alcoa has agreed to sell its packaging<br />

and consumer businesses for US$2.7<br />

billion in cash to New Zealand’s Rank<br />

Group Ltd. The transaction is expected<br />

to be completed by the end of the<br />

first quarter 2008. The sale inclu<strong>de</strong>s:<br />

• Closure Systems International, a<br />

global manufacturer of plastic and<br />

aluminium packaging closures and<br />

capping equipment for beverage,<br />

food and personal care customers;<br />

• Consumer Products, a leading<br />

manufacturer of Reynolds Wrap<br />

bran<strong>de</strong>d and private label foil,<br />

wraps and bags;<br />

• Flexible Packaging, a manufacturer<br />

of laminated, printed, and<br />

extru<strong>de</strong>d non-rigid packaging<br />

materials such as pouch, blister<br />

packaging and foil lidding for the<br />

pharmaceutical, food and beverage<br />

markets;<br />

ALUMINIUM · 1-2/2008<br />

Photo: Alcoa<br />

• Reynolds Food Packaging, a business<br />

for products, services and<br />

solutions that improve performance<br />

in the catering, <strong>de</strong>li, bakery,<br />

vending and produce industries.<br />

Reynolds Wrap – soon belonging to Rank Group<br />

These packaging businesses have<br />

some 10,000 employees in 22 coun-<br />

NEWS IN BRIEF<br />

tries around the world and generated<br />

US$3.2 billion in revenues and US$95<br />

million in after-tax operating income<br />

in 2006, representing approximately<br />

ten percent of the company’s revenues<br />

and three percent<br />

of its after-tax operating<br />

income.<br />

Alcoa will continue to<br />

operate its flat-rolled can<br />

sheet products serving<br />

the packaging market.<br />

Rank Group is a New<br />

Zealand-based privately<br />

owned company with<br />

a significant packaging<br />

presence, including:<br />

Carter Holt Harvey, SIG<br />

Holding, and Evergreen<br />

Packaging. Rank Group<br />

has worldwi<strong>de</strong> operations and employs<br />

approximately 17,000 people.<br />

With buy-out of Alcan by Rio Tinto, is Kitimat smelter <strong>de</strong>ad?<br />

Questions are being raised about Rio<br />

Tinto Alcan and its ability to construct<br />

a new smelter in Kitimat given the<br />

huge <strong>de</strong>bt Rio Tinto has amassed in<br />

the Alcan buy-out. After all, Rio Tinto<br />

has paid a 33% premium for the Alcan<br />

shares in the US$38.1bn takeover.<br />

Tom Albanese, who was formerly<br />

Alcan’s chief but then moved to Rio<br />

Tinto, finds himself with a <strong>de</strong>bt load<br />

of about US$47bn. Rio Tinto will sell<br />

some Alcan divisions to yield about<br />

US$8bn, leaving a <strong>de</strong>bt of US$39bn<br />

which still will eat up a staggering<br />

US$2bn a year in interest alone. Industry<br />

experts say that in or<strong>de</strong>r for<br />

the <strong>de</strong>al to work, long term aluminium<br />

prices need to be about US$2,770 a<br />

tonne. However, the current spot price<br />

is about US$2,530 per tonne, and analysts<br />

point out that the long term price<br />

will be around US$1,870 per tonne.<br />

That is, of course, unless Rio Tinto is<br />

able to freeze up the supply and drive<br />

up the price of the product; but that<br />

does not seem likely.<br />

Now, what effect will this latest<br />

move have on the dark clouds that<br />

have hung around Kitimat for years?<br />

If Rio Tinto wants to snare some big<br />

money, it could sell its power producing<br />

facilities to another source. That<br />

would free up nee<strong>de</strong>d cash. The company<br />

could (in or<strong>de</strong>r to get the cash<br />

flow going) simply shut down the<br />

Kitimat smelter as a way to reduce<br />

the source of product and simply sell<br />

power to the BC Hydro grid that hands<br />

them a tidy cash flow. They could also<br />

go ahead with the new smelter, but<br />

that requires investing US$2b and the<br />

question is, where does the money<br />

come from?<br />

Realisation of the Kitimat smelter<br />

is becoming less and less likely as Rio<br />

Tinto takes control of Alcan and looks<br />

to see from where it can milk some<br />

much nee<strong>de</strong>d cash. paw<br />

Based on <strong>Alu</strong>minum Association surveys, U.S. primary aluminium production totalled<br />

2.56 million tonnes in 2007, an increase of 12.2 percent over the 2006 total of 2.28 million<br />

tonnes.<br />

7


AKTUELLES<br />

FORMWERK aktuell<br />

Mit neuem Konzept<br />

und Chefredakteur<br />

Wolfgang Bahle (48) hat zum 1. Januar<br />

2008 die Chefredaktion <strong>de</strong>r im Giesel<br />

Verlag erscheinen<strong>de</strong>n Fachzeitung<br />

FORMWERK aktuell übernommen. Bahle<br />

kommt vom Carl Hanser Verlag, München,<br />

wo er seit 2003 die Redaktion <strong>de</strong>s<br />

Magazins Form + Werkzeug leitete. „Mit<br />

Wolfgang Bahle haben wir einen anerkannten<br />

Fachjournalisten gewonnen, <strong>de</strong>r<br />

sich in <strong>de</strong>r Branche bestens auskennt und<br />

über mehr als zwei Jahrzehnte Erfahrung<br />

als Macher von Fachmedien verfügt“,<br />

betont Dietrich Taubert, Herausgeber von<br />

FORMWERK aktuell. Bahle wird die Fachzeitung<br />

mit eigenem Redaktionsbüro von<br />

München aus betreuen.<br />

Nach <strong>de</strong>r Übernahme hat <strong>de</strong>r Giesel<br />

Verlag <strong>de</strong>n Titel komplett umstrukturiert.<br />

Mit <strong>de</strong>r Berufung Bahles zum<br />

Chefredakteur ist diese Phase nun abgeschlossen.<br />

„Aus vielen Magazinen haben<br />

wir eine aktuelle Fachzeitung für <strong>de</strong>n<br />

Formen- und Werkzeugbau gemacht, die<br />

das Fachzeitschriften-Portfolio unseres<br />

Hauses i<strong>de</strong>al ergänzt“, erläutert Taubert<br />

das neue Konzept.<br />

Der Giesel Verlag verfügt als Herausgeber<br />

renommierter Branchentitel wie<br />

<strong>de</strong>r K-Zeitung, Automotive Materials und<br />

<strong>Alu</strong>minium Praxis etc. über ein Industrienetzwerk<br />

und Branchen-Knowhow, das<br />

für <strong>de</strong>n Auf- und Ausbau von FORM-<br />

WERK aktuell beste Voraussetzungen<br />

bietet. Im Zeitungsformat (A3) stellt<br />

sich das Fachblatt nach <strong>de</strong>m Relaunch<br />

nicht nur optisch im neuen Gewand dar,<br />

son<strong>de</strong>rn wird auch inhaltlich mit einem<br />

noch breiter gefächerten Themenangebot<br />

aufwarten. Im Vor<strong>de</strong>rgrund stehen<br />

Nachrichten und Fachberichte aus <strong>de</strong>r<br />

Welt <strong>de</strong>s Formen- und Werkzeugbaus:<br />

von <strong>de</strong>r Produktentwicklung über <strong>de</strong>n<br />

Werkzeug- und Formenbau bis hin zum<br />

Serienbeginn.<br />

Für 2008 sind sechs Ausgaben mit<br />

einer Auflage von jeweils 12.000 Exemplaren<br />

geplant. Die erste Ausgabe startet<br />

im März. Zu <strong>de</strong>n Abonnenten von FORM-<br />

WERK aktuell gehören Entschei<strong>de</strong>r aus<br />

<strong>de</strong>m Form- und Werkzeugbau sowie<br />

aus <strong>de</strong>n Branchen Kunststoff, Stahl,<br />

NE-Metalle, Automotive, Medical und<br />

Composite.<br />

Evonik verkauft Rütgers Chemicals<br />

Die Evonik Industries AG verkauft<br />

ihre Tochtergesellschaft Rütgers Chemicals<br />

an <strong>de</strong>n Finanzinvestor Triton.<br />

Mit <strong>de</strong>m Abschluss <strong>de</strong>r Transaktion<br />

wird im 1. Quartal 2008 gerechnet.<br />

Rütgers Chemicals, ein international<br />

tätiges Unternehmen <strong>de</strong>r Basischemie,<br />

ist Europas führen<strong>de</strong>r Hersteller<br />

von Erzeugnissen <strong>de</strong>r Teerchemie<br />

sowie globaler Rohstofflieferant<br />

<strong>de</strong>r <strong>Alu</strong>minium- und Stahlindustrie.<br />

2006 erzielte das Unternehmen einen<br />

Umsatz von 650 Mio. Euro, das operative<br />

Ergebnis lag bei rund 60 Mio.<br />

Euro. Für 2007 wird ein Umsatz von<br />

rund 700 Mio. Euro erwartet.<br />

Rütgers beschäftigt <strong>de</strong>rzeit weltweit<br />

950 Mitarbeiter und produziert<br />

in Europa sowie Nordamerika an acht<br />

Chemiestandorten. Am Firmensitz in<br />

Castrop-Rauxel wird die weltweit<br />

größte Raffination von Steinkohlen-<br />

Energieoptimierung durch effiziente<br />

Wärmeübertragung im Glühprozess<br />

Das Drahtwerk Elisental W. Erdmann<br />

GmbH & Co., Neuenra<strong>de</strong>, plant die Errichtung<br />

einer innovativen Abkühl-/<br />

Aufwärmstation, um seinen Energieeinsatz<br />

zu optimieren. Das Unternehmen<br />

hat sich auf die Herstellung<br />

von Drähten aus <strong>Alu</strong>minium- und<br />

Magnesiumlegierungen spezialisiert.<br />

Die Drähte müssen einen Glühprozess<br />

durchlaufen, um die beim Ziehprozess<br />

entstan<strong>de</strong>ne Kaltverfestigung<br />

rückgängig zu machen und dadurch<br />

die Umformbarkeit wie<strong>de</strong>r herzustellen.<br />

Ziel <strong>de</strong>s vom Bun<strong>de</strong>sumweltministerium<br />

(BMU) geför<strong>de</strong>rten Vorhabens<br />

ist es, die Abwärme <strong>de</strong>r Drahtcoils für<br />

die Vorwärmung <strong>de</strong>r kalten Coils vor<br />

<strong>de</strong>m Glühvorgang zu nutzen. Dadurch<br />

kann einerseits Heizenergie eingespart<br />

und zugleich die Ofenkapazität<br />

erhöht wer<strong>de</strong>n, da <strong>de</strong>r Abkühlvorgang<br />

bisher zumeist in <strong>de</strong>r Ofenkammer<br />

stattfand. So soll <strong>de</strong>r Prozess<br />

<strong>de</strong>s Abkühlens aus <strong>de</strong>n Kammeröfen<br />

ausgelagert und zusammen mit <strong>de</strong>m<br />

Prozess <strong>de</strong>s Vorwärmens in einer<br />

neuartigen Anlage vereint wer<strong>de</strong>n.<br />

Die geplante Aufwärm-/Abkühlsta-<br />

teer betrieben, weitere Anlagen stehen<br />

in Belgien und Kanada. Im Geschäftsfeld<br />

Aromatics wer<strong>de</strong>n unter<br />

an<strong>de</strong>rem Peche für die <strong>Alu</strong>minium-<br />

und Stahlindustrie produziert. Wachstumschancen<br />

sieht das Unternehmen<br />

in Asien, Brasilien und Russland.<br />

Triton ist eine unabhängige Private<br />

Equity Gesellschaft, <strong>de</strong>ren Investmentstrategie<br />

auf Unternehmen in<br />

<strong>de</strong>utschsprachigen und nordischen<br />

Län<strong>de</strong>rn Europas zielt. Die Gesellschaft<br />

operiert von Standorten in<br />

Frankfurt, Stockholm und London<br />

aus und verwaltet Fonds mit einem<br />

Volumen von 1,7 Mrd. Euro.<br />

Über <strong>de</strong>n Kaufpreis wur<strong>de</strong> Stillschweigen<br />

vereinbart. Der Verkauf<br />

steht unter <strong>de</strong>m Vorbehalt <strong>de</strong>r Zustimmung<br />

durch die zuständigen<br />

Kartellbehör<strong>de</strong>n.<br />

tion für zunächst ein Glühofenpaar<br />

besteht aus einer Thermokammer,<br />

in <strong>de</strong>r ein Ventilator für eine starke<br />

Luftumwälzung und damit gleichmäßige<br />

Verteilung <strong>de</strong>r Wärme sorgt. Ein<br />

vergleichbares Gebläse befin<strong>de</strong>t sich<br />

in <strong>de</strong>n Glühöfen, das nun nicht mehr<br />

benötigt wird.<br />

Durch die geplante Aufwärm-/Abkühlstation<br />

kann Energie eingespart<br />

wer<strong>de</strong>n. Die Temperatur eines geglühten<br />

Coils beträgt im Schnitt circa<br />

500 °C, das entspricht bei einem<br />

Coilgewicht von zwei Tonnen einem<br />

Wärmeinhalt von ca. 860.000 kJ bzw.<br />

239 kWh. Das Unternehmen schätzt,<br />

dass mit <strong>de</strong>r Kombistation ein kalter<br />

Coil auf eine Temperatur von 150 °C<br />

vorgewärmt wer<strong>de</strong>n kann. Der Wärmeinhalt<br />

wird damit auf rund 233.000 kJ<br />

bzw. 64 kWh erhöht.<br />

Bei erfolgreicher Umsetzung <strong>de</strong>s<br />

Vorhabens will das Unternehmen<br />

auch die übrigen fünf Ofenpaare mit<br />

diesen Stationen ausstatten. Damit<br />

könnten im Werk insgesamt rund<br />

220 Tonnen CO 2 pro Jahr eingespart<br />

wer<strong>de</strong>n. Das BMU för<strong>de</strong>rt das Projekt<br />

mit 42.000 Euro.<br />

8 ALUMINIUM · 1-2/2008


European <strong>Alu</strong>minium Award 2008<br />

An opportunity to be in the limelight<br />

When the ‘<strong>Alu</strong>minium 2008’ tra<strong>de</strong> fair<br />

opens its gates on 23 September, the<br />

international aluminium community<br />

will attend an event that has over<br />

the years <strong>de</strong>veloped to become the<br />

number-one meeting place for the industry<br />

and its applications. More than<br />

700 exhibitors from 40 countries will<br />

present their innovations to 16,000<br />

high-calibre tra<strong>de</strong> visitors from about<br />

100 countries.<br />

The tra<strong>de</strong> fair is a good opportunity<br />

to take part in the competition<br />

for the European <strong>Alu</strong>minium Award<br />

that recognises the highest standards<br />

of excellence in innovations for the<br />

aluminium industry and honours<br />

companies for their outstanding<br />

achievement. The Award competition<br />

is once again being organised by the<br />

<strong>Alu</strong>minium Centrum (Houten / The<br />

Netherlands) in conjunction with the<br />

European and the German aluminium<br />

associations, EAA and GDA, as well<br />

as the organiser of <strong>Alu</strong>minium 2008,<br />

Reed Exhibitions.<br />

The competition is a platform for<br />

companies to <strong>de</strong>monstrate their innovative<br />

capability and offers winners a<br />

‘Put up or shut up’ <strong>de</strong>adline for BHP Billiton<br />

The Takeover Panel has imposed a <strong>de</strong>adline<br />

of 6 February 2008, by which BHP<br />

Billiton has to either announce a firm<br />

intention to make an offer for Rio Tinto<br />

plc un<strong>de</strong>r Rule 2.5 of the UK Takeover<br />

Co<strong>de</strong> or state that it does not intend to<br />

make an offer. If BHP refuses a formal<br />

bid for Rio it will be bound by Rule 2.8<br />

restrictions for six months from the date<br />

of its announcement.<br />

Rio Tinto welcomed this ‘put up or<br />

shut up’ <strong>de</strong>adline. The Board unanimously<br />

rejected BHP’s three-for-one share<br />

offer submitted early in November. “By 6<br />

February, BHP Billiton will have had three<br />

months to make a <strong>de</strong>cision. Rio Tinto<br />

believes it is in the interests of the Group<br />

and its sharehol<strong>de</strong>rs that this period of<br />

uncertainty is brought to an end”, the<br />

company announced. Rio Chairman Paul<br />

ALUMINIUM · 1-2/2008<br />

boost in marketing and exposure. As<br />

one of the 2006 winners, Mr. Cavezzan<br />

from Castaldi Illuminazione, said:<br />

“Inquiries for the product started to<br />

raise higher than ever before.” The<br />

aims for the European <strong>Alu</strong>minium<br />

Award 2008 are as follows:<br />

• To present aluminium to a broad<br />

public as an innovative, mo<strong>de</strong>rn, sustainable<br />

and ecological material<br />

• To honour companies that invest<br />

money and energy in <strong>de</strong>veloping new<br />

and outstanding products<br />

• To present the aluminium industry<br />

as responsible, with an interest in forward-looking<br />

<strong>de</strong>velopment<br />

• To highlight the capability of the<br />

industry regarding new applications<br />

• To add further value to the exhibition<br />

visitors and the exhibition’s <strong>special</strong><br />

programme.<br />

Designers, buil<strong>de</strong>rs, manufacturers<br />

as well as importers and constructors<br />

may participate in the 2008 Award.<br />

The following criteria will be taken<br />

into account in the assessment of the<br />

entries:<br />

• Originality and functionality of<br />

the use of the material: the <strong>de</strong>gree to<br />

Skinner ad<strong>de</strong>d: “Rio Tinto‘s very strong<br />

existing portfolio will create significant<br />

future value for sharehol<strong>de</strong>rs. We have<br />

been very clear as to where we stand and<br />

feel it is time for BHP to do likewise.”<br />

To fend off BHP’s advances Rio announced<br />

at the end of November that<br />

it will increase its 2007 divi<strong>de</strong>nd by 30<br />

percent and raise its divestment target by<br />

50 percent to US$15bn. Furthermore, the<br />

prospect of “an exceptional growth strategy<br />

in iron ore and a strong pricing outlook,<br />

with a conceptual pathway to treble<br />

production to over 600 million tonnes per<br />

annum” (company report) is another cornerstone<br />

to retain in<strong>de</strong>pen<strong>de</strong>nce.<br />

Latest news close to editorial <strong>de</strong>adline:<br />

English papers headline that ‘BHP<br />

prepares to go hostile in Rio bid battle’<br />

(Sunday Telegraph).<br />

NEWS IN BRIEF<br />

which the metal aluminium is used in<br />

an original and useful manner<br />

• Functionality of the product: the<br />

<strong>de</strong>gree to which the part meets both<br />

its primary user function and its technological<br />

function, as a result of the<br />

use of materials, construction and any<br />

ergonomical adjustments<br />

• Design: the <strong>de</strong>gree to which the <strong>de</strong>sign<br />

as a whole achieves a harmonic<br />

unity or a solution – by the construction<br />

of the <strong>de</strong>sign and the <strong>de</strong>tails of<br />

the shape, all this in relation to the<br />

material used<br />

• Durability: in relation to life cycle<br />

costs<br />

• Recycling: the possibility of recycling<br />

the applied materials and the<br />

raw materials used<br />

• Representativeness and promotional<br />

value for aluminium<br />

• The <strong>de</strong>signs must have been taken<br />

into production<br />

• Products or projects must be entered<br />

on one‘s own initiative.<br />

Further information about the European<br />

<strong>Alu</strong>minium Award 2008 and<br />

<strong>de</strong>tails of how to enter are available<br />

on www.aluminium-award.com.<br />

Corus to sell its<br />

smelters in Germany<br />

and The Netherlands<br />

Corus and <strong>Alu</strong>minium Industrial Acquisition<br />

Company Ltd (AIAC) have<br />

signed a non-binding letter of intent<br />

for the proposed acquisition of Corus’<br />

aluminium smelters by an affiliate of<br />

AIAC for an undisclosed sum. Internal<br />

consultation and advice processes<br />

related to the transaction have begun.<br />

A sale and purchase agreement would<br />

only be entered into once these processes<br />

are completed. The proposed<br />

transaction may be subject to certain<br />

external regulatory clearances. The<br />

two smelters are based at Delfzijl in<br />

the Netherlands and at Voer<strong>de</strong> in Germany<br />

and produce over 200,000 tpy of<br />

primary aluminium. The smelters employ<br />

481 people in Germany and 475<br />

people in the Netherlands. paw<br />

9


AKTUELLES<br />

Ernüchterung im Fenstermarkt<br />

Der <strong>de</strong>utsche Fenstermarkt ist 2007<br />

kräftig eingebrochen: Der Absatz sank<br />

um 7,8 Prozent; das Marktvolumen<br />

beläuft sich nun auf 11,7 Mio. Fenstereinheiten<br />

(1 FE = 1,69 m²). Einen<br />

<strong>de</strong>rart massiven Nachfrageeinbruch<br />

hatte die Branche nach <strong>de</strong>m fulminanten<br />

Wachstum 2006 (+ 9,6%) nicht<br />

erwartet. Der Außentürenmarkt ging<br />

um 4,5 Prozent auf 1,1 Mio. Einheiten<br />

(2006: + 5,4%) zurück. Gemessen am<br />

Absatz ist <strong>de</strong>r Umsatz bei Fenster<br />

und Türen aufgrund <strong>de</strong>r steigen<strong>de</strong>n<br />

Werthaltigkeit etwas weniger drastisch<br />

ausgefallen. Soweit die Ergebnisse<br />

einer aktuelle Studie, die von<br />

Branchenverbän<strong>de</strong>n gemeinsam mit<br />

<strong>de</strong>m Marktforschungsinstitut Heinze<br />

erarbeitet wur<strong>de</strong>n. Für 2008 wird sowohl<br />

im Fenster- als auch im Außentürenmarkt<br />

wie<strong>de</strong>r eine mo<strong>de</strong>rate<br />

Belebung erwartet.<br />

Zum Jahreswechsel gab speziell<br />

<strong>de</strong>r Wohnungsbau ein düsteres Bild<br />

ab. Wie befürchtet brachen aufgrund<br />

<strong>de</strong>s Wegfalls <strong>de</strong>r Eigenheimzulage<br />

und <strong>de</strong>r Mehrwertsteuererhöhung<br />

Anfang 2007 die Baufertigstellungs-<br />

daten massiv ein. Doch auch die<br />

vorwiegend energetische Mo<strong>de</strong>rnisierung<br />

und Renovierung von Wohngebäu<strong>de</strong>n<br />

konnte sich wi<strong>de</strong>r Erwarten<br />

<strong>de</strong>m Abwärtssog nicht entziehen.<br />

Diese bei<strong>de</strong>n Negativeffekte konnten<br />

auch durch die Nachfragebelebung<br />

im Nicht-Wohnbau nicht ausgegli-<br />

<strong>Alu</strong>minium-Rahmenmaterial konnte sich<br />

2007 <strong>de</strong>m Absatzeinbruch bei Fenstern<br />

und Türen entziehen<br />

chen wer<strong>de</strong>n, so dass 2007 <strong>de</strong>r Fenstermarkt<br />

in <strong>de</strong>n Sog <strong>de</strong>r negativen<br />

Bauinvestitionsentwicklung geriet.<br />

„Diese Marktentwicklung ist umso<br />

unerwarteter, als die in <strong>de</strong>r breiten Öffentlichkeit<br />

geführte Diskussion über<br />

Energieeinsparung und Klimaschutz<br />

sowie die exorbitant steigen<strong>de</strong>n<br />

Energie- und Strompreise eine <strong>de</strong>utliche<br />

Nachfragebelebung nach energieeffizienten<br />

Fenstern hätten erwarten<br />

lassen“, kommentierte Ulrich<br />

Tschorn, Geschäftsführer <strong>de</strong>s Verban<strong>de</strong>s<br />

<strong>de</strong>r Fenster- und Fassa<strong>de</strong>nhersteller<br />

in Frankfurt die Marktlage.<br />

Der erfreuliche Anstieg im Industriebau,<br />

bei Büroimmobilien, Lagergebäu<strong>de</strong>n<br />

und Hotels brachte eine<br />

Verschiebung <strong>de</strong>r Rahmenmaterialanteile<br />

zugunsten von <strong>Alu</strong>minium<br />

(+5,0%).<br />

Für 2008 erwartet die Branche ein<br />

beschei<strong>de</strong>nes Wachstum von 1,1 Prozent<br />

auf 11,8 Mio. Fenstereinheiten.<br />

Für <strong>de</strong>n Außentürenmarkt wird ein<br />

kleiner Zuwachs von 0,4 Prozent prognostiziert.<br />

Die Zuversicht auf eine<br />

leichte Belebung <strong>de</strong>s Marktes stützt<br />

sich auf die steigen<strong>de</strong> Nachfrage im<br />

Bereich <strong>de</strong>r energetischen Gebäu<strong>de</strong>mo<strong>de</strong>rnisierung<br />

im privaten und vor<br />

allem im öffentlichen Immobilienbestand.<br />

Deutschland 2007<br />

Sinken<strong>de</strong>r Energieverbrauch trotz Wirtschaftswachstum<br />

Der Energieverbrauch ist 2007 in<br />

Deutschland mit 13.842 Petajoule auf<br />

das niedrigste Niveau seit <strong>de</strong>r Wie<strong>de</strong>rvereinigung<br />

abgesunken. Gegenüber<br />

2006 beträgt <strong>de</strong>r Rückgang 5,0 Prozent,<br />

gegenüber 1990 7,1 Prozent, so<br />

die aktuellen Zahlen <strong>de</strong>r Arbeitsgemeinschaft<br />

Energiebilanzen.<br />

10 ALUMINIUM · 1-2/2008<br />

Foto: www.alufenster.at<br />

Bei einem Anstieg <strong>de</strong>r Wirtschaftsleistung<br />

um 2,4 Prozent gegenüber <strong>de</strong>m<br />

Vorjahr hat sich <strong>de</strong>r spezifische Primärenergieverbrauch<br />

2007 unbereinigt<br />

(ohne Witterungseffekte) um 7,5<br />

Prozent und bereinigt um rund sechs<br />

Prozent verbessert. Der spezifische<br />

Energieverbrauch (unbereinigt) hat<br />

sich seit 1990 damit um rund zwei<br />

Prozent pro Jahr verringert.<br />

Mit <strong>de</strong>m rückläufigen Energieverbrauch<br />

sind auch die energiebedingten<br />

CO 2 -Emissionen <strong>de</strong>utlich gesunken.<br />

Nach ersten Abschätzungen <strong>de</strong>s<br />

Bun<strong>de</strong>sministeriums für Wirtschaft<br />

sind sie 2007 gegenüber <strong>de</strong>m Vorjahr<br />

um 3,6 Prozent gesunken; gegenüber<br />

1990 beträgt <strong>de</strong>r Rückgang 19,3 Prozent.<br />

Damit ist Deutschland auf gutem<br />

Weg, seine Kyoto-Verpflichtung (Reduktion<br />

um 21 Prozent bis 2012) zu<br />

erfüllen.


<strong>Alu</strong>minium India 2008 makes impressive stri<strong>de</strong>s<br />

<strong>Alu</strong>minium India 2008, the International<br />

Conference and Exhibition will<br />

be held in Mumbai from 22 to 24 February<br />

in or<strong>de</strong>r to address the needs<br />

of the Indian aluminium industry in<br />

the context of global markets and new<br />

technologies. The tra<strong>de</strong> show has confirmed<br />

participation of about 70 exhibitors,<br />

which will display the latest<br />

technology, trends and applications<br />

from across the world. A formidable<br />

international participation already<br />

pegged at 60 percent leaves nothing<br />

to imagine. Tra<strong>de</strong> visitors to the show<br />

can very well expect a world of aluminium<br />

on and can benefit in an atmosphere<br />

charged with productivity.<br />

The show has the support of the<br />

Ministries of Mines, Science and<br />

Technology as well as the leading associations<br />

like Fe<strong>de</strong>ration of Mineral<br />

and Metal Industries, Cable and Conductors<br />

Manufacturer Association<br />

promises to be the most comprehensive<br />

platform on aluminium in India.<br />

A host of visitor viz CEO’s, directors,<br />

ALUMINIUM · 1-2/2008<br />

plant and process managers, entrepreneurs,<br />

consultants, senior bureaucrats,<br />

stu<strong>de</strong>nts amongst others are expected<br />

to visit and witness the future<br />

unfold. The silver lining is the high<br />

profile inauguration of the show by<br />

the Minister of Mines accompanied<br />

by the Secretary, Mines and other<br />

senior government officials from various<br />

states. The cutting edge international<br />

conference Alcastek will see a<br />

large number of foreign participants<br />

and presentations on best practices<br />

across the world. Mr. G. Kirchner,<br />

Chairman of the Global <strong>Alu</strong>minium<br />

Recycling Committee from Germany,<br />

will speak on the ‘Current and Future<br />

Perspectives of Global Recycling of<br />

<strong>Alu</strong>minium’. Director of Vedanta Resources,<br />

Mr. S. K. Timotia will speak<br />

on the related issue of ‘Current Energy<br />

and Environmental Issues in <strong>Alu</strong>minium<br />

Industry ‘.<br />

<strong>Alu</strong>minium India 2008 will host<br />

the technical session which is being<br />

divi<strong>de</strong>d in various segments to meet<br />

NEWS IN BRIEF<br />

the <strong>de</strong>mands of the industry. The plenary<br />

session is going to discuss the<br />

global trends by the lea<strong>de</strong>rs of the aluminium<br />

industry. Mr. P. Suri, Presi<strong>de</strong>nt,<br />

Balco, India will be addressing<br />

the plenary session ‘an overview of<br />

the industry’; he has been associated<br />

with the industry almost all his life.<br />

The metal has varied uses in almost<br />

every industry, from aircrafts to automobiles,<br />

from power cables to foils.<br />

One reason is that aluminium can be<br />

fashioned into countless shapes in a<br />

variety of applications because of its<br />

basic malleable qualities. <strong>Alu</strong>minium<br />

is gaining ground in the transportation<br />

industry because of its light weight<br />

which translates into higher payloads<br />

and lower fuel consumption. Indian<br />

railways is increasing its consumption<br />

of aluminium in railway wagons.<br />

The aerospace industry is another<br />

large consumer of aluminium. The<br />

automotive sector has also increased<br />

use of the metal in various body and<br />

engine parts.<br />

11


WIRTSCHAFT<br />

12 ALUMINIUM · 1-2/2008


WIRTSCHAFT<br />

Produktionsdaten <strong>de</strong>r <strong>de</strong>utschen <strong>Alu</strong>miniumindustrie<br />

Primäraluminium Sekundäraluminium Walzprodukte > 0,2 mm Press- & Ziehprodukte**<br />

Produktion<br />

(in 1.000 t)<br />

+/in<br />

% *<br />

Produktion<br />

(in 1.000 t)<br />

+/-<br />

in % *<br />

Produktion<br />

(in 1.000 t)<br />

+/in<br />

% *<br />

Produktion<br />

(in 1.000 t)<br />

+/in<br />

% *<br />

Nov 41,9 -17,9 73,0 11,8 163,9 8,7 52,1 10,2<br />

Dez 42,8 -10,1 61,6 12,9 124,1 1,2 34,6 10,2<br />

Jan 07 40,9 -4,5 70,7 8,1 147,8 -2,7 51,1 12,6<br />

Feb 37,1 -4,1 71,1 9,2 154,7 -2,5 49,9 8,3<br />

Mrz 41,5 -3,8 75,2 -4,7 177,1 -0,6 54,7 5,3<br />

Apr 41,8 -1,4 67,0 7,1 158,1 6,0 47,3 10,5<br />

Mai 46,4 7,0 71,4 5,0 166,5 -2,5 50,8 2,2<br />

Jun 46,5 7,8 73,6 12,0 164,8 0,7 51,7 8,1<br />

Jul 48,7 8,1 72,5 13,2 167,1 1,5 53,3 9,8<br />

Aug 49,0 8,5 63,5 6,7 164,8 -1,1 51,5 7,2<br />

Sep 47,0 9,8 69,7 4,1 156,7 -2,3 50,2 -1,8<br />

Okt 50,2 13,8 74,1 14,1 170,7 0,4 55,4 6,0<br />

Nov 49,7 18,5 73,0 0,0 155,8 -4,9 53,7 3,1<br />

* gegenüber <strong>de</strong>m Vorjahresmonat, ** Stangen, Profile, Rohre; Mitteilung <strong>de</strong>s Gesamtverban<strong>de</strong>s <strong>de</strong>r <strong>Alu</strong>miniumindustrie (GDA), Düsseldorf<br />

Primäraluminium<br />

Walzprodukte > 0,2 mm<br />

Sekundäraluminium<br />

Press- und Ziehprodukte<br />

14 ALUMINIUM · 1-2/2008


ECONOMICS<br />

A normative analysis exploring alternative business mo<strong>de</strong>ls<br />

Which globalisation for<br />

the aluminium industry? – Part I<br />

B. G. Rüttimann, Singen<br />

The aluminium industry is at<br />

present un<strong>de</strong>rgoing a fundamental<br />

transformation. After the concentration<br />

of vertically integrated<br />

aluminium concerns we are now<br />

experiencing on the one hand the<br />

formation of big aluminium mining<br />

groups and on the other hand<br />

the creation of process-technology<br />

<strong>special</strong>ised groups for the semifinished<br />

product sector. All this<br />

has to be seen un<strong>de</strong>r a rationale<br />

that aims to control raw material<br />

sources and to respond to<br />

increased competition in search<br />

of maximizing profits. Which are<br />

the economic mo<strong>de</strong>ls governing<br />

the ongoing logic of globalisation?<br />

What will the present aluminium<br />

industry system look like in the<br />

future? Are the fully integrated<br />

aluminium groups a run-out mo<strong>de</strong>l?<br />

Do small and medium-sized<br />

companies still have a chance to<br />

survive? The following contribution<br />

analyses the different competitive<br />

systems within the valueaddition<br />

chain of the aluminium<br />

industry in or<strong>de</strong>r to explore the<br />

rationale of alternative business<br />

mo<strong>de</strong>ls within the present globalisation<br />

phenomenon.<br />

Hardly a day passes without news or<br />

rumours about friendly or hostile takeovers<br />

or mergers in the aluminium<br />

and other industries. In the attempt to<br />

maximizing profits un<strong>de</strong>r the umbrella<br />

of increased competition and limited<br />

growth in advanced countries on the<br />

one hand, but with a view to sustained<br />

growth in emerging economic areas on<br />

the other hand, a new era of company<br />

gigantism has ma<strong>de</strong> its appearance. To<br />

secure access to raw material sources<br />

for the supply of the fast-growing new<br />

economies, combined with their highly<br />

competitive labour cost structure,<br />

the BRIC (Brazil, Russia, India, China)<br />

countries together with the leading<br />

Western technologically<br />

advanced companies<br />

will establish<br />

a new economic<br />

world or<strong>de</strong>r.<br />

In the aluminium<br />

industry, the merger<br />

of Alcan with <strong>Alu</strong>suisse<br />

and Pechiney<br />

gave the initial impetus<br />

for the creation<br />

of a new industrial<br />

logic. The Alcoa-<br />

Kaiser merger followed.<br />

Similar aims,<br />

but with a different<br />

focus, were the<br />

intention behind<br />

the Hoogovens and<br />

British Steel merger<br />

which formed the Corus company.<br />

Norsk Hydro has grown with the<br />

VAW take-over and, in a second step,<br />

concentrated on aluminium activities.<br />

Alcoa Extrusion and Sapa have<br />

formed the largest extrusion conglomerate<br />

and Mittal took over Alcan’s<br />

Novelis spin-off. And now, after<br />

the Rusal, Sual and Glencore merger<br />

forming Russian UC Rusal aluminium<br />

giant, we have seen the Rio Tinto mining<br />

giant successfully bidding for the<br />

aluminium giant Alcan [1,2]. Out of<br />

the originally 12 integrated big aluminium<br />

concerns that existed in the<br />

1980s, today it seems that not one of<br />

the Western concerns will survive<br />

[3].<br />

The names and configurations of<br />

companies are changing continuously<br />

with the intention to form an i<strong>de</strong>al<br />

business constellation which will<br />

gain competitive advantages within<br />

the global market challenge, consistent<br />

with the doctrine of maximizing<br />

profits in each case. In this context<br />

the word ‘globalisation’ is used all<br />

the time and often applied as a catchword<br />

indifferently, without having<br />

perceived the subtle differences of<br />

Fig. 1: The Business Typology Matrix [4]<br />

patterns regarding this phenomenon.<br />

Moreover, the word globalisation still<br />

makes many employees feel uneasy,<br />

since they fear becoming victims of<br />

company mergers and loosing their<br />

jobs. In what follows, we will discover<br />

that globalisation is not always the<br />

same thing and that strategies have to<br />

follow different schemes corresponding<br />

to the intrinsic nature of each business.<br />

This paper aims to outline some<br />

structured thinking that will help to<br />

un<strong>de</strong>rstand the future industrial logic<br />

of the changing aluminium industry.<br />

Characteristics of<br />

the aluminium business<br />

To gain insight into the globalisation<br />

phenomenon, we have at first to<br />

un<strong>de</strong>rstand the intrinsic nature of a<br />

business. A business system is mainly<br />

composed of:<br />

• the transaction object, i. e. the<br />

product or service<br />

• the supply and <strong>de</strong>mand structure,<br />

with the related transaction<br />

scheme, and<br />

• the operating configuration of<br />

supply.<br />

16 ALUMINIUM · 1-2/2008<br />

Illustrations: Rüttimann


The backward <strong>de</strong>terminants themselves<br />

which influence product characteristics,<br />

market structure, and <strong>de</strong>termine<br />

the business classification,<br />

and finally the operating configuration,<br />

are:<br />

• value of the product<br />

• transport costs and related range<br />

of distribution<br />

• production factors in terms of<br />

cost drivers<br />

• <strong>de</strong>mand profile and<br />

• supply structure.<br />

These main <strong>de</strong>terminants characterise<br />

each business type within an<br />

industrial system. Certain combinations<br />

of these <strong>de</strong>terminants reveal<br />

clear patterns for each business type.<br />

The representation of product-characteristics<br />

(differentiated or not) on<br />

one axis and market-structure (oligopolistic<br />

or fragmented) on another<br />

axis within a matrix, leads finally to<br />

the following landscape of basic business<br />

types [4]:<br />

• commodities<br />

• <strong>special</strong>ties<br />

• standards<br />

• convenience.<br />

Fig. 1 presents a clear, systematic and<br />

structured view with which to classify<br />

businesses roughly into types. It goes<br />

without saying that mixed types may<br />

exist. The ‘commodity’ type of business<br />

(e. g. metal ore or wheat) comprises<br />

all kind of goods listed in efficient<br />

marketplaces such as commodity exchanges,<br />

where world market prices<br />

apply. The ‘<strong>special</strong>ty’ type of business<br />

(e. g. electronics or automobiles) embraces<br />

those durables and consumables<br />

goods with a distinctive brand,<br />

and are thus governed by an imperfect<br />

competition. The ‘standards’ type of<br />

business (e. g. cement or extrusions)<br />

covers intermediate or semi-finished<br />

products with a rather polypolistic<br />

supply structure. The ‘convenience’<br />

type of business (e. g. clothing, but also<br />

hotels) embraces most of the products<br />

we come across sold in retail stores<br />

in a very fragmented market to reach<br />

the end user, and from the supply si<strong>de</strong><br />

represents an imperfect or monopolistic<br />

competition.<br />

Let us now try to fit the aluminium<br />

technologies into this matrix. Bauxite<br />

mining is an ore extracting operation<br />

often performed by big vertically in-<br />

ALUMINIUM · 1-2/2008<br />

tegrated aluminium companies or<br />

multinational mining groups, and is<br />

characterised by a clear oligopolistic<br />

market structure. By <strong>de</strong>finition the<br />

differentiation aspect of a commodity<br />

does not exist, except perhaps in relation<br />

to ore content. The same applies<br />

to calcined alumina. The outcome of<br />

the smelting process is primary aluminium,<br />

tra<strong>de</strong>d as ingots on commodity<br />

exchanges mainly as the 99,7%<br />

gra<strong>de</strong>. For primary aluminium too we<br />

have the same oligopolistic structure<br />

composed of MNEs (Multi-National<br />

Enterprises) with some in<strong>de</strong>pen<strong>de</strong>nt<br />

SMEs (Small Medium Enterprises) as<br />

exceptions. We can classify all these<br />

goods as belonging to the commodity<br />

type of business, goods flowing from<br />

their natural origin to the big conversion<br />

centres. The world of semi-fabricated<br />

products is mainly composed<br />

of the technologies rolling, extrusion,<br />

castings, forgings, and thin-foil rolling.<br />

Although often<br />

these plants belong<br />

to MNEs, the operating<br />

configuration<br />

has a more fragmented<br />

structure<br />

imposed by the <strong>de</strong>sire<br />

for proximity<br />

to the customers;<br />

MNEs try to serve<br />

a wi<strong>de</strong>r geographical<br />

area by setting<br />

up a network of<br />

plants. The reasons<br />

for fragmentation<br />

originate from the<br />

cumbersome shape<br />

of the products but<br />

also the need to interact<br />

with customers,<br />

so resulting in a<br />

more regionally orientated business.<br />

The fragmentation of the business<br />

favours the concomitance of SMEs<br />

mainly in the sectors of extrusion,<br />

casting and forging. For example, in<br />

the case of extrusion SMEs make up<br />

50% of the plants [3].<br />

All these technologies can be classified<br />

as belonging to the standards<br />

type of business. These are intermediate<br />

goods with a low <strong>de</strong>gree of product<br />

differentiation. We can even classify<br />

the transaction object rather as a<br />

service than just a physical product.<br />

ECONOMICS<br />

In<strong>de</strong>ed, the customer asks primarily<br />

three questions: “Can you manufacture<br />

this product? When can you supply<br />

it? How much will it cost?”, so extrusion<br />

companies do not supply just<br />

a product, but also perform a service<br />

by putting their production capacities<br />

to the service of their customers and<br />

trying to achieve the shortest <strong>de</strong>livery<br />

time, accurate punctuality and specification-conforming<br />

quality [5]. In the<br />

aluminium industry we can sometimes<br />

also observe downstream integration<br />

in the value-addition chain, such as<br />

ready-to-fit components or systems<br />

for the building industry. These products<br />

have already a quite advanced<br />

differentiation <strong>de</strong>gree regarding the<br />

solution proposed. On the other hand<br />

the <strong>de</strong>gree of concentration from the<br />

supply point of view may vary. Nevertheless,<br />

we can classify such sectors as<br />

belonging in-between the <strong>special</strong>ties<br />

type of business.<br />

Fig. 2: <strong>Alu</strong>minium technologies within the Business Typology Matrix<br />

From Fig. 2 we can see that the products<br />

(or technologies) of the aluminium<br />

industry rather belong to the<br />

commodities and standards type of<br />

business; this seems to be reasonable<br />

due to the fact that the transaction<br />

type is rather a B2B than a B2C.<br />

The different perceivable<br />

patterns of globalisation<br />

Globalisation is not always one and<br />

the same thing [4]. This is also observable<br />

in the aluminium in- �<br />

17


ECONOMICS<br />

Fig. 3: The Globalisation Type Matrix [4]<br />

dustry. In fact, once having classified<br />

the businesses, the question is how<br />

globalisation is influenced by each<br />

business type, or rather how globalisation<br />

of the business evolves in each<br />

business type and according to which<br />

pattern. Analysing the business types,<br />

it emerges that the operating configuration<br />

<strong>de</strong>termined by the business is<br />

a major <strong>de</strong>terminant for the globalisation<br />

type. The intrinsic logic reveals<br />

two main types [4]:<br />

• type 1: material (or physical)<br />

globalisation for commodities<br />

and <strong>special</strong>ties<br />

• type 2: immaterial (or financial)<br />

globalisation for the standards<br />

and convenience.<br />

The difference is substantial. Products<br />

of businesses following type 1<br />

globalisation could ultimately be produced<br />

within a single plant operating<br />

configuration and shipped physically<br />

worldwi<strong>de</strong>, whereas products of businesses<br />

following a type 2 globalisation<br />

are produced locally for the local<br />

market. MNEs will have in this case<br />

a network of local companies by FDI<br />

(Foreign Direct Investments) and the<br />

business i<strong>de</strong>a is to exploit the specific<br />

know-how in doing business. In this<br />

fragmented market they have to buy<br />

or set up new enterprises to increase<br />

market share. But for type 1 globalisation<br />

we have to distinguish between<br />

commodities and <strong>special</strong>ties. Let us<br />

call type 1a the ‘globalisation of commodities’;<br />

through the listing on efficient<br />

market places like commodity<br />

exchanges, this represents the pure<br />

example of a globalisation of business.<br />

Nobody can escape from this type of<br />

globalisation because its effects are<br />

spreading all over the world. For type<br />

1b ‘globalisation of <strong>special</strong>ties’ the<br />

product characteristics are unique<br />

and therefore – to some extent – the<br />

price can be fixed by the supplier<br />

taking into account the value for the<br />

Fig. 4: Type 1a or globalisation of commodities<br />

customer. This is due to the possibility<br />

of product differentiation within<br />

the competitive system. For type 2<br />

globalisation this distinction between<br />

subtypes is not necessary. In<strong>de</strong>ed, according<br />

to Chamberlain markets not<br />

involving material (physical) flows of<br />

products over a certain distance represent<br />

a local monopoly. So there is<br />

no need to differentiate globalisation<br />

patterns between standard and convenience<br />

product types.<br />

Are there any drivers able to upset<br />

this apparently stable situation? Yes,<br />

there is one. If the difference in price<br />

for the same goods in different economies<br />

exceeds a certain threshold, exports<br />

can temporarily become possible<br />

also for products following type 2 globalisation.<br />

We may call this ‘economic<br />

arbitrage’. In these cases we can also<br />

observe a material flow of products<br />

within the type 2 globalisation characterised<br />

businesses; let us call this<br />

type 1c globalisation ‘opportunistic<br />

or low-cost globalisation’. Typical are<br />

the exports of low-cost countries such<br />

as China to the advanced economies.<br />

But if a price difference also exists in<br />

different economies for the salaries<br />

of white-collar jobs – and the skills<br />

are equivalent – then it is also possible<br />

that enterprise functions such<br />

as R&D, call centres or accounting are<br />

outsourced to low-cost countries like<br />

India; let us call this type 3 globalisation<br />

the ‘globalisation of human factor<br />

or service’.<br />

Fig. 3 shows all the types of globalisation<br />

within a matrix which allows<br />

a rough i<strong>de</strong>ntification of the type of<br />

globalisation and, from that, the possible<br />

evolution or competitive issues<br />

to face within a certain business. It<br />

18 ALUMINIUM · 1-2/2008


goes without saying that mixed types<br />

may exist.<br />

Moreover, these different globalisation<br />

types also follow different economic<br />

laws. Type 1a is characterised<br />

by global price building at commodity<br />

exchanges and mainly unidirectional<br />

material flows from countries of origin<br />

to the countries of transformation<br />

(Fig. 4). The preference for a raw material<br />

such as aluminium compared<br />

to another such as steel <strong>de</strong>pends on<br />

the ‘latent value’ of a specific resource<br />

compared to the substitute resource<br />

[4]. This also takes into consi<strong>de</strong>ration<br />

the ecological impact or the end-ofcycle<br />

aspects.<br />

Globalisation type 1b is characterised<br />

by bi-directional flows of the<br />

same products between different<br />

economies (Fig. 5). The preference<br />

for one product compared to another<br />

<strong>de</strong>pends on the ‘cost-benefit’ perception<br />

of the customer which can be<br />

translated into the ‘competitiveness<br />

factor’ for differentiated products of a<br />

producer [4]. This goes far beyond the<br />

Ricardian comparative cost advantage<br />

for heterogeneous but non-differentiated<br />

products. The higher the<br />

competitiveness factor, the higher is<br />

the market share of the producer. This<br />

can be seen as the mo<strong>de</strong>rn interpretation<br />

of the Heckscher-Ohlin factors<br />

proportion theory.<br />

The type 2 globalisation products<br />

<strong>de</strong>pend on the ‘intrinsic market fragmentation’<br />

of the business [4]. This<br />

market fragmentation is given by the<br />

characteristic of the product and the<br />

logistics and cost for it to be transported<br />

(Fig. 6). In<strong>de</strong>ed, combined with<br />

the fragmentation of the final <strong>de</strong>mand,<br />

this is an indicator for the necessary<br />

Fig. 5: Type 1b or globalisation of <strong>special</strong>ties<br />

ALUMINIUM · 1-2/2008<br />

polypolistic offer structure to reach<br />

the next transformation stage of the<br />

value-addition chain or to be distributed<br />

to the final customer. The types<br />

1a, 1b, and 2 are the natural globalisation<br />

types.<br />

Type 1c is based on the price differential<br />

of the same product between<br />

two economies, which we may call the<br />

‘propensity for globalisation’ [4]. The<br />

higher this difference is, the higher are<br />

the material flows of such products<br />

although – from the intrinsic nature<br />

of the business – this should result<br />

in type 2 globalisation as is typically<br />

the case for extrusions (Fig. 7). This<br />

globalisation lasts as long as the price<br />

difference exists, i. e. as long as the incentive<br />

is high enough. In particular,<br />

extrusions in North America are being<br />

confronted with the type 1c globalisation<br />

phenomenon from China [6].<br />

Type 3 globalisation is mo<strong>de</strong>lled<br />

by the ‘comparative skill of labour’,<br />

i. e. the level of skills available and<br />

the respective cost as well as the cost<br />

of transferring the service consi<strong>de</strong>red<br />

to a lower-cost economy (Fig. 8). This<br />

globalisation type too will last as long<br />

as the salary cost advantage persists.<br />

The intrinsic logic and mathematical<br />

mo<strong>de</strong>ls governing the triggering and<br />

evolution of each globalisation type<br />

are beyond the scope of this limited<br />

discussion and can be consulted in<br />

the appropriate literature [4].<br />

Applying these findings to the<br />

portfolio of different aluminium technologies<br />

shown in the matrix of Fig. 2<br />

we can assert the following: the bauxite,<br />

alumina, and primary aluminium<br />

businesses follow rather a material<br />

type 1a globalisation pattern, i. e. the<br />

growing <strong>de</strong>mand in emerging coun-<br />

ECONOMICS<br />

tries will boost the flow of raw materials<br />

from the sources to these new<br />

industrializing regions. The material<br />

flows will grow not only in volume<br />

terms; the interaction of the different<br />

economies will also increase and the<br />

centre of gravity will shift to these new<br />

emerging economic regions. Rolling,<br />

extrusions, castings, and forgings will<br />

rather follow a financial type 2 globalisation<br />

pattern, with companies building<br />

up a network of similar operations<br />

via FDI in accordance with a market<br />

coverage strategy. In<strong>de</strong>ed, Sapa and<br />

Hydro, but also Indalex limited to<br />

the North American region, are typical<br />

examples of extrusion industries<br />

that follow such a market coverage<br />

strategy, exploiting their know-how<br />

of manufacturing and to promote<br />

their extrusion business. The spin-off<br />

regarding the ex-Alcan rolling activities<br />

forming Novelis, as well as Aleris<br />

from Corus, are also good examples<br />

of how to create a technology-centred<br />

business mo<strong>de</strong>l focussed on the better<br />

servicing of market needs. Despite the<br />

fact that the casting and forging industries<br />

used to be dominated by familyowned,<br />

single plant companies, there<br />

too a tentative creation of networks<br />

can be observed. All these polypolistic<br />

businesses are characterized by an<br />

increased level of M&A or the set-up<br />

of new plants in emerging economic<br />

regions. On the other hand, type 2<br />

strategies can also be observed in type<br />

1a characterized markets, such as the<br />

merger of Rusal, Sual, and Glencore.<br />

But here there exists a big difference<br />

in the logic: whereas on the one hand<br />

in markets primarily characterized by<br />

type 2 globalisation the business itself<br />

is fragmented and remains regional,<br />

on the other hand when a secondary<br />

type 2 pattern overlies a type 1a<br />

pattern, the markets remain characterized<br />

by material flow from the<br />

countries of origin to the <strong>de</strong>stination<br />

countries all over the world. In fact,<br />

the first case is a ‘conditio sine qua<br />

non’ for growth in new geographic regions,<br />

while the second case provi<strong>de</strong>s<br />

the option to growth further when<br />

the present mines are reaching their<br />

exploitation limits. The ongoing concentration<br />

process of the aluminium<br />

primary industry is a typical example<br />

[3]. Building applications such �<br />

19


ECONOMICS<br />

Fig. 6: Type 2 or financial globalisation<br />

as window and faça<strong>de</strong> systems can be<br />

consi<strong>de</strong>red to belong to the type 1b<br />

globalisation pattern. In<strong>de</strong>ed, <strong>de</strong>spite<br />

the rather fragmented building industry,<br />

proprietary building systems from<br />

suppliers such as Schuco and similar<br />

ones are often sold worldwi<strong>de</strong> as the<br />

consequence of winning international<br />

contracts. Further, in our industry we<br />

also have examples of globalisation<br />

type 1c. In fact, for some years exports<br />

of extrusions from China to the<br />

United States have been increasing<br />

rapidly and attained a market share<br />

of an astonishing 9% at the end of<br />

2007 [6]. The price differences between<br />

imported and locally produced<br />

extrusions observed were up to 20%,<br />

showing a high propensity for globalisation<br />

which ma<strong>de</strong> it possible to ship<br />

standardized products even across<br />

long distances. Despite that, due to its<br />

fragmented characteristics the extrusion<br />

market follows naturally, if ever,<br />

a type 2 strategy. This transient type<br />

1c globalisation will last as long as the<br />

price difference is large enough [4].<br />

Generally, all these imperialistic<br />

expansion strategies are often <strong>de</strong>nounced<br />

by public opinion. But the<br />

natural types of globalisation (i. e. 1a,<br />

1b, 2) are not responsible for social<br />

consequences such as unemployment;<br />

the socio-political consequences<br />

are mainly caused by the transient<br />

types of globalisation (i. e. 1c and 3).<br />

That, however, is another story. The<br />

phenomenological mo<strong>de</strong>lling of economic<br />

globalisation presented here<br />

is further accompanied by a common<br />

<strong>de</strong>nominator for the intrinsic reason<br />

of macroeconomic globalisation evolution.<br />

This rationale behind it, which<br />

is groun<strong>de</strong>d on entropy-based inequality<br />

and <strong>de</strong>rived risk metric, leads<br />

to The Central Theorem of Globalisation<br />

an explanation of which would<br />

be far beyond the scope of the present<br />

paper [4].<br />

The peculiarity of the aluminium<br />

industry’s value-addition chain<br />

The aluminium industry has been<br />

mainly composed of fully vertically<br />

integrated concerns covering bauxite<br />

extraction, alumina refining, primary<br />

aluminium smelting, various semis<br />

production technologies, and sometimes<br />

going as far as the manufacture<br />

of fully-finished components for the<br />

automotive, aerospace or electrotechnical<br />

industries (Fig. 9). It is interesting<br />

to see the apparently neat division<br />

between the upstream operations<br />

(bauxite, alumina and primary) and<br />

the so-called downstream technologies<br />

(rolling, extrusion, casting, and<br />

forging). In<strong>de</strong>ed, primary aluminium<br />

production is a two-step casca<strong>de</strong>d<br />

process supplying the common basic<br />

Fig. 7: Type 1c or opportunistic cost globalisation<br />

raw material to all the other aluminium<br />

semis operations. The figure also<br />

shows the relative business typology<br />

and related globalisation type at each<br />

level of the value-addition chain. Accordingly,<br />

we cannot simply say that<br />

a general globalisation ten<strong>de</strong>ncy can<br />

be observed in the aluminium industry;<br />

it can also be asserted that it will<br />

perform differently along the ad<strong>de</strong>dvalue<br />

chain in accordance with the<br />

different logics, with different effects<br />

on the competitive system as well as<br />

the social system of employment.<br />

Moreover, there are evi<strong>de</strong>nt differences<br />

between the levels of the<br />

value-addition chain. Although the<br />

semis operations have the same globalisation<br />

type, we can assume that<br />

between the different semis operations<br />

there are no relevant synergies<br />

observable from a management point<br />

of view (except in contingent situations),<br />

and of course the alloys used<br />

are often quiet different, with separate<br />

recycling loops, and the products from<br />

different technologies are only partly,<br />

if ever, substitutable and therefore<br />

need different conceptual engineering<br />

<strong>de</strong>sign. The reason for backward<br />

integration is more related to having<br />

direct access to the aluminium metal,<br />

i.e. to securing the supply si<strong>de</strong>.<br />

So are fully integrated aluminium<br />

concerns a run-out mo<strong>de</strong>l? This <strong>de</strong>pends<br />

largely on the business mo<strong>de</strong>l<br />

adopted by the parent company and<br />

will be a key issue in examining the<br />

survival logic of today’s remaining aluminium<br />

companies. In general it can<br />

be said that it is difficult to dominate<br />

a business profitably beyond a certain<br />

well-<strong>de</strong>fined range of the whole<br />

value-addition chain. There are mar-<br />

20 ALUMINIUM · 1-2/2008


keting, technological and management reasons for this, going<br />

back to the concept of economies of scale. In<strong>de</strong>ed, there is<br />

no integrated company that fabricates a final product such<br />

as a car, which is fully backward integrated. Specifically,<br />

taking the example of the automotive industry, companies<br />

concentrate on core activities such as engine <strong>de</strong>velopment<br />

(and manufacturing) and e<strong>special</strong>ly the whole assembly operation<br />

of the car. This represents a very tiny range of the<br />

value-addition chain of automotive manufacturing. In<strong>de</strong>ed,<br />

today the ad<strong>de</strong>d value generated per hour is more important<br />

than the ad<strong>de</strong>d value generated per car, For brand marketing<br />

reasons it is important to be able to sell more cars with the<br />

same brand and increased prestige, as well as to increase the<br />

buying power for the components [7].<br />

An alternative to vertical integration could be to have a<br />

horizontal expansion of the same technology, such as rolling<br />

for Novelis and extrusions for Sapa, or at least similar ones<br />

that offer synergies from the technological point of view or<br />

for the same markets with different technologies in or<strong>de</strong>r<br />

to offer alternative solutions, such as Corus with steel and<br />

aluminium (which is no longer being pursued due to final<br />

concentration on the steel business). This can take place at<br />

every level of the value-addition chain, i. e. mining, or smelting,<br />

or rolling, or extrusion, or even casting (sand or diecasting,<br />

steel and aluminium). In general the following basic<br />

question has to be answered: is the core business content to<br />

sell products of a specific technology to all markets, or is the<br />

core business content to serve a specific market with different<br />

technologies? The first mo<strong>de</strong>l has more a capacity-filling<br />

logic and the second one more a product-solution approach.<br />

This distinction is more important than many people believe;<br />

there is nothing worse than believing that one is selling a<br />

product for a certain application market whereas in reality<br />

the <strong>de</strong>stination of the application market is irrelevant and<br />

the transaction object is rather a service with the un<strong>de</strong>rlying<br />

business following a technological capacity-filling logic<br />

irrelevant to the application. In fact, care must be taken not<br />

to follow the often undifferentiated preaching of “you have<br />

to become market-orientated” by generic consultants of the<br />

past, which was often un<strong>de</strong>rstood as application segmentation.<br />

It is necessary to un<strong>de</strong>rstand the intrinsic logic of<br />

each single business, to achieve not only undifferentiated<br />

customer orientation but even very differentiated customer<br />

<strong>de</strong>dication that fulfils their specific needs even in<strong>de</strong>- �<br />

Fig. 8: Type 3 or globalisation of human factor<br />

ALUMINIUM · 1-2/2008<br />

ECONOMICS<br />

INDUSTRIAL DESIGN<br />

& ENGINEERING<br />

IS YOUR<br />

INNOVATION<br />

THE WINNER<br />

IN 2008?<br />

ENTER NOW!<br />

WWW.ALUMINIUM-AWARD.EU<br />

ORGANISING PARTNERS<br />

MAIN SPONSORS<br />

MEDIA SPONSORS<br />

WWW.ALUMINIUM-AWARD.EU<br />

21


ECONOMICS<br />

Fig. 9: The value-addition chain of the aluminium industry<br />

pen<strong>de</strong>ntly of the application [5]. The<br />

semis industry is characterised by B2B<br />

and not B2C marketing. Un<strong>de</strong>rstanding<br />

the intrinsic nature of the semis<br />

business will be the key to success in<br />

future competition. Of course, certain<br />

technologies are more appropriate for<br />

MNEs than for SMEs due to capital<br />

intensiveness. But everyone has the<br />

possibility to participate in the race<br />

for global dominance. It is evi<strong>de</strong>nt<br />

that the possibility to build-up a type<br />

2 globalisation strategy for a specific<br />

semis technology is very realistic, as<br />

the logic and examples show.<br />

These are the known facts – so<br />

what next? Taking into consi<strong>de</strong>ration<br />

these few thoughts, we can question<br />

the logical division marking the interface<br />

between upstream and downstream<br />

with the transfer product being<br />

the ingot (or rolling slab as well as<br />

extrusion billet). The risk of remaining<br />

short of metal supply is marginal<br />

for SMEs that carry out downstream<br />

operations, consi<strong>de</strong>ring their production<br />

capacities in relation to the total<br />

metal supply. For MNEs, long-term<br />

contracts with primary producers can<br />

bypass the issue of not having one’s<br />

own metal production. This is valid<br />

for all operations where pricing is<br />

generally based on tolling or similar<br />

margin calculations. Are there other<br />

interfaces? Yes, as also between alumina<br />

and primary metal. In<strong>de</strong>ed, the<br />

peculiarity of the electrolysis process<br />

that yields liquid primary aluminium<br />

is that it necessitates a continuous,<br />

uninterrupted process. The cells have<br />

to be constantly fed with alumina (and<br />

current) in or<strong>de</strong>r to avoid sealing. The<br />

liquid metal output of a smelter is constant<br />

and in case of low <strong>de</strong>mand, the<br />

production increases<br />

the nonsold<br />

ingot stock<br />

and the LME ingot<br />

price will go<br />

down because<br />

supply exceeds<br />

<strong>de</strong>mand. On the<br />

other hand, the<br />

bauxite and alumina<br />

production<br />

level, which can<br />

be controlled<br />

to some extent,<br />

can be adapted<br />

to <strong>de</strong>mand. The bottleneck will most<br />

probably be formed by the railway’s<br />

capacity to transport the bauxite.<br />

From that point of view it makes sense<br />

to combine bauxite and alumina production<br />

(including reflections about<br />

optimised sourcing of caustic soda)<br />

in or<strong>de</strong>r to reduce the transportation<br />

volume by half. It becomes evi<strong>de</strong>nt<br />

that primary aluminium production<br />

is a different business from mining<br />

although it belongs to the same globalisation<br />

type. For that reason we can<br />

assert that for the mining giant Rio<br />

Tinto to go into the primary aluminium<br />

business is already a downstream<br />

expansion into a new technology.<br />

Another interface exists between<br />

components manufacturing and the<br />

different semis-operations. To increase<br />

the supplied value-addition<br />

content of semis-products, semisplants<br />

try to perform additional mechanical<br />

operations as a service to<br />

their customers or even become involved<br />

in component <strong>de</strong>velopment<br />

[7]. The question is how far this<br />

should go. If the downstream activity<br />

comprises more than only finishing<br />

operations but rather the fabrication<br />

of ready-to-fit parts (even combined<br />

with engineering content), the business<br />

content might be quite different<br />

from pure semis production, with a<br />

production philosophy of one-piece<br />

flow in one case and batch production<br />

in the other case. The <strong>de</strong>cision<br />

to go along that road has to be well<br />

evaluated.<br />

It becomes evi<strong>de</strong>nt, that not only<br />

the globalisation pattern may be different<br />

for each step of the value-addition<br />

chain, but also that the intrinsic<br />

issues are specific to each step. In the<br />

next section we will see that also the<br />

CSFs (Critical Success Factors) are<br />

specific to each step of the value-addition<br />

chain.<br />

To be continued in ALUMINIUM<br />

3/2008<br />

References<br />

1) Rio Tinto to buy Alcan, ALUMINIUM<br />

7-8/2007, Giesel Verlag.<br />

2) Pawlek R., The Rio Tinto Alcan <strong>de</strong>al<br />

– marking the dawn of a new era for metals,<br />

ALUMINIUM 9/2007, Giesel Verlag.<br />

3) Conserva, M.: Global Market Trends<br />

of <strong>Alu</strong>minium and <strong>Alu</strong>minium Products,<br />

Proceedings of the 6 th World Congress<br />

ALUMINIUM 2000, Florence Italy, March<br />

13-17, 2007, Interall publications.<br />

4) Rüttimann, B.: Mo<strong>de</strong>lling Economic<br />

Globalisation – A Post-Neoclassic View<br />

on Foreign Tra<strong>de</strong> and Competition, Verlagshaus<br />

Monsenstein und Vannerdat,<br />

Edition MV-Wissenschaft, Münster, 2007;<br />

ISBN 978-3-86582-447-9.<br />

5) Rüttimann, B.: Strategy and tactics in<br />

the aluminium semi-finished products industry,<br />

ALUMINIUM 78 (2002) 1/2 and 4.<br />

6) Rüttimann, B.: The Globalisation Trap<br />

of the <strong>Alu</strong>minum Extrusion Industry, Paper<br />

to be presented at the 9th International<br />

Extrusion Technology Congress ET08,<br />

May 13-16, 2008 Orlando FL USA.<br />

7) Hagen, H.; Rüttimann, B.: The automotive<br />

market – the new challenge for the<br />

aluminium industry, ALUMINIUM 80<br />

(2004) 3 and 4.<br />

Author<br />

Dr.-Ing. Bruno G. Rüttimann, MBA, graduated<br />

from Milan Polytechnic and Bocconi<br />

University of Economics in Milan. Since<br />

2003 he has been in charge of continuous<br />

improvement within Alcan Engineered<br />

Products. As Master Black Belt he supports<br />

the introduction of the Lean Six Sigma<br />

culture to increase the competitiveness<br />

of the plants.<br />

�������� ���������������������<br />

��������������������������������<br />

�������������������<br />

���������������������<br />

������� �����������������<br />

������� �����������������<br />

������ ���������������������<br />

�������� ��������������������<br />

22 ALUMINIUM · 1-2/2008


Marubeni predicts aluminium surplus in 2008<br />

Japanese trading house Marubeni expects<br />

a global aluminium surplus of<br />

543,000 tonnes in 2008 as new production<br />

comes on stream, but predicted<br />

a tightening in 2009 on increased<br />

Chinese consumption. Global aluminium<br />

consumption will grow by 9.5% to<br />

41.26m t in 2008 and a further 5.6% to<br />

43.56m t in 2009. Production in 2008<br />

is expected to grow 10% to 41.80m<br />

t as new capacity comes on stream.<br />

Rio’s outlook for metals and minerals<br />

For aluminium Rio makes the<br />

following forecast: <strong>Alu</strong>minium<br />

consumption has grown the fastest<br />

of all non-ferrous metals over<br />

the last five years and is forecast<br />

to grow rapidly over the next 20<br />

years: There has been enormous<br />

recent growth in Chinese consumption<br />

and production, but<br />

aluminium has benefited from<br />

increasing use in many other regions<br />

including the OECD.<br />

Constraints on China’s domestic<br />

bauxite production suggest that the<br />

country’s massive investment in primary<br />

aluminium will still relay largely<br />

on imported bauxite. This, combined<br />

with China’s high power costs, means<br />

ALUMINIUM · 1-2/2008<br />

The surplus of supply over <strong>de</strong>mand in<br />

the CIS region may rise from 3.47m t in<br />

2007 to 3.86m t in 2008 as output rises<br />

by 10.6% to 5.01m t. The supply-and<strong>de</strong>mand<br />

balance in China, however,<br />

is forecast to be perfectly matched in<br />

2008 at around 15m t. However, an<br />

8% increase in Chinese consumption<br />

to 16.2m t in 2009 is likely to lead to<br />

a 100,000 t shortfall in supply. Global<br />

consumption in 2009 is forecast<br />

that Chinese aluminium capacity will<br />

continue to be high-cost in a global<br />

comparison. Additionally, Chinese<br />

production will eventually suffer<br />

from a stronger currency as the RMB<br />

edges toward fair exchange rate. The<br />

implied increase in the marginal cost<br />

of production for alumina and aluminium<br />

mean, that their prices are<br />

unlikely to revert to the lower levels<br />

implied by historical trends.<br />

Spot aluminium prices have mo<strong>de</strong>rated<br />

by about 10% since the middle<br />

of 2007 and are currently moving in<br />

the range of US$2450-2550 per tonne,<br />

which still covers production costs at<br />

the highest cost smelters. Forward<br />

prices have increased in relation to<br />

spot prices reflecting a market expec-<br />

ECONOMICS<br />

to reach 43.56m t, and production<br />

43.77m t, leading to a global oversupply<br />

of around 210,000 t.<br />

The trading house is also forecasting<br />

prices to continue their upward<br />

trend, averaging between US$2,300<br />

and US$3,000 per tonne in 2008, and<br />

between US$2,500 and US$3,500 per<br />

tonne in 2009.<br />

paw<br />

tation that smelters with high marginal<br />

costs will still be nee<strong>de</strong>d to meet<br />

<strong>de</strong>mand over the medium term.<br />

<strong>Alu</strong>minium is forecast to continue<br />

to enjoy rapid growth over the next<br />

two <strong>de</strong>ca<strong>de</strong>s. CRU projects consumption<br />

to grow by more than 140% over<br />

the period to 2030. One reason for the<br />

recent growth is that China’s economic<br />

<strong>de</strong>velopment is highly aluminium<br />

intensive. But at the same time aluminium<br />

has gained worldwi<strong>de</strong> in intensity<br />

of use and has partly replaced<br />

other materials across a wi<strong>de</strong> range of<br />

applications.<br />

The strong and sustained growth<br />

in aluminium <strong>de</strong>mand is starting to<br />

stretch the resource base that has so<br />

far allowed unlimited growth of �<br />

23


ECONOMICS<br />

the aluminium industry: large-scale,<br />

good-quality bauxite <strong>de</strong>posits and regions<br />

of relatively cheap energy.<br />

In the case of bauxite the escalation<br />

in <strong>de</strong>mand for aluminium is being<br />

met increasingly from high-cost<br />

and small-scale bauxite <strong>de</strong>posits in<br />

China, and by opportunistic mining<br />

operations in Indonesia. Such sources<br />

of supply are unlikely to provi<strong>de</strong> a<br />

long-term solution for the industry’s<br />

rapidly growing bauxite needs and<br />

have already led to stronger prices<br />

for tra<strong>de</strong>d ore. Bauxite supply therefore<br />

requires significant investment in<br />

large scale mines if the industry is to<br />

meet <strong>de</strong>mand projections.<br />

Meanwhile, high energy prices,<br />

combined with a greater integration<br />

between regional energy markets<br />

through the <strong>de</strong>velopment of LNG and<br />

gas-to-liquids projects, could increase<br />

the costs of power available to greenfield<br />

smelters around the world. Together<br />

with a likely trend towards the<br />

introduction of pricing mechanisms<br />

or tax regimes for carbon emissions,<br />

sustainable isolated hydropower<br />

sources have become more valuable.<br />

This in turn may increase the value of<br />

In December 2007 China has announced<br />

gui<strong>de</strong>lines for those who<br />

wish to enter the domestic aluminium<br />

industry, according to the<br />

National <strong>de</strong>velopment and Reform<br />

Commission.<br />

All new <strong>de</strong>velopment projects in the<br />

aluminium sector, including mining,<br />

alumina refining, ingot melting and<br />

recycling as well as fabrication plants,<br />

must abi<strong>de</strong> by all requirements of the<br />

various state <strong>de</strong>partments. These inclu<strong>de</strong><br />

basic requirements for proper<br />

land use, safety and environmental<br />

regulations.<br />

Un<strong>de</strong>r the gui<strong>de</strong>lines, smelting<br />

facilities cannot be built within one<br />

kilometre of protected regions, such<br />

as water preservation areas, protected<br />

farming areas, protected natural reservations,<br />

famous scenic attractions,<br />

existing aluminium capacity linked to<br />

such power sources.<br />

In the context of growing <strong>de</strong>mand<br />

and constraining supply, the longterm<br />

price <strong>de</strong>velopment for aluminium<br />

will much <strong>de</strong>pend on the evolution<br />

of costs. Turning first to alumina,<br />

refineries relying on imported bauxite<br />

supplies, such as those in Europe and<br />

the US Gulf coast, have traditionally<br />

occupied the top-end of the alumina<br />

cost curve. High energy prices and<br />

rising <strong>de</strong>livered bauxite costs have<br />

aggravated the competitive disadvantage<br />

of these refineries during the<br />

past five years. The Chinese industry<br />

is currently drawing on its capital cost<br />

advantage to add significant non-integrated<br />

alumina capacity, but these<br />

refineries are rapidly joining US and<br />

European alumina refineries toward<br />

the top of the cost curve. The resulting<br />

increase in the marginal cost of production<br />

means that alumina prices are<br />

unlikely to revert to the lower levels<br />

implied by historical trends, even if<br />

some higher cost integrated capacity<br />

is eventually replaced by lower cost<br />

production.<br />

In the case of aluminium, as with<br />

major cities and their nearby surrounding<br />

countrysi<strong>de</strong>, as well as hospitals,<br />

food, medical and electronic<br />

business.<br />

New bauxite mining projects with<br />

an investment of more than Yuan<br />

500m (US$67.3m) will require approval<br />

from the investment management<br />

division of China’s State Council.<br />

Those with a smaller investment will<br />

require approval from the investment<br />

management divisions of their respective<br />

provincial governments. All mining<br />

projects seeking approval must<br />

have at least a 300,000 tpy capacity<br />

and a minimum life span of 15 years.<br />

All new alumina projects must be<br />

approved by the investment management<br />

division of the State Council.<br />

Those using domestic bauxite as<br />

feed must have an initial capacity of<br />

at least 800,000 tpy, and a minimum<br />

alumina, new Chinese smelters are<br />

fundamentally changing the shape<br />

of the industry cost curve. The rapid<br />

increase in Chinese smelting capacity<br />

since the start of this <strong>de</strong>ca<strong>de</strong> reflects<br />

the relatively low entry barriers in<br />

building smelters, due to China’s low<br />

capital costs and short build times.<br />

However, this new capacity has come<br />

in at the top-end of the operating cost<br />

curve, mainly reflecting relatively<br />

high power costs. Consequently, the<br />

industry aluminium cost curve has<br />

shifted up since 2003 and become<br />

steeper. This has provi<strong>de</strong>d a new significantly<br />

higher base for prices.<br />

A key point to note is that the<br />

gradual appreciation of the Chinese<br />

currency should also translate into<br />

higher US dollar production costs for<br />

Chinese smelters – all other things<br />

being equal. With Chinese smelters<br />

predominantly in the third and<br />

fourth quartiles, the top end of the<br />

curve would shift up in such a scenario<br />

creating an even higher basis for<br />

aluminium prices and higher margins<br />

for smelters elsewhere in the lower<br />

cost quartiles.<br />

R. P. Pawlek, Sierre<br />

China sets gui<strong>de</strong>lines<br />

for domestic aluminium and alumina projects<br />

lifespan of 30 years; those using imported<br />

bauxite as feed must have an<br />

initial capacity of at least 600,000 tpy,<br />

and reliable feed supply such as longterm<br />

contracts for at least five years<br />

of <strong>de</strong>livery.<br />

New ingot smelting projects will<br />

also require approval from the State<br />

Council’s investment management<br />

division. In the near term the Council<br />

will consi<strong>de</strong>r only upgrading projects<br />

to suit environmental requirements<br />

and to replace outdated machinery.<br />

These projects also require guaranteed<br />

alumina feed supply, sufficient<br />

power supply, and efficient transport<br />

conditions.<br />

New secondary and recycling aluminium<br />

projects must have at least a<br />

capacity of 50,000 tpy; existing plants<br />

should have at last a capacity of 20,000<br />

tpy, and expansion projects must have<br />

24 ALUMINIUM · 1-2/2008


at least a capacity of 30,000 tpy.<br />

In the aluminium fabricating sector,<br />

new projects have to focus on<br />

sheet, strip, foil and extrusion. Projects<br />

ECCA<br />

Production of stripcoated<br />

aluminium<br />

gains new momentum<br />

At its 41 st Autumn Conference<br />

held between 18 and 20 November<br />

2007 in Brussels the European<br />

Coil Coating Association<br />

(ECCA) reported sustained growth<br />

in the production of strip-coated<br />

aluminium.<br />

Whereas the annual growth rates of<br />

strip-coated steel have averaged ten<br />

percent over a number of years, since<br />

2000 aluminium had been showing<br />

a downward ten<strong>de</strong>ncy which was<br />

not reversed until 2006, with a rise<br />

of eight percent compared with the<br />

year before. Happily, the strip coater<br />

members of the ECCA were able to<br />

announce a new production increase<br />

for aluminium strip in the first half of<br />

2007, by as much as 22 percent compared<br />

with the same period a year<br />

earlier. That growth can mainly be attributed<br />

to extensive <strong>de</strong>liveries<br />

for the building sector, in<br />

which strip-coated aluminium<br />

is used for example to<br />

produce wall, <strong>de</strong>ck and roof<br />

sections and for composite<br />

panels, doors and gates.<br />

The conference motto<br />

was “European regulations:<br />

threat or opportunities for<br />

coil coating?” In that connection<br />

many lectures <strong>de</strong>alt with<br />

the consequences of current<br />

European legislation for both<br />

strip coaters and the users of<br />

strip-coated products. One<br />

theme was the influence of<br />

European legislation on the<br />

building sector, which is<br />

by far the largest individual<br />

market for coated strip of<br />

both aluminium and steel.<br />

Besi<strong>de</strong>s building regulations,<br />

the European gui<strong>de</strong>lines<br />

ALUMINIUM · 1-2/2008<br />

with combined capacity must produce<br />

at least 100,000 tpy. Approval<br />

for projects producing a single product<br />

will <strong>de</strong>pend on the product type<br />

Auf ihrer 41. Herbstkonferenz<br />

vom 18. bis 20. November 2007 in<br />

Brüssel berichtete die European<br />

Coil Coating Association (ECCA)<br />

über ein anhalten<strong>de</strong>s Produktionswachstums<br />

von bandbeschichtetem<br />

<strong>Alu</strong>minium.<br />

Während die jährlichen Zuwachsraten<br />

von bandbeschichtetem Stahl seit<br />

vielen Jahren durchschnittlich zehn<br />

Prozent betragen, war bei <strong>Alu</strong>minium<br />

seit 2000 eine rückläufige Ten<strong>de</strong>nz zu<br />

verzeichnen, die sich erst 2006 mit<br />

einer Steigerung von acht Prozent<br />

gegenüber <strong>de</strong>m Vorjahr umkehrte.<br />

Erfreulich, dass die in <strong>de</strong>r ECCA<br />

zusammengeschlossenen Bandbeschichter<br />

für das erste Halbjahr 2007<br />

einen erneuten Produktionsanstieg<br />

bei <strong>Alu</strong>minium mel<strong>de</strong>n konnten,<br />

und zwar um 22 Prozent gegenü-<br />

ECONOMICS<br />

– sheet/strip must have at least 50,000<br />

tpy, foil a minimum of 30,000 tpy and<br />

extrusion of aluminium 50,000 tpy.<br />

R. P. Pawlek, Sierre<br />

ECCA<br />

Produktion von beschichtetem<br />

<strong>Alu</strong>miniumband legt erneut zu<br />

Bandbeschichtete <strong>Alu</strong>paneele an <strong>de</strong>r Überdachung <strong>de</strong>s<br />

Eingangsbereichs Bahnhof Potsdam<br />

Strip-coated aluminium for the roofing of the entrance<br />

area at the train station in Potsdam near Berlin<br />

ber <strong>de</strong>m Vergleichszeitraum 2006.<br />

Dieses Wachstum ist in erster Linie<br />

auf umfangreiche Lieferungen für<br />

<strong>de</strong>n Bausektor zurückzuführen, wo<br />

bandbeschichtetes <strong>Alu</strong>minium z. B.<br />

für Wand-, Decken- und Dachprofile<br />

sowie für Verbundplatten, Türen und<br />

Tore eingesetzt wird.<br />

Die Konferenz stand unter <strong>de</strong>m<br />

Motto „European regulations,<br />

threat or opportunities for coil coating“.<br />

In diesem Zusammenhang wur<strong>de</strong><br />

in mehreren Vorträgen aufgezeigt,<br />

welche Konsequenzen sich aus <strong>de</strong>r<br />

aktuellen europäischen Gesetzgebung<br />

sowohl für die Bandbeschichter als<br />

auch für die Anwen<strong>de</strong>r bandbeschichteter<br />

Erzeugnisse ergeben. Ein Thema<br />

war <strong>de</strong>r Einfluss <strong>de</strong>r Europäischen<br />

Gesetzgebung auf <strong>de</strong>n Bausektor, <strong>de</strong>r<br />

sowohl für beschichtete <strong>Alu</strong>miniumwie<br />

für Stahlbän<strong>de</strong>r <strong>de</strong>r mit Abstand<br />

größte Einzelmarkt ist. Neben Regeln<br />

für die Bauausführung sind vor allem<br />

die europäischen Energie- und Emissionsschutzrichtlinien<br />

von Be<strong>de</strong>utung.<br />

Gera<strong>de</strong> hier ergeben sich vielfältige<br />

Ansatzpunkte, die Vorteile von beschichteten<br />

Substraten als verkaufsför<strong>de</strong>rn<strong>de</strong><br />

Eigenschaften zu nutzen.<br />

Ein weiteres Thema waren die<br />

Auswirkungen <strong>de</strong>r am 1. Juni 2007 in<br />

Kraft getretenen neuen EU-Gesetzgebung<br />

für Chemikalien – REACH<br />

– auf die weltweiten Lieferketten. Da<br />

die meisten <strong>de</strong>r wichtigen Bestimmungen<br />

am 1. Juni 2008 wirksam<br />

wer<strong>de</strong>n, stellt sich für je<strong>de</strong>n Hersteller<br />

die Frage, wie er seine nachgelagerten<br />

Anwen<strong>de</strong>r unterstützen<br />

kann. Das Leitprinzip von REACH<br />

– „Ohne Daten kein Markt“ – be<strong>de</strong>utet,<br />

dass alle europäischen Hersteller<br />

chemischer Stoffe ihre Produkte nur<br />

nach entsprechen<strong>de</strong>r Registrierung<br />

weiterhin anbieten dürfen.<br />

� �<br />

Photos: Alcan Singen<br />

25


WIRTSCHAFT<br />

Strenger wer<strong>de</strong>n<strong>de</strong> Auflagen für <strong>de</strong>n<br />

Umweltschutz stellen sowohl für die<br />

Hersteller, als auch für die Betreiber<br />

von Bandbeschichtungslinien eine<br />

große Herausfor<strong>de</strong>rung im Hinblick<br />

auf die Anpassung <strong>de</strong>r traditionell<br />

auf <strong>de</strong>r Verwendung von Chromat<br />

(Cr6 + ) beruhen<strong>de</strong>n Vorbehandlung<br />

und Neutralisierung dar. Die neuen<br />

EU-Bestimmungen schränken die<br />

Verwendung von Cr6 + für Automobil-<br />

(EU-Richtlinie EoVL) sowie Elektro-<br />

und Elektronikanwendungen (EU-<br />

Richtlinie RoHS) stark ein.<br />

Neben <strong>de</strong>m Einsatz <strong>de</strong>s durchaus<br />

umweltverträglichen dreiwertigen<br />

Chrom (Cr3 + ) begünstigte die Gesetzgebung<br />

die Entwicklung chromatfreier<br />

Ersatzlösungen. Einige Beispiele wur<strong>de</strong>n<br />

in Brüssel vorgestellt: Als Ersatz<br />

für chromhaltige Korrosionsschutzmittel<br />

zur Grundierung von <strong>Alu</strong>minium-<br />

und Stahlbän<strong>de</strong>rn eignen sich<br />

z. B. silikatische Pigmente mit Ionenaustausch.<br />

Bereits Mitte <strong>de</strong>r 1980er<br />

Jahre wur<strong>de</strong>n Pigmente auf Basis von<br />

Silikatprodukten mit Ionenaustausch<br />

als ungiftige und umweltverträgliche<br />

Alternative für die bislang bekannten<br />

Rostschutz-Pigmenttechniken auf<br />

<strong>de</strong>n Markt gebracht. Inzwischen<br />

haben sich diese Produkte als eine<br />

viel versprechen<strong>de</strong> Ersatzlösung für<br />

Chromate durchgesetzt und erlauben<br />

es <strong>de</strong>r Bandbeschichtungsindustrie,<br />

Grundierungen entsprechend <strong>de</strong>n<br />

angekündigten neuen europäischen<br />

Bestimmungen herzustellen.<br />

Als ein weiteres Beispiel für eine<br />

kostengünstige und qualitativ hochwertige<br />

Alternative zur chemischen<br />

Reinigung von Bän<strong>de</strong>rn wur<strong>de</strong> <strong>de</strong>r<br />

Einsatz von „Openair“-Plasma vorgetragen.<br />

Im Gegensatz zu <strong>de</strong>r bisher üblichen<br />

Wasser/Tensid-Reinigung <strong>de</strong>r<br />

Bän<strong>de</strong>r vor <strong>de</strong>m Auftrag einer Korrosionsschutzschicht<br />

han<strong>de</strong>lt es sich<br />

hier um einen umweltfreundlichen<br />

Trockenreinigungsprozess, <strong>de</strong>r die<br />

Energie von atmosphärischem Plasma<br />

nutzt. Damit können auch dünne<br />

Schichten von Schmiermitteln aus<br />

<strong>de</strong>m Walzprozess mit hoher Effizienz<br />

entfernt wer<strong>de</strong>n.<br />

Unter <strong>de</strong>m Motto „10 years into<br />

future“ fin<strong>de</strong>t die nächste ECCA-<br />

Konferenz vom 18. bis 21. Mai 2008<br />

in Malaga, Spanien, statt.<br />

B. Rieth, Meerbusch<br />

on energy and emission protection<br />

are of importance. It is precisely here<br />

that there are many ways of using the<br />

advantages of coated substrates as<br />

sales-promoting properties.<br />

Another theme was the effects on<br />

the worldwi<strong>de</strong> supply chain, of the<br />

new EU legislation on chemicals,<br />

REACH, that entered into force on 1<br />

June 2007. Since most of the important<br />

provisions take effect from 1 June<br />

2008, every manufacturer is faced by<br />

the question of how best to support<br />

his future users. The guiding principle<br />

of REACH – ‘No market without data’<br />

– signifies that all European manufacturers<br />

of chemicals may only continue<br />

offering their products after appropriate<br />

registration.<br />

Stricter environmental protection<br />

impositions present a great challenge<br />

for both manufacturers and operators<br />

of strip-coating lines as regards<br />

the adaptation of traditional pretreatments<br />

that rely on chromate (Cr6 + )<br />

and its neutralisation. The new EU<br />

provisions greatly restrict the use of<br />

Cr6 + for automobile (EU-Gui<strong>de</strong>line<br />

EoVL) and electric and electronic applications<br />

(EU-Gui<strong>de</strong>line RoHS).<br />

Besi<strong>de</strong>s the use of the entirely<br />

environmentally unobjectionable<br />

trivalent chromium (Cr3 + ), the legislation<br />

also encourages the <strong>de</strong>velopment<br />

of chromium-free alternative<br />

solutions. Some examples were proposed<br />

in Brussels: as a replacement<br />

for chromium-containing corrosion<br />

protection media for the priming of<br />

aluminium and steel strips, for example<br />

silicate pigments with ion exchange<br />

are suitable. As long ago as the<br />

mid-1980s pigments based on silicate<br />

products with ion exchange were already<br />

brought onto the market as new,<br />

non-toxic and environmentally unobjectionable<br />

alternatives for the previously<br />

known rust protection pigment<br />

techniques. Now, more than 20 years<br />

later, these products have emerged as<br />

a promising replacement solution for<br />

chromates and are enabling the stripcoating<br />

industry to produce primers<br />

that comply with the announced new<br />

European provisions.<br />

As a further example of an inexpensive<br />

and high-gra<strong>de</strong> alternative<br />

to the chemical cleaning of strips,<br />

the use of ‘Openair’ plasma has been<br />

proposed. In contrast to the previously<br />

usual water/surfactant cleaning<br />

<strong>Alu</strong>minium Centrum, Houten, Nie<strong>de</strong>rlan<strong>de</strong>, mit bandbeschichteter Fassa<strong>de</strong><br />

<strong>Alu</strong>minium Centrum, Houten, The Netherlands, with strip-coated faça<strong>de</strong><br />

of strips before the application of a<br />

corrosion protection layer, this is an<br />

environmentally friendly, dry cleaning<br />

process which utilises the energy<br />

of atmospheric plasma and enables<br />

even thin lubricant films from the rolling<br />

process to be removed with high<br />

efficiency.<br />

The next ECCA Conference, run<br />

un<strong>de</strong>r the motto “10 years into the future”,<br />

will take place between 18 and<br />

21 May 2008 in Malaga, Spain.<br />

B. Rieth, Meerbusch<br />

26 ALUMINIUM · 1-2/2008


Otto Rudolf Fuchs begeht 80. Geburtstag<br />

Am 14. Januar dieses Jahres feierte<br />

Otto Rudolf Fuchs, eine <strong>de</strong>r<br />

herausragen<strong>de</strong>n Unternehmerpersönlichkeiten<br />

<strong>de</strong>r <strong>Alu</strong>miniumindustrie<br />

in Deutschland, seinen<br />

80. Geburtstag.<br />

Otto R. Fuchs kann auf ein beeindrucken<strong>de</strong>s<br />

Lebenswerk blicken, <strong>de</strong>nn<br />

die Otto Fuchs-Gruppe gehört mit<br />

einem Umsatz von 2,2 Mrd. Euro zu<br />

<strong>de</strong>n größten Mittelständlern Deutschlands.<br />

Nach wie vor ein Familienunternehmen<br />

ist <strong>de</strong>r Unternehmensverbund<br />

heute mit <strong>de</strong>r Herstellung von<br />

Hightech-Produkten für die Luft- und<br />

Raumfahrtindustrie sowie für die Automobil-<br />

und Bauindustrie breit aufgestellt<br />

und in zukunftsträchtigen expandieren<strong>de</strong>n<br />

Märkten vertreten.<br />

Geboren wur<strong>de</strong> Otto R. Fuchs am<br />

14. Januar 1928 im sauerländischen<br />

Meinerzhagen als Sohn von Hans Joachim<br />

Fuchs, <strong>de</strong>m geschäftsführen<strong>de</strong>n<br />

Gesellschafter <strong>de</strong>r Firma Otto Fuchs.<br />

Nach <strong>de</strong>m Studium <strong>de</strong>s Maschinenbaus<br />

und Berufspraktikum in <strong>de</strong>n USA<br />

tritt Otto R. Fuchs 1954 in <strong>de</strong>n väterlichen<br />

Betrieb in Meinerzhagen ein,<br />

wo <strong>de</strong>r zunächst die Abteilung Druck-<br />

und Spritzguss (sog. Spritzerei) leitet.<br />

1956 übernimmt er die Leitung <strong>de</strong>s<br />

Zweigwerks Dülken, das in <strong>de</strong>n sieben<br />

Jahren unter seiner Führung einen beachtlichen<br />

Aufschwung erlebt.<br />

1963 tritt Otto R. Fuchs in die Geschäftsführung<br />

<strong>de</strong>s Familienbetriebes<br />

ein und wird als weiterer Kommanditist<br />

<strong>de</strong>r Gesellschaft aufgenommen. Es<br />

beginnt <strong>de</strong>r Ausbau <strong>de</strong>s Meinerzhagener<br />

Unternehmens zu einem international<br />

operieren<strong>de</strong>n Konzern.<br />

Ein Jahr später erwirbt Otto Fuchs<br />

die Firma Heinz Schürmann & Co.<br />

aus Bielefeld: einen kleinen Betrieb<br />

zur Fertigung von Schaufenstern aus<br />

<strong>Alu</strong>miniumprofilen. Heute ist die<br />

Schüco International KG weltweit<br />

vertreten und Marktführer hochwer-<br />

ALUMINIUM · 1-2/2008<br />

Foto: Otto Fuchs KG<br />

tiger Systeme: u. a. für Fenster, Türen,<br />

Fassa<strong>de</strong>n, Wintergärten, Sicherheitsbauteile<br />

und Solaranlagen.<br />

1964 geht im Meinerzhagener<br />

Werk die 30.000-Tonnen-Schmie<strong>de</strong>presse<br />

in Betrieb, eine <strong>de</strong>r weltweit<br />

größten privat finanzierten Schmie<strong>de</strong>pressen.<br />

1966 steigt Otto Fuchs<br />

mit <strong>de</strong>m legendären Porsche-Flügelrad<br />

in die Großserienfertigung für geschmie<strong>de</strong>te<br />

<strong>Alu</strong>miniumrä<strong>de</strong>r ein.<br />

Otto Rudolf Fuchs<br />

Otto R. Fuchs übernimmt 1974 die<br />

persönliche Haftung und damit die<br />

Leitung <strong>de</strong>s Konzerns, <strong>de</strong>r 1979 mit<br />

seiner Initiative um eine weitere<br />

Tochtergesellschaft, die Weber Metals<br />

Inc., Los Angeles, USA, erweitert<br />

und zu einer <strong>de</strong>r führen<strong>de</strong>n <strong>Alu</strong>miniumschmie<strong>de</strong>n<br />

von Gesenk- und Freiformschmie<strong>de</strong>teilen<br />

für die Luftfahrt<br />

ausgebaut wird.<br />

Nach <strong>de</strong>m Tod <strong>de</strong>s Vaters im Jahre<br />

1992 erfolgt eine Neuordnung <strong>de</strong>r Beteiligungen<br />

an <strong>de</strong>r Gesellschaft. Otto<br />

R. Fuchs und seine Halbschwester<br />

Christiane Fuchs übernehmen je 50<br />

Prozent <strong>de</strong>r Gesellschaftsanteile, die<br />

übrigen Gesellschafter schei<strong>de</strong>n aus<br />

<strong>de</strong>m Unternehmen aus. 1993 vollen<strong>de</strong>t<br />

Otto R. Fuchs sein 65. Lebensjahr<br />

und been<strong>de</strong>t die Geschäftsführung als<br />

persönlich haften<strong>de</strong>r Gesellschafter,<br />

begleitet jedoch weiterhin aktiv das<br />

Unternehmen als Kommanditist.<br />

WIRTSCHAFT<br />

Nach Überwindung <strong>de</strong>r konjunkturellen<br />

Rezession Anfang <strong>de</strong>r 1990er<br />

Jahre nimmt das Unternehmen wie<strong>de</strong>r<br />

Fahrt auf. Mit <strong>de</strong>m größten amerikanischen<br />

Hersteller von gegossenen<br />

<strong>Alu</strong>miniumrä<strong>de</strong>rn grün<strong>de</strong>t Otto<br />

Fuchs in Ungarn ein Joint Venture<br />

zur Herstellung von gegossenen und<br />

geschmie<strong>de</strong>ten Rä<strong>de</strong>rn für die europäische<br />

Automobilindustrie. Der Betrieb<br />

wird 1997 aufgenommen.<br />

Ein weiteres Joint Ventures folgt<br />

2006 in Südafrika. Hier produziert<br />

Otto Fuchs in East London an <strong>de</strong>r südafrikanischen<br />

Ostküste in Großserie<br />

<strong>Alu</strong>minium-Querlenker zusätzlich zu<br />

<strong>de</strong>r Meinerzhagener Fertigung für einen<br />

ihrer größten Kun<strong>de</strong>n: die Daimler<br />

AG. 2007 wird im Meinerzhagener<br />

Werk eine <strong>de</strong>r mo<strong>de</strong>rnsten Ringwalzanlagen<br />

in Betrieb genommen. Mit<br />

dieser Investition wird Otto Fuchs<br />

zu einem be<strong>de</strong>uten<strong>de</strong>n Anbieter von<br />

Triebwerksringen und -scheiben.<br />

Für seine persönliche und unternehmerische<br />

Lebensleistung und sein<br />

Engagement für das wirtschaftliche<br />

und gesellschaftliche Wohl <strong>de</strong>r Stadt<br />

Meinerzhagen und seiner Bürger wird<br />

Otto R. Fuchs im Jahre 2003 das Ehrenbürgerrecht<br />

und <strong>de</strong>r Ehrenring<br />

<strong>de</strong>r Stadt Meinerzhagen verliehen.<br />

Zur För<strong>de</strong>rung <strong>de</strong>s kulturellen Lebens<br />

in seiner Heimatstadt Meinerzhagen<br />

grün<strong>de</strong>t Otto R. Fuchs eine Stiftung,<br />

die er mit einer Spen<strong>de</strong> in Höhe von<br />

einer Million Euro ausstattet.<br />

Verwurzelt in seiner Heimat Meinerzhagen<br />

im südlichen Westfalen, ist<br />

Otto R. Fuchs nicht nur „aktiver“ Gesellschafter<br />

seines Unternehmens,<br />

son<strong>de</strong>rn in seiner Freizeit unter an<strong>de</strong>rem<br />

lei<strong>de</strong>nschaftlicher Pfer<strong>de</strong>züchter.<br />

Aus seiner Zucht von Hannoveranern<br />

hat so manches Nachwuchspferd<br />

große Berühmtheit erlangt.<br />

Die Redaktion ALUMINIUM gratuliert<br />

nachträglich zum Geburtstag.<br />

�<br />

Bezugsquellen sinnvoll nutzen<br />

Auf <strong>de</strong>n Seiten 112 bis 128 präsentieren führen<strong>de</strong> Ausrüstungspartner<br />

<strong>de</strong>r <strong>Alu</strong>miniumindustrie ihr Angebot. Nutzen Sie diese wertvollen Informationen!<br />

27


WIRTSCHAFT<br />

EEG-Ausgleichsregelung für stromintensive Betriebe<br />

Ersparnisse von mehr als einer halben Milliar<strong>de</strong> Euro<br />

Unternehmen, die aus produktionstechnischen<br />

Grün<strong>de</strong>n beson<strong>de</strong>rs<br />

viel Strom benötigen, wer<strong>de</strong>n<br />

laut Bun<strong>de</strong>sumweltministerium<br />

(BMU) dieses Jahr erneut bei<br />

ihren Stromkosten entlastet, darunter<br />

378 Firmen <strong>de</strong>s produzieren<strong>de</strong>n<br />

Gewerbes. Das Gesamtvolumen<br />

<strong>de</strong>r Entlastung liegt 2008<br />

laut BMU in einer Größenordnung<br />

von 650 Mio. Euro. Von <strong>de</strong>r Ausgleichsregelung<br />

<strong>de</strong>s Erneuerbare-<br />

Energien-Gesetzes (EEG) profitieren<br />

rund zehn Prozent mehr<br />

Unternehmen als im Vorjahr.<br />

Hauptgrund hierfür ist, dass angesichts<br />

steigen<strong>de</strong>r Strompreise eine<br />

wachsen<strong>de</strong> Zahl von Unternehmen<br />

die Eingangskriterien <strong>de</strong>r Regelung<br />

erfüllen.<br />

Nach <strong>de</strong>m EEG wer<strong>de</strong>n die Kosten<br />

für <strong>de</strong>n Ausbau erneuerbarer Energien<br />

auf die Stromverbraucher umgelegt.<br />

Für beson<strong>de</strong>rs stromintensive<br />

Unternehmen enthält das EEG eine<br />

Ausgleichsregelung, mit <strong>de</strong>r die Zusatzlasten<br />

wie<strong>de</strong>r ein Stück weit zurückgenommen<br />

wer<strong>de</strong>n. Durch eine<br />

En<strong>de</strong> 2006 in Kraft getretene Än<strong>de</strong>rung<br />

<strong>de</strong>s EEG beträgt diese Umlage<br />

für beson<strong>de</strong>rs stromintensive Unternehmen<br />

inzwischen „lediglich“ 0,05<br />

Branchenverteilung <strong>de</strong>s privilegierten Letztverbrauchs nach § 16 EEG<br />

für 2008<br />

Cent pro Kilowattstun<strong>de</strong>. Für eine<br />

<strong>Alu</strong>miniumhütte summiert sich die<br />

Zahl hinter <strong>de</strong>m Komma <strong>de</strong>nnoch auf<br />

einen Millionenbetrag. Im Auftrag <strong>de</strong>s<br />

BMU hat das Bun<strong>de</strong>samt für Wirtschaft<br />

und Ausfuhrkontrolle (BAFA)<br />

über die nach dieser Regelung ein-<br />

gereichten Anträge entschie<strong>de</strong>n und<br />

zum Jahreswechsel 2007/08 die Beschei<strong>de</strong><br />

versandt.<br />

Die BAFA setzt für je<strong>de</strong> antragsberechtigte<br />

Abnahmestelle individuelle<br />

Prozentsätze fest. Diese bil<strong>de</strong>n <strong>de</strong>n<br />

eigentlichen Kern <strong>de</strong>r Regelung. Sie<br />

legen für das jeweils folgen<strong>de</strong> Kalen<strong>de</strong>rjahr<br />

fest, welcher Anteil <strong>de</strong>s<br />

an „privilegierten Abnahmestellen“<br />

bezogenen Stroms maximal aus EEG-<br />

Quellen stammen muss, unabhängig<br />

von <strong>de</strong>r jeweils im Folgejahr tatsäch-<br />

lich bezogenen<br />

Strommenge.<br />

In die Berechnung<br />

fließen<br />

dabei u. a. die<br />

nachzuweisen<strong>de</strong>ntatsächlichen<br />

Kosten<br />

<strong>de</strong>s nicht nach<br />

EEG vergüteten<br />

Stroms ein. Die<br />

in <strong>de</strong>n Beschei<strong>de</strong>n für die einzelnen<br />

Abnahmestellen festgeschriebenen<br />

Begrenzungssätze unterschei<strong>de</strong>n sich<br />

daher in <strong>de</strong>m Maße, wie die Kosten<br />

<strong>de</strong>s konventionell bezogenen Stroms<br />

bei <strong>de</strong>n jeweiligen Energieversorgungsunternehmen<br />

differieren.<br />

Für 2008 hat die BAFA eine so<br />

genannte privilegierte Strommenge<br />

von insgesamt<br />

75.874 GWh<br />

ermittelt, die<br />

nicht mit <strong>de</strong>m<br />

vollen, son<strong>de</strong>rn<br />

begrenzten<br />

EEG-Anteil<br />

abzunehmen<br />

ist. Hiervon<br />

entfallen etwa<br />

94 Prozent<br />

(71.283 GWh)<br />

auf Unternehmen<br />

<strong>de</strong>s produzieren<strong>de</strong>n<br />

Gewerbes. Diese Strommenge liegt<br />

damit etwa fünf Prozent über <strong>de</strong>m<br />

Ergebnis <strong>de</strong>s Bescheidverfahrens für<br />

2007 (72.040 GWh).<br />

Die Zahl <strong>de</strong>r begünstigten Unternehmen<br />

liegt 2008 bei insgesamt 426.<br />

Sie ist damit gegenüber <strong>de</strong>m Vorjahr<br />

um 11,5 Prozent gestiegen. Auch die<br />

Zahl <strong>de</strong>r insgesamt bewilligten Begrenzungsbeschei<strong>de</strong><br />

hat sich <strong>de</strong>utlich<br />

erhöht (+15%). Hauptgrund für diesen<br />

Anstieg dürfte sein, dass angesichts<br />

steigen<strong>de</strong>r Strompreise eine wachsen<strong>de</strong><br />

Zahl von Unternehmen das<br />

Kriterium eines mehr als 15-prozentigen<br />

Anteils <strong>de</strong>r Stromkosten an <strong>de</strong>r<br />

Bruttowertschöpfung erfüllt.<br />

Zwischen <strong>de</strong>n einzelnen Branchen<br />

bestehen <strong>de</strong>utliche Unterschie<strong>de</strong><br />

beim jeweiligen Stromverbrauch. So<br />

Regelung Entlastungswirkung für die durch § 16<br />

EEG begünstigten Unternehmen in 2008<br />

Konzessionsabgabe 1.300 Mio. Euro<br />

Stromsteuer 800 Mio. Euro<br />

KWKG 60 bis 70 Mio. Euro<br />

EEG 650 Mio. Euro<br />

Überschlägige Abschätzung <strong>de</strong>r 2008 zu erwarten<strong>de</strong>n finanziellen<br />

Entlastungen bei <strong>de</strong>n durch § 16 EEG begünstigten Unternehmen<br />

haben die begünstigten Unternehmen<br />

mit <strong>de</strong>m höchsten Stromverbrauch<br />

aus <strong>de</strong>n Bereichen <strong>Alu</strong>minium und<br />

Chemie jeweils einen Jahresstrombezug<br />

von mehreren Tausend GWh.<br />

Von <strong>de</strong>r Regelung profitieren in<br />

<strong>de</strong>r Branche „Erzeugung und erste<br />

Bearbeitung von NE-Metallen“ 19<br />

Unternehmen mit einem privilegierten<br />

Letztverbrauch* von 10.653<br />

GWh; in <strong>de</strong>r Metallerzeugung und -<br />

bearbeitung sind es 33 Unternehmen<br />

mit einem Letztverbrauch von 1.966<br />

GWh. Die vier Branchen NE-Metalle,<br />

Chemie, Eisen/Stahl und Papier stellen<br />

etwa drei Viertel <strong>de</strong>s gesamten<br />

privilegierten Letztverbrauchs.<br />

Die BAFA führt darüber hinaus an,<br />

dass Son<strong>de</strong>rregelungen bei <strong>de</strong>r Ökosteuer,<br />

im Kraft-Wärme-Koppelungsgesetz<br />

sowie bei <strong>de</strong>n Konzessionsabgaben<br />

<strong>de</strong>n privilegierten Strombezug<br />

<strong>de</strong>r 2008 begünstigten Unternehmen<br />

zusätzlich in einer Größenordnung<br />

von gut zwei Milliar<strong>de</strong>n Euro (BAFA-<br />

Schätzung) verbilligen (s. Tabelle).<br />

* Beim sog. privilegierten Letztverbrauch han<strong>de</strong>lt<br />

es sich um die Stromverbräuche, die die<br />

antragstellen<strong>de</strong>n Unternehmen zur Jahresmitte<br />

auf Grundlage <strong>de</strong>s letzten abgeschlossenen Geschäftsjahres<br />

geltend machen.<br />

28 ALUMINIUM · 1-2/2008


ALUMINIUM · 1-2/2008<br />

ECONOMICS<br />

29


ALUMINIUM SMELTING INDUSTRY<br />

Primary aluminium activities<br />

at the turn of the year 2007/08<br />

R. P. Pawlek, Sierre<br />

This summary by continent reveals<br />

record global expansion<br />

with new smelters being built in<br />

areas where there is cheap energy.<br />

But there is also continued concentration<br />

of the market as major<br />

players merge or buy out others.<br />

This overview is divi<strong>de</strong>d into continents.<br />

Africa<br />

During 2007, Dubai <strong>Alu</strong>minium Co<br />

(Dubal) signed a joint venture <strong>de</strong>al<br />

with Mubadala Development Co, Algerian<br />

energy company Sonatrach,<br />

and utility firm Sonelgaz to build<br />

Algeria’s first 700,000 tpy aluminium<br />

smelter on the west coast in the<br />

Béni Saf region with an investment of<br />

US$5bn.<br />

Rio Tinto Alcan signed an amen<strong>de</strong>d<br />

agreement with the government<br />

of Cameroon on access to water resources<br />

for the construction of a new<br />

1,000 MW hydro power system in the<br />

West African country. That agreement<br />

paves the way for the start of technical<br />

studies on a potential 400,000 tpy<br />

greenfield smelter. A go-ahead <strong>de</strong>cision<br />

on the smelter project is expected<br />

by the end of 2009. This project<br />

is separate from a previously-agreed<br />

study on the expansion of the existing<br />

90,000 tpy E<strong>de</strong>a smelter operated as a<br />

joint venture between the government<br />

and Rio Tinto Alcan. The brownfield<br />

project, lifting capacity to 300,000 tpy,<br />

continues to make progress.<br />

Century <strong>Alu</strong>minum Co. signed a<br />

memorandum of un<strong>de</strong>rstanding with<br />

the Republic of Congo for the exclusive<br />

right to <strong>de</strong>velop a bauxite mine,<br />

alumina refinery and aluminium<br />

smelter.<br />

BHP Billiton signed an agreement<br />

with the government of the Democratic<br />

Republic of Congo (DRC) to<br />

jointly investigate the <strong>de</strong>velopment<br />

of a 800,000 tpy aluminium smelter.<br />

Russia’s aluminium producer UC<br />

Rusal closed a <strong>de</strong>al to acquire a ma-<br />

jority stake in the <strong>Alu</strong>minium<br />

Smelter Company of Nigeria<br />

(Alscon) in Akwa Ibom from<br />

the Nigerian Bureau of Public<br />

Enterprises. The transaction<br />

will add almost 153,000<br />

tpy to Rusal’s aluminium<br />

production capacity. The<br />

smelter should go online by<br />

the end of 2007. Once fully<br />

operational, the smelter can<br />

provi<strong>de</strong> up to 1,800 jobs.<br />

Furthermore, Rusal announced<br />

it could partner<br />

South African authorities in<br />

the construction of an energy<br />

and metallurgical complex.<br />

The South African government<br />

expressed interest in<br />

working with Rusal on the<br />

project, which would inclu<strong>de</strong><br />

building a 750,000 tpy capacity<br />

aluminium smelter and a<br />

1,300 MW coal-fired power plant.<br />

Alcan signed a contract worth<br />

more than US$100m with a joint<br />

venture consisting of SNC-Lavalin,<br />

Hatch, and Murray & Roberts for the<br />

front-end engineering <strong>de</strong>sign (FEED)<br />

and management of the first phase<br />

of the proposed Coega <strong>Alu</strong>minium<br />

smelter (360,000 tpy). South African<br />

power supplier Eskom will take a 15%<br />

stake in the smelter.<br />

North America<br />

Alcan signed a US$130m contract<br />

with the French energy company<br />

Areva for the <strong>de</strong>sign, engineering and<br />

construction of a new high-voltage<br />

sub-station that will power Alcan’s<br />

planned AP50 pilot plant in Saguenay,<br />

Quebec, Canada.<br />

Alcan also signed a contract with<br />

Bechtel to produce a <strong>de</strong>tailed feasibility<br />

study for the planned expansion<br />

of Alcan’s Kitimat smelter in British<br />

Columbia. Alcan announced its intention<br />

to lift capacity at Kitimat from the<br />

current 280,000 tpy to 400,000 tpy<br />

over a 2009 to 2011 timeframe.<br />

Alcan’s Kitimat smelter in British Columbia<br />

Alcoa, USA, announced on 7 May 2007<br />

to make an offer to acquire all of the<br />

outstanding common shares of Alcan<br />

for US$58.60 in cash and 0.4108 of a<br />

share of Alcoa common stock for each<br />

outstanding common share of Alcan.<br />

Based on Alcoa’s closing stock price<br />

on 4 May 2007, the offer had a value of<br />

US$73.25 per Alcan share or approx.<br />

US$33bn in enterprise value, but was<br />

then outbid by Rio Tinto.<br />

On 12 July Rio Tinto announced<br />

its friendly US$38.1bn all-cash offer<br />

for Alcan. The offer of US$101 per<br />

share represents a 32.8% premium<br />

to Alcoa’s offer of US$76.03 per<br />

share, based on Alcoa’s share price<br />

of 11 July. Unlike Alcoa’s hostile bid,<br />

Rio Tinto has the backing of Alcan’s<br />

board. On 25 October, Alcan and Rio<br />

Tinto group following the successful<br />

offer for Alcan by a subsidiary of Rio<br />

Tinto, became the global aluminium<br />

producer known as Rio Tinto Alcan.<br />

The Alcan name was <strong>de</strong>listed on the<br />

respective stock exchanges on 15<br />

November. Rio Tinto is now itself<br />

the object of takeover bids: both BHP<br />

Billiton and China Investment �<br />

30 ALUMINIUM · 1-2/2008<br />

Photo: Rio Tinto Alcan


�������������������������������<br />

����������������������������������������<br />

���������������������<br />

�����������������������������������<br />

To power your operation while lowering<br />

consumption we provi<strong>de</strong> you with stable<br />

highly effi cient electrical energy supply,<br />

distribution and conditioning. To in-<br />

crease employee productivity and engineering effi ciency, we offer you powerful control<br />

systems. To improve dynamic performance and reduce power losses, we provi<strong>de</strong> high-tech<br />

drive systems. To increase furnace productivity and save energy, utilize our most effective<br />

electromagnetic stirrers. To ensure environmental compliance, reduce product<br />

standard <strong>de</strong>viation and increase production, apply our expert and optimization<br />

solutions. Maximize the return on project investment through our vast know ledge,<br />

know-how and extensive experience. Using quality ABB products helps you achieve<br />

industry leading productivity. Visit us at www.abb.com/aluminium


ALUMINIUM SMELTING INDUSTRY<br />

Corporation have ma<strong>de</strong> rival bids.<br />

Alcoa’s Intalco smelter restarted a<br />

second potline at its Ferndale, Washington,<br />

operation. With the first molten<br />

metal poured, the operation’s capacity<br />

increased some 90,000 tonnes in<br />

2007. The smelter has idled two potlines<br />

since April 2003, and the restart<br />

brings the plant’s output to 180,000<br />

tpy, two-thirds of its rated capacity.<br />

Alcoa restarted one line at its Tennessee<br />

aluminium smelter. That line<br />

had been involuntarily idled due to a<br />

direct lighting strike in a severe electrical<br />

storm in mid-April. The potline<br />

produces about 107,000 tpy and was<br />

again fully operational at the end of<br />

June.<br />

Xstrata sold the aluminium business<br />

it inherited from its acquisition of<br />

Falconbridge in 2006 to private equity<br />

firm Apollo Management LP for some<br />

US$1.15bn in cash.<br />

Northwest <strong>Alu</strong>minum Specialties<br />

signed an agreement to dismantle the<br />

long-idled aluminium smelter it owns<br />

in The Dalles, Oregon and to restore<br />

the site. Northwest has contracted<br />

this work to Pro-SE Services Inc., a<br />

Californian company that <strong>special</strong>izes<br />

in engineering and <strong>de</strong>molition services,<br />

to be completed during 2009. In<br />

October Northwest <strong>Alu</strong>minum Co did<br />

not exercise its option to receive 100<br />

MW of power from Bonneville Power<br />

Administration (BPA). As a result, the<br />

100 MW will be divi<strong>de</strong>d proportionally<br />

between Alcoa and Columbia<br />

Falls <strong>Alu</strong>minum, owned by Glencore<br />

International. Alcoa received an additional<br />

70 MW to bring it up to 390<br />

MW and Columbia Falls will get 30<br />

MW bringing its total to 140 MW.<br />

South America<br />

Argentine aluminium producer <strong>Alu</strong>ar<br />

geared up to start bringing online its<br />

newly-constructed smelter expansion.<br />

The project lifted the plant capacity<br />

from 280,000 tpy to 410,000 tpy<br />

and energized 144 new cells. The first<br />

phase expansion, which ad<strong>de</strong>d 130,000<br />

tpy new capacity in an US$850m<br />

investment, was inaugurated on 3<br />

September. <strong>Alu</strong>ar confirmed it will<br />

move ahead immediately with a new<br />

US$400m investment at its Puerto<br />

Madryn smelter to raise primary alu-<br />

minium capacity by another 105,00<br />

tpy to 515,000 tpy by late 2009.<br />

Brazilian aluminium producer<br />

CBA started commissioning the next<br />

stage capacity increase at its Sorocaba<br />

aluminium smelter, expanding plant<br />

capacity from the current 405,000<br />

tpy to 475,000 tpy. Cia Brasileira do<br />

<strong>Alu</strong>minio (CBA) announced it may expand<br />

its primary aluminium smelting<br />

capacity in Sao Paulo state to 700,000<br />

tpy from the current 475,000 tpy.<br />

Alcoa announced investments in<br />

the Serra do Facaño hydroelectric<br />

power project to be built on the Sao<br />

Marcos River in Brazil’s central region.<br />

Alcoa will hold 35% of the new<br />

company. The investment is part of<br />

Alcoa’s long-term strategy of <strong>de</strong>veloping<br />

energy projects in Latin America<br />

to support its smelters and to move<br />

toward self-sufficiency for its energy<br />

needs.<br />

The presi<strong>de</strong>nt of Guyana used a<br />

trip to Moscow to sign a letter of intent<br />

with Rusal on the construction of an<br />

integrated aluminium complex in the<br />

South American country.<br />

Chinese alumina producer Bosai<br />

Minerals Group announced plans<br />

to construct an 800,000 tpy alumina<br />

refinery and 400,000 tpy aluminium<br />

smelter in Guyana. For this, Bosai<br />

Minerals intends to invest 10bn yuan<br />

(US$1.3bn) in building facilities and a<br />

1,000 MW hydro power plant in Guyana<br />

within the next five years.<br />

The governments of Venezuela<br />

and Nicaragua announced a possible<br />

strategic alliance that could see the<br />

<strong>de</strong>velopment of an aluminium smelter<br />

in Nicaragua. Studies are un<strong>de</strong>rway<br />

in Nicaragua to create a company to<br />

produce aluminium for the Nicaraguan<br />

and Latin American markets.<br />

A group of investors announced<br />

plans to build an aluminium smelter<br />

in the Republic of Suriname. Plans<br />

for the 250,000 tpy smelter were disclosed<br />

by Bisram Chan<strong>de</strong>rbosh, presi<strong>de</strong>nt<br />

of Suriname Industrial Engineering<br />

& Vehicle Services.<br />

The second aluminium smelter<br />

project planned for the Caribbean<br />

country of Trinidad & Tobago was<br />

running late due to environmental<br />

concerns. The first project – the<br />

340,000 tpy plant proposed by Alcoa<br />

– has already been put on the<br />

back-burner after the government<br />

was forced to back down on its proposed<br />

location un<strong>de</strong>r pressure from<br />

environmental lobbying. The second<br />

project, <strong>Alu</strong>trint, envisages a smaller<br />

125,000 tpy smelter.<br />

UC Rusal and Corporacion Venezolana<br />

<strong>de</strong> Guayana (CVG) signed a<br />

letter of intent to explore alumina and<br />

aluminium projects in Venezuela.<br />

Asia<br />

Dubal and Mubadala Development<br />

Co, a wholly owned investment vehicle<br />

of the government of the Emirate<br />

of Abu Dhabi, signed a joint venture<br />

for the <strong>de</strong>velopment of Emirates <strong>Alu</strong>minium<br />

(Emal), which plans to build<br />

a 1.4m tpy aluminium smelter in Abu<br />

Dhabi. Construction of the smelter<br />

is slated for two phases, the first of<br />

which is projected to cost US$5bn<br />

and the second US$3bn. The smelter<br />

is to be located at the Khalifa Port and<br />

Industrial Zone in Abu Dhabi.<br />

Rio Tinto also announced plans<br />

to <strong>de</strong>velop a 550,000 tpy aluminium<br />

smelter together with Abu Dhabi Basic<br />

Industries Group (Adbic) at a cost<br />

of about US$5bn.<br />

<strong>Alu</strong>minium Bahrain (Alba) once<br />

more announced plans to raise aluminium<br />

smelting capacity by a further<br />

320,000 tpy to more than 1m tpy, and<br />

is looking to expand through joint<br />

ventures in other Gulf countries. Alba<br />

intends to install a sixth reduction line<br />

at an estimated cost of US$1.7bn to<br />

take capacity to 1.2m tpy.<br />

Anshun Huangguoshu <strong>Alu</strong>minium<br />

Co, a privately-owned producer based<br />

in China’s southern Guizhou province,<br />

doubled capacity to 200,000 tpy.<br />

Guizhou Liupanshui Shuangpai<br />

<strong>Alu</strong>minium Co commissioned a<br />

50,000 tpy project, doubling its total<br />

capacity to 100,000 tpy.<br />

In North China, Shaanxi Changhong<br />

<strong>Alu</strong>minium Co is building<br />

a 100,000 tpy aluminium project,<br />

scheduled to come on stream by June<br />

or July 2007.<br />

<strong>Alu</strong>minium Corporation of China<br />

(Chalco) announced plans to buy three<br />

other aluminium smelters. The acquisitions<br />

increase Chalco’s aluminium<br />

capacity and market competitiveness,<br />

Chalco’s listed subsidiaries Shandong<br />

32 ALUMINIUM · 1-2/2008


SPECIAL<br />

ALUMINIUM SMELTING INDUSTRY TMS & ALUMINIUM INDIA 2008<br />

<strong>Alu</strong>minium Industry Co (SAIC) and<br />

Lanzhou <strong>Alu</strong>minium Co (LAC) said<br />

in separate statements. Chinalco is to<br />

buy 80% of the Inner Mongolian government’s<br />

wholly owned Baotou <strong>Alu</strong>minium<br />

group, which in turn owns<br />

55% of BAC Chinalco, and received<br />

government approval to buy a 72%<br />

stake in Shaanxi Nonferrous Metals<br />

Group, which in turn owns 70.9% of<br />

Tongchuan, and is also to buy 100%<br />

in Liancheng. BAC produced 307,000<br />

tonnes in 2006, Tongchuan 270,000<br />

tonnes and Liancheng 155,000 tonnes.<br />

Chalco is looking to take full ownership<br />

of SAIC and LAC in a US$1bn<br />

<strong>de</strong>al that will enable it to list on the<br />

Shanghai Stock Exchange.<br />

China’s Aba <strong>Alu</strong>minium Plant in<br />

Sichuan province completed expansion<br />

works and double its ingot capacity<br />

to 40,000 tpy in June.<br />

Shanxi Guanlu <strong>Alu</strong>minium announced<br />

plans to expand ingot capacity<br />

by 100,000 tpy on its existing 200<br />

kA line with 70,000 tpy current capacity.<br />

The third, a 300 kA potline with a<br />

������ ���<br />

��������<br />

capacity of 200,000 to 220,000 tpy is a<br />

joint venture with Chalco (59%).<br />

Datun <strong>Alu</strong>minium in Jiangsu province<br />

started expansion works on its<br />

ingot capacity in 2007 which will lift<br />

capacity by 150,000 tpy to 260,000 tpy<br />

from the current 110,000 tpy.<br />

China suspen<strong>de</strong>d the construction<br />

of Qiya <strong>Alu</strong>minium Industry Group’s<br />

150,000 tpy aluminium smelter, because<br />

it did not have the necessary<br />

environmental approval.<br />

Shanxi Zhenxin Group had to stop<br />

construction of the second phase of<br />

its 200,000 tpy aluminium smelter<br />

project after the environmental protection<br />

agency of China accused the<br />

company of flouting environmental<br />

laws. The first phase of the project,<br />

which was completed in 2002, remains<br />

in production.<br />

Century <strong>Alu</strong>minum Company<br />

signed a memorandum of un<strong>de</strong>rstanding<br />

(MoU) with the Guangxi<br />

Investment Group Company (GIG)<br />

to explore the feasibility of <strong>de</strong>veloping<br />

an aluminium smelter project and<br />

for <strong>Alu</strong>minium DC<br />

casting<br />

Drache<br />

umwelttechnik<br />

related bauxite mine and alumina refinery<br />

in China.<br />

At least 14 people were killed and<br />

another 59 injured in a molten aluminium<br />

spillage at a casting plant<br />

owned by a subsidiary of China’s<br />

Weiqiao <strong>Alu</strong>minium. The acci<strong>de</strong>nt<br />

happened on 19 August, when molten<br />

aluminium reacted with cooling water<br />

at the plant. The reaction caused an<br />

explosion of steam that blew the roof<br />

of the building, killing workers who<br />

were holding a meeting at the time.<br />

Alcoa sold its equity holdings in<br />

the <strong>Alu</strong>minium Corporation of China<br />

Ltd (Chalco) through a placement<br />

of shares for approx. HK$15.3bn<br />

(US$2.0bn).<br />

Chalco acquired Shaanxi Tongchuan<br />

<strong>Alu</strong>minium Co at the end of<br />

2007. The acquisition of Tongchuan<br />

boosts Chalco’s aluminium by 250,000<br />

tpy to 3.75m tpy currently.<br />

China’s Mimetals Corp’s alumina<br />

and aluminium arm, Minmetals<br />

Resources Limited (MRL)<br />

announced investments of 680m �<br />

������� ����<br />

�������<br />

for <strong>Alu</strong>minium DC<br />

casting<br />

�������������������������������������������������������������������������<br />

33 ALUMINIUM · 1-2/2008<br />

ALUMINIUM · 1-2/2008 33


ALUMINIUM SMELTING INDUSTRY<br />

yuan (US$90m) in Qinghai Province<br />

Investment Group(QIG), an aluminium<br />

smelter and hydropower producer.<br />

Vimetco acquired a Chinese aluminium<br />

producer with 110,000 tpy<br />

capacity for around US$35m. Majority-owned<br />

Henan Zhongfu Industry<br />

Co paid 266m yuan (US$35m) for<br />

Lifeng <strong>Alu</strong>minium, which is located<br />

in Linzhou, Henan province. Lifeng<br />

<strong>Alu</strong>minium has a workforce of 1,300.<br />

At the end of 2007, China announced<br />

gui<strong>de</strong>lines for those who<br />

wish to enter the domestic aluminium<br />

industry, according to the National <strong>de</strong>velopment<br />

and Reform Commission.<br />

All new <strong>de</strong>velopment projects in the<br />

aluminium sector, including mining,<br />

alumina refining, primary smelting<br />

and recycling, as well as fabrication<br />

plants, must abi<strong>de</strong> by all requirements<br />

of the various state <strong>de</strong>partments.<br />

These inclu<strong>de</strong> basic requirements for<br />

proper land use, safety and environmental<br />

regulations. Un<strong>de</strong>r the gui<strong>de</strong>lines,<br />

smelting facilities cannot be<br />

built within 1 km of protected regions,<br />

which inclu<strong>de</strong>: water preservation<br />

areas, protected farming areas, protected<br />

natural reservations, famous<br />

scenic attractions, major cities and<br />

their nearby surrounding countrysi<strong>de</strong>,<br />

hospitals, as well as food, medical<br />

and electronic business. For new<br />

primary smelting projects, approval is<br />

also required from the State Council’s<br />

investment management division. In<br />

the near term, only upgrading projects<br />

to suit environmental requirements<br />

and to replace outdated machinery<br />

are being consi<strong>de</strong>red for approvals.<br />

These projects also require guaranteed<br />

alumina feed supply, sufficient<br />

power supply, and efficient transport<br />

conditions.<br />

In February 2007, India’s top nonferrous<br />

producer Hindalco Industries<br />

agreed a friendly takeover bid<br />

for Novelis in a <strong>de</strong>al that values the<br />

North American aluminium company<br />

at about US$6bn, including about<br />

US$ 2.4bn of <strong>de</strong>bt. Hindalco produces<br />

about 429,000 tpy of primary aluminium,<br />

and is planning a greenfield expansion<br />

that will take its capacity to<br />

1.5m tpy by 2011. On 15 May Hindalco<br />

completed the US$6bn purchase of<br />

Novelis, which became a subsidiary of<br />

Mumbai-based company.<br />

Hindalco Industries proved a coalmining<br />

joint venture to feed its much<br />

<strong>de</strong>layed 500,000 tpy integrated aluminium<br />

smelter project in Orissa.<br />

Emirate of Ras Al-Khaimah agreed<br />

a US$2bn joint venture with the government<br />

of Andhra Pra<strong>de</strong>sh to build<br />

an alumina refinery and an aluminium<br />

smelter in the eastern Indian state.<br />

The alumina refinery will produce 1m<br />

tpy of alumina while the smelter will<br />

have an initial capacity of 250,000<br />

tpy which may be doubled at a later<br />

date.<br />

Vedanta Resources announced<br />

plans to more than double capacity<br />

to 900,000 tpy of primary aluminium<br />

by 2009, once it has brought its new<br />

500,000 tpy greenfield project in<br />

Orissa on stream. The smelter will<br />

be commissioned early next year and<br />

ramped up to reach full capacity in<br />

early 2009.<br />

The Indian aluminium producer<br />

Balco signed an MoU with the state of<br />

Chattisgarh on a major expansion of<br />

its Korba smelting complex. The MoU<br />

provi<strong>de</strong>s for a further investment of<br />

US$2bn to lift capacity by a further<br />

650,000 tpy, bringing total capacity<br />

at the Korba complex close to the1m<br />

tpy level.<br />

Dubal and Larsen & Toubro proposed<br />

to jointly set up a 3m tpy alumina<br />

refinery and a 220,000 tpy aluminium<br />

smelter in the Indian state of<br />

Orissa.<br />

India’s state-owned National <strong>Alu</strong>minium<br />

Company (Nalco) announced<br />

plans to double its alumina capacity<br />

to 3m tpy and smelter capacity to<br />

710,000 tpy. No time frame has been<br />

scheduled, but work towards these<br />

third-phase targets as well as a 700<br />

MW power plant will begin at the end<br />

of 2008, when Nalco’s current expansion<br />

ends. Nalco is in the process of<br />

raising alumina capacity from 1.57m<br />

tpy to 2.1m tpy, and its smelter capacity<br />

from 350,000 tpy to 460,000 tpy.<br />

Ras-Al-Khaima Investment Authority<br />

(Rakia), a provincial investment<br />

company of the United Arab<br />

Emirates, is planning to invest US$2bn<br />

in a greenfield integrated aluminium<br />

complex in the India state of Andhra<br />

Pra<strong>de</strong>sh. Rakia has singed an agreement<br />

with with the Andhra Pra<strong>de</strong>sh<br />

Mineral Development Authority for<br />

bauxite reserves to feed a planned<br />

facility in Visakhapatnam. Rakia consi<strong>de</strong>rs<br />

a 1.5m tpy alumina refinery and<br />

a 350,000 tpy smelter.<br />

The Indian aluminium industry expects<br />

to invest Rs1,000bn (US$25bn)<br />

over the next five years, boosting installed<br />

aluminium smelting capacity<br />

from the existing 1.1m tpy to 4m tpy.<br />

The announcement at the end of 2007<br />

also said consumption of aluminium<br />

in India is growing at 18% per year<br />

compared with the global 4.4%. By<br />

2015, the Indian aluminium use will<br />

grow to 2.75m tpy.<br />

In June 2007, India’s Nalco was<br />

looking for partners to set up a 500,000<br />

tpy aluminium smelter project in Indonesia.<br />

However it was not revealed<br />

when the smelter might be built, or<br />

what kind of partnership Nalco was<br />

looking for.<br />

Iran <strong>Alu</strong>minium Company (Iralco)<br />

officially inaugurated its new Hormozal<br />

smelter to complement its existing<br />

120,000 tpy Al Mahdi smelter.<br />

The first phase of the project has a<br />

capacity of 35,000 tpy and that will<br />

rise to 110,000 tpy when the second<br />

and the third phases are completed by<br />

March 2009. The expansion is being<br />

conducted in cooperation with China’s<br />

Non-Ferrous Metal Industry’s<br />

Foreign Engineering & Construction<br />

Company Limited (NFC).<br />

Gulf aluminium producer Dubal<br />

will supply its proprietary technology<br />

for an expansion of the Al Mahdi<br />

smelter in Iran. The Hormozal expansion<br />

of Al Mahdi will see the addition<br />

of a second potline with a capacity of<br />

147,000 tpy, lifting total smelter capacity<br />

to 257,000 tpy<br />

Kazakhstan <strong>Alu</strong>minium Smelter<br />

(KAS), part of Kazakh metals and mining<br />

group Eurasian Natural Resources<br />

Corporation (ENRC), has signed a<br />

US$292.8m credit agreement with<br />

the Export-Import Bank of China<br />

(Eximbank). Building the smelter was<br />

complete by the end of 2007, and it<br />

will come on stream in three stages,<br />

with initial output at 62,500 tpy, rising<br />

to 125,000 tpy by 2008 and 250,000<br />

tpy by 2011.<br />

UC Rusal was in talks with the Kazakh<br />

government about the possibility<br />

of building an aluminium and �<br />

34 ALUMINIUM · 1-2/2008


Photo: Norsk Hydro<br />

ALUMINIUM SMELTING INDUSTRY<br />

energy complex in the central Asian<br />

country. UC Rusal has approached<br />

the Kazakh authorities with a proposal<br />

to invest US$3.5bn in building<br />

a 500,000 tpy aluminium smelter and<br />

1m tpy alumina refinery.<br />

UC Rusal resumed exploring opportunities<br />

for building an energy and<br />

metals complex in Kyrgyzstan, after its<br />

failure to accomplish a similar project<br />

in neighbouring Tajikistan.<br />

Rio Tinto announced it might sign<br />

an agreement with the Malaysian<br />

government for the construction of<br />

a 1.5m tpy aluminium smelter in the<br />

state of Sawarak. Many major aluminium<br />

companies around the world<br />

are said to be eager to participate in<br />

the project, including Alcoa and BHP<br />

Billiton, as well as China’s aluminium<br />

producer Shandong Luneng Group<br />

and energy company Sinohydro.<br />

In August Rio Tinto and Malaysia’s<br />

Cahya Mata Sarawak (CMS) signed a<br />

heads of agreement for the proposed<br />

<strong>de</strong>velopment of a 750,000 tpy aluminium<br />

smelter in the Malaysian state of<br />

Sarawak. In October Bechtel had been<br />

appointed to un<strong>de</strong>rtake an engineering<br />

study of the proposed US$2.2bn<br />

new aluminium smelter.<br />

Alcoa was also in talks with the<br />

Malaysian government about the<br />

construction of a 1m tpy aluminium<br />

smelter in the state of Sarawak.<br />

Qatalum, the new aluminium<br />

smelter company in Qatar, a joint<br />

venture between Qatar Petroleum<br />

and Hydro <strong>Alu</strong>minium AS, has<br />

awar<strong>de</strong>d the contract for its 1250 MW<br />

power plant to a consortium integrat-<br />

Qatalum aluminium plant site<br />

ed of General Electric and Doosan<br />

Heavy Industries Construction Co.,<br />

Ltd. Qatalum will be a state-of-theart<br />

installation for 585,000 tpy of<br />

high quality aluminium using Hydro<br />

technology. The <strong>de</strong>sign incorporates<br />

an option to double the capacity to<br />

1.2m tpy of aluminium. During the<br />

construction phase at the Mesaieed<br />

Industrial City, Qatalum will generate<br />

about 5,500 jobs, and once in operation<br />

during 2010, Qatalum will provi<strong>de</strong><br />

1,000 permanent jobs. The capital<br />

investment estimate for the total<br />

Qatalum project is approx. US$5.6bn.<br />

Norsk Hydro and Qatar Petroleum laid<br />

the foundation stone on 19 November<br />

at the 1.7 square km site in Mesaieed<br />

Industrial City, south of Doha.<br />

Two Chinese state entities, China<br />

Non-ferrous Metal Industry’s Foreign<br />

Engineering and Construction Co Ltd<br />

(NFC) and China National Machinery<br />

Industry Corporation (Sinomach),<br />

signed an agreement with Saudi Arabian<br />

company Western Way for Industrial<br />

Development Co (WWIDC) to<br />

build an integrated alumina-aluminium<br />

mega-complex at Jazan in Saudi<br />

Arabia. The agreement provi<strong>de</strong>s for a<br />

project with an alumina capacity of<br />

1.6m tpy and a primary metal capacity<br />

of 700,000 tpy for a total investment of<br />

around US$4bn. NFC will take a significant<br />

but as yet undisclosed stake<br />

in the complex, as will US metals<br />

tra<strong>de</strong> house Gerald Metals.<br />

Alcan signed a heads of agreement<br />

with Saudi Arabian mining company<br />

Ma’a<strong>de</strong>n to <strong>de</strong>velop a US$7bn integrated<br />

aluminium mine-to-metal<br />

project, incuding bauxite mining, a<br />

1.6m tpy alumina refinery, a 1,400<br />

MW power plant and a 720,000 tpy<br />

aluminium smelter.<br />

MMC Corp and the Saudi Binladin<br />

Group signed an agreement with <strong>Alu</strong>minum<br />

Corporation of China (Chalco)<br />

to build a second aluminium smelter<br />

at Jazan Economic City (JEC) in Saudi<br />

Arabia at a cost of US$3bn. The smelter<br />

will have a capacity of 1m tpy. The<br />

companies formed joint venture company<br />

Sino-Saudi Jazan <strong>Alu</strong>minium Ltd<br />

to un<strong>de</strong>rtake the project, with Chalco<br />

and a Saudi consortium.<br />

Companies including Norsk Hydro<br />

are reported to be competing to become<br />

partners with Tajikistan’s sole<br />

aluminium produce Tajik <strong>Alu</strong>minium<br />

(Talco), which was once more likely<br />

to have been a target of their litigation.<br />

Having put its disputes with the<br />

smelter behind, Hydro is confi<strong>de</strong>nt<br />

their new partnership will flourish.<br />

At the centre of both companies’ ambitions<br />

is the 500,000 tpy aluminium<br />

smelter, which has been running at<br />

400,000 tpy in recent years. Hydro<br />

<strong>Alu</strong>minium will help mo<strong>de</strong>rnize the<br />

smelter in exchange for increasing<br />

the volume of alumina it supplies to<br />

Talco.<br />

Dubai <strong>Alu</strong>minium (Dubal) announced<br />

plans to raise primary metal<br />

production capacity to 920,000 tpy by<br />

the end of 2008. After the US$230m<br />

ongoing potline 5B and 6B expansion,<br />

Dubal will further raise primary capacity<br />

to 945,000 tpy, and casthouse capacity<br />

to 1.13m tpy. At the end of 2007,<br />

Dubal announced plans to increase<br />

production to 2.5m tpy by 2015.<br />

Russia’s UC Rusal wants to build<br />

a hydro-electric power plant and<br />

an integrated bauxite-to-aluminium<br />

facility in Vietnam’s southern Binh<br />

Phuoc province. The planned aluminium<br />

smelter would have a capacity of<br />

750,000 tpy.<br />

Australia<br />

In October 2007, Rio Tinto’s takeover<br />

offer for Canadian aluminium<br />

producer Alcan received the green<br />

light from the competition watchdogs<br />

of Europe and Australia, and<br />

the US$38.1bn takeover created the<br />

world’s largest aluminium producer.<br />

36 ALUMINIUM · 1-2/2008


ALUMINIUM SPECIALSMELTING<br />

INDUSTRY TMS & ALUMINIUM INDIA 2008<br />

Rio Tinto obtained all outstanding<br />

common shares of Alcan and <strong>de</strong>listed<br />

Alcan on 15 November.<br />

In November investors seemed<br />

sure that mining giant BHP Billiton<br />

will continue its US$149bn pursuit of<br />

Rio Tinto, a combination that would<br />

control more than one third of the<br />

world’s iron ore sale. Rio Tinto rejected<br />

BHP Billiton’s 3-for-1 share<br />

offer on 8 November, but share price<br />

movements in London and Australia<br />

indicate investors expect that BHP<br />

Billiton will increase its offer, that the<br />

bid will turn hostile or that another<br />

bid<strong>de</strong>r will emerge. BHP confirmed<br />

its approach to its mining rival and<br />

intends to continue to seek an opportunity<br />

to meet and discuss its proposal<br />

with Rio Tinto.<br />

Europe<br />

<strong>Alu</strong>-Met, Europe’s largest privately<br />

owned extrusion billet producer has<br />

thrown its hat into the ring as a possible<br />

suitor for Corus Group’s primary<br />

�����������<br />

���������<br />

��������<br />

���������������������������<br />

�������������������<br />

�����������������������������������������<br />

��������������������������������������������<br />

������������������������������<br />

aluminium business in the Netherlands<br />

and Germany. <strong>Alu</strong>-Met, which<br />

is headquartered in Blu<strong>de</strong>nz, Austria,<br />

has two production facilities in Germany.<br />

In Kempten <strong>Alu</strong>-Met produces<br />

55,000 to 60,000 tpy of extrusion billet<br />

while in Nachrodt the capacity<br />

is about 80,000 tpy. The aluminium<br />

smelter in Voer<strong>de</strong>, Germany has a capacity<br />

of 90,000 tpy while the smelter<br />

in Delfzjil, the Netherlands has a capacity<br />

to produce about 110,000 tpy<br />

of primary aluminium.<br />

Carbone Savoie, a subsidiary of<br />

Alcan based in France, announced<br />

plans to invest US$17m to enhance<br />

equipment at the Notre-Dame-<strong>de</strong>-Briançon<br />

and Lannemzan sites in or<strong>de</strong>r<br />

to rapidly meet the needs of its catho<strong>de</strong><br />

products customers.<br />

Anglo-Dutch steelmaker Corus<br />

Group, which is owned by Tata Steel,<br />

put its remaining primary aluminium<br />

business, which inclu<strong>de</strong>s two smelters<br />

in the Netherlands and Germany, up<br />

for sale and has received an expression<br />

of interest from Trimet. In De-<br />

�����������������<br />

�������������������������������������<br />

��������������������������������������<br />

���������������������������������������������<br />

����������������������������������������<br />

���������������������������������������<br />

����������������������������<br />

������������������������<br />

�������������� ������������������������������ � ������������������������������ � �����������������������������������<br />

��������������������������� � �������������������<br />

cember, Corus and <strong>Alu</strong>minium Industrial<br />

Acquisition Company Ltd (AIAC)<br />

signed a non-binding letter of intent<br />

for the proposed acquisition of Corus’<br />

aluminium smelters by an affiliate of<br />

AIAC for an undisclosed sum.<br />

The German aluminium producer<br />

Trimet <strong>Alu</strong>minium AG restarted production<br />

at the idled aluminium smelter<br />

in Hamburg in April. Some 400 employees<br />

were recalled and the official<br />

opening was on May 9. End of 2007 all<br />

270 cells were in full operation.<br />

Hydro <strong>Alu</strong>minium announced<br />

plans to build an aluminium smelter<br />

in Greenland with a capacity of as<br />

much as 300,000 tpy. Such a metal<br />

production would need 500 MW of<br />

power.<br />

The Greenland Home Rule Cabinet<br />

entered into an MoU with aluminium<br />

company Alcoa over co-operation on<br />

a feasibility study for a 340,000 tpy<br />

capacity smelter in Greenland.<br />

A planned expansion of Alcan’s<br />

smelter Isal in Iceland would see the<br />

implementation of Alcan’s AP35 �<br />

����������������<br />

������������������������������������<br />

����������������������������������<br />

���������������������������������������������<br />

�������������������������������


ALUMINIUM SMELTING INDUSTRY<br />

technology, raising the total capacity<br />

to 460,000 tpy. However, Alcan lost<br />

its exclusive rights to power supplies<br />

which would have enabled the company<br />

to expand its Isal smelter.<br />

Alcoa started commissioning the<br />

340,000 tpy Fjaardal smelter and celebrated<br />

the official inauguration at<br />

the beginning of June. To compensate<br />

for slight power project <strong>de</strong>lays, Alcoa<br />

has secured some bridge power, but<br />

reached full capacity at the beginning<br />

of 2008.<br />

Century <strong>Alu</strong>minium of Monterey,<br />

California, is moving ahead with plans<br />

for its second smelter in Iceland. To be<br />

located in Helguvik, approx. 25 miles<br />

south of Reykjavik, the smelter would<br />

have an initial capacity of 150,000 tpy<br />

and could be expan<strong>de</strong>d to 250,000<br />

tpy.<br />

Since July, Century <strong>Alu</strong>minium’s<br />

40,000 tpy has been commissioning<br />

the expansion at its Grundartangi<br />

smelter in Iceland. The ramp-up was<br />

completed at the end of November<br />

2007, lifting capacity at the smelter to<br />

260,000 tpy.<br />

Alcan sold its Vlissingen smelter in<br />

the Netherlands to Klesch & Company<br />

Ltd (Klesch).The transaction closed in<br />

summer 2007. The Vlissingen aluminium<br />

plant employs some 700 people<br />

and has a capacity of 200,000 tpy of<br />

primary aluminium, with a turnover<br />

of approx. US$600m in 2006.<br />

Hydro <strong>Alu</strong>minium of Norway announced<br />

investments of NOK 340m<br />

(US$55.74m) in expanding the four<br />

gas scrubber units at its aluminium<br />

plant at Sunndalsøra. The work will<br />

be complete by November 2008.<br />

On 13 June Hydro cut off power to<br />

the last Sø<strong>de</strong>rberg pots at its Årdal<br />

aluminium smelter. Capacity at Årdal<br />

fell from 220,000 tpy to 180,000 tpy<br />

as a result of the phase-out of the Sø<strong>de</strong>rberg<br />

potline.<br />

At the beginning of July the Norwegian<br />

Ministry of the Environment<br />

conce<strong>de</strong>d temporary emission limits<br />

for the Sø<strong>de</strong>rberg aluminium production<br />

line at Karmøy. The limits are 3.2<br />

kg/h for PAH (polycyclic aromatic hydrocarbons)<br />

and 35 kg/h particulates,<br />

and they postpone the closure of the<br />

Sø<strong>de</strong>rberg line until the end of 2009,<br />

when strict new emission limits come<br />

into force.<br />

Photo: UC Rusal<br />

Alcoa opened its new 280,000 tpy<br />

prebake ano<strong>de</strong> plant in Mosjoen, Norway.<br />

The facility produces ano<strong>de</strong>s for<br />

Alcoa’s Fjardaal aluminium smelter<br />

in Iceland and for the Mosjoen aluminium<br />

smelter in Norway. The companies<br />

spent NOK3bn (US$528m)<br />

on the project, which employs 100<br />

workers.<br />

UC Rusal’s Bratsk smelter<br />

In January 2007, Russia approved in<br />

principle the planned merger between<br />

Rusal, Sual and the alumina assets of<br />

Swiss trading company Glencore. The<br />

new company – United Company<br />

Rusal – will produce 4m tpy of aluminium<br />

and 11m tpy of alumina, with<br />

a workforce of some 110,000 people<br />

in 17 countries on five continents.<br />

The companies also obtained approvals<br />

from anti-trust authorities outsi<strong>de</strong><br />

Russia. On 27 March 2007, Rusal, Sual<br />

and Glencore announced the completion<br />

of the <strong>de</strong>al to combine their assets<br />

and create United Company Rusal.<br />

UC Rusal and HydroOGK, Russia’s<br />

lea<strong>de</strong>r in the area of renewable<br />

energy, began construction of the<br />

Boguchanskiy <strong>Alu</strong>minium Smelter.<br />

The 600,000 tpy will be one of Russia’s<br />

five largest. Total investment<br />

in this project is expected to reach<br />

US$2.3bn. The foundation stone was<br />

laid on 15 May 2007 in the village of<br />

Tayozhny, Krasnoyarsk region.<br />

The construction of a fifth potline<br />

at UC RusAl’s Irkutsk smelter was<br />

on track for completion in the fourth<br />

quarter of 2007. The new line boosts<br />

the plant’s capacity from the existing<br />

290,000 tpy to around 450,000 tpy<br />

once fully ramped up.<br />

UC Rusal started of a major mo<strong>de</strong>rnisation<br />

programme at its giant<br />

Bratsk smelter, which with nameplate<br />

capacity of 983,000 tpy is the world’s<br />

largest single smelter.<br />

In November the Krasnoyarsk<br />

<strong>Alu</strong>minium Smelter completed the<br />

installation of automatic alumina<br />

point-fee<strong>de</strong>rs, having invested over<br />

US$38m.<br />

UC Rusal signed a cooperation<br />

agreement with the government of<br />

Russia’s Saratov region for the construction<br />

of a major energy and metals<br />

complex. The complex will inclu<strong>de</strong><br />

a significant expansion of the Balakovsky<br />

nuclear power plant, with UC<br />

Rusal building the fifth and sixth reactor<br />

blocks generating 2,000 MW, as<br />

well as the construction of the world’s<br />

largest aluminium smelter with a capacity<br />

of 1.05m tpy.<br />

UC Rusal signed an MoU on an<br />

integrated energy/aluminium complex<br />

with the local government of Sakhalin.<br />

Construction of a 2,300 MW<br />

power plant using coal from the Solntsevskiy<br />

coal mine would prece<strong>de</strong> that<br />

of a 750,000 tpy smelter.<br />

At the end of 2007, UC Rusal announced<br />

its aim to lift annual aluminium<br />

production capacity to 6m tpy<br />

and alumina production to17m tpy by<br />

2013. This represents a 50% increase<br />

in current metal production capacity.<br />

Some of that will come through<br />

upgra<strong>de</strong>s to the existing smelter network,<br />

but more will come through<br />

greenfield smelter projects. �<br />

38 ALUMINIUM · 1-2/2008


SPECIAL<br />

ALUMINIUM SMELTING INDUSTRY TMS & ALUMINIUM INDIA 2008<br />

Self-lifting crane mo<strong>de</strong>rnizes ol<strong>de</strong>r potlines<br />

D. Mad<strong>de</strong>n, Gladstone<br />

An exciting new <strong>de</strong>velopment<br />

allows smelters to remove and<br />

install whole pots complete with<br />

linings, using a crane <strong>de</strong>sign <strong>de</strong>veloped<br />

by Southern Cross Engineering<br />

(SCE) of New Zealand.<br />

The <strong>de</strong>sign of many ol<strong>de</strong>r smelters<br />

leaves no choice but to reline pots in<br />

situ. By contrast, mo<strong>de</strong>rn smelters are<br />

<strong>de</strong>signed with crane capacity, as well<br />

as built-in transfer facilities, so that<br />

they can complete pot relining outsi<strong>de</strong><br />

the operating pot line. This increases<br />

production by a significant fraction, in<br />

or<strong>de</strong>r of 1%, worth millions of dollars.<br />

Southern Cross Engineering’s unique<br />

crane <strong>de</strong>sign is now finding its way<br />

into existing smelters previously constrained<br />

by their technology and/or<br />

building <strong>de</strong>sign.<br />

The crane and its operation<br />

This <strong>de</strong>sign is unique in that it is transported<br />

to the potline and there lifts itself<br />

onto the existing crane rails using<br />

an on-board hydraulic jacking system.<br />

The complete installation takes about<br />

one hour. The attached lifting beam<br />

can then lift the pot evenly.<br />

The crane is remotely operated<br />

by radio control, so allowing the operator<br />

to carry out all operations from<br />

the floor. Once installed, the crane is<br />

driven to the pot to be removed; there<br />

the pot is attached to the crane via<br />

the <strong>special</strong>ly <strong>de</strong>signed lifting beam,<br />

and is then lifted clear of the existing<br />

pot superstructures. The crane next<br />

transports the pot to the centre passageway,<br />

and loads it onto a trailer for<br />

transport to a pot dig-out building. The<br />

crane then picks up the new, relined<br />

replacement pot, <strong>de</strong>livers it to its position<br />

in the line, and installs it there.<br />

Turn-around time is approximately 2<br />

hours. The crane finally lowers itself<br />

from the rails, and it is then removed<br />

from the potline hall and stored in a<br />

simple shelter, ready for re-use whenever<br />

nee<strong>de</strong>d.<br />

There are many important benefits<br />

of being able to remove the pot<br />

and carry out the relining in a facility<br />

outsi<strong>de</strong> the pot line. The return on<br />

investment (ROI) is realised in a very<br />

short period, in some cases in months<br />

rather than years.<br />

With mo<strong>de</strong>rn smelters pushing the<br />

envelope for ‘world’s best practice’ in<br />

areas of<br />

• Health and safety<br />

• Current efficiency<br />

• Lining life<br />

• DC kilowatts per tonne<br />

it is vital for the ol<strong>de</strong>r smelters to be<br />

creative with their capital spending<br />

in or<strong>de</strong>r to capture the ‘low hanging<br />

fruit’ that offers high returns that are<br />

easily measured.<br />

With metal prices and metal <strong>de</strong>mand<br />

at all time highs, any loss of<br />

metal production due to reconstruction<br />

time constraints becomes an important<br />

issue.<br />

Where are some of the costs incurred<br />

with reconstruction of pots in<br />

situ on the line?<br />

• Lost production, estimated at three<br />

weeks per pot<br />

• Power capacity paid for but not<br />

used<br />

• Daily potline operations disrupted<br />

• Hostile environment for potline<br />

workers<br />

• Low productivity due to working<br />

environment<br />

• Voluminous construction equip-<br />

ment encumbers the potline<br />

• Many construction personnel<br />

working in potline, creating extra<br />

safety issues for operation<br />

• Production labour paid for but not<br />

used.<br />

The following calculations show the<br />

benefits in monetary terms of completing<br />

this work outsi<strong>de</strong> the line for a<br />

typical smelter: These calculations are<br />

based on western world smelter costs,<br />

using the following assumptions:<br />

• Typical plant <strong>de</strong>sign Kaiser P69<br />

• Tonnage 250,000 tpy with 500 pots<br />

• DC kWh/tonne 13,500 at 2.5 cents<br />

per kWh<br />

• Five year lining life with 100<br />

relines per year<br />

• Pot production 1.4 tpd<br />

• Average reconstruction time per<br />

pot 18 days<br />

• LME price US$ 2,500 per tonne<br />

• 900 man hours to reconstruct pot<br />

at US$ 60 per hour<br />

• Based on 1,000 employees.<br />

Lost production<br />

18 days x 100 pots = 1,800 pot-days<br />

1.4 tonnes x 1,800 days = 2,520 tonnes<br />

of lost production<br />

US$ 2,500 x 2,520 tonnes = US$<br />

6,300,000<br />

Lost production income due to reconstruction<br />

in the line is US$6.3m.<br />

Power paid for but not used<br />

2,520 tonnes x 13,500 kWh per tonne<br />

= 34 million kWh at 2.5 cents/kWh =<br />

US$ 850,000<br />

Power paid for but not used is US$<br />

850,000.<br />

�<br />

39 ALUMINIUM · 1-2/2008<br />

ALUMINIUM · 1-2/2008 39<br />

Photo: Holcan


ALUMINIUM SMELTING INDUSTRY<br />

Excess labour costs<br />

Estimated direct labour reconstruction<br />

productivity loss due to work<br />

constraints associated with working<br />

in an operating pot line; estimated<br />

reconstruction labour efficiencies<br />

captured by reconstructing outsi<strong>de</strong><br />

operational pot line 20%:<br />

900 hours estimated cost to reconstruct<br />

in pot line x 20% = 180 hours.<br />

Extra labour cost to reconstruct in<br />

line: 180 hours x US$ 60 per hour x<br />

100 pots reconstructed per year.<br />

Extra labour cost is US$ 1,080,000.<br />

Plant production labour<br />

paid for but not used<br />

2,520 tonnes lost production = 1% of<br />

total production. Assume that 1,000<br />

people are employed at the plant: 1%<br />

= 10 personnel. Cost per person per<br />

year US$ 60 x 40 hours x 52 weeks<br />

x 10 employees = US$ 1,248,000 per<br />

year.<br />

Extra production labour cost per year<br />

is US$ 1,248,000.<br />

Aggregation: US$ 9,478,000 per year<br />

additional income through usefully<br />

employing otherwise wasted resources<br />

of electrical power and production<br />

labour.<br />

Conclusion<br />

Smelters that currently complete pot<br />

reconstruction in the pot lines should<br />

take a close look at this crane. This<br />

article has only touched the surface<br />

of the benefits, focussing on direct<br />

monetary savings. The long-term consi<strong>de</strong>rations<br />

associated with workers’<br />

health have not been factored in.<br />

Disclaimer<br />

A study of the smelter’s pot room<br />

structure would need to be carried<br />

out to verify its compatibility with<br />

the installation and operation of the<br />

new crane.<br />

Author<br />

Hydraulic pressing<br />

of prebaked ano<strong>de</strong>s for aluminium smelters<br />

A. Kaiser, Wecke<br />

Even though vibrating compaction<br />

has long been the most common<br />

means of forming prebaked<br />

ano<strong>de</strong>s, many plants worldwi<strong>de</strong><br />

still use hydraulic pressing. Improvements<br />

in hydraulic pressing<br />

technology are now available for<br />

prebaked ano<strong>de</strong> production and<br />

may lead to a revival of this well<br />

proven, but temporarily unfashionable<br />

technology. Laeis, a world<br />

leading supplier of high performance<br />

hydraulic presses [1,2] originally<br />

<strong>de</strong>veloped these improvements<br />

for other applications. The<br />

new ano<strong>de</strong> forming concept uses a<br />

hydraulic vacuum press [3] and offers<br />

advantages in process productivity<br />

and flexibility, as well as in<br />

ano<strong>de</strong> quality and environmental<br />

impact.<br />

There have been very few direct comparisons<br />

between vibrated and pressed<br />

ano<strong>de</strong>s [4]. Several production plants<br />

operate both hydraulic presses and<br />

vibrocompactors, but produce different<br />

types of ano<strong>de</strong>s with each forming<br />

process. The few available data can be<br />

summarized as follows: pressed and<br />

vibrated ano<strong>de</strong>s show similar average<br />

values, e. g. comparable apparent<br />

<strong>de</strong>nsity levels (green and baked). On<br />

average, pressed ano<strong>de</strong>s (shaped on<br />

‘old’ hydraulic presses) have lower<br />

air permeability, whereas vibrated<br />

ano<strong>de</strong>s show better specific electrical<br />

resistance and strength values. The<br />

new Laeis pressing concept [5] over-<br />

Dan Mad<strong>de</strong>n is the Managing Director of<br />

Holcan Constructions. He has been associated<br />

with the primar smelting industry<br />

for over 30 years.<br />

comes these disadvantages in electrical<br />

resistance and strength, while<br />

maintaining the advantages.<br />

The new Laeis hydraulic<br />

vacuum press for ano<strong>de</strong>s<br />

Dosing and weighing unit: The cooling<br />

mixer continuously discharges conditioned<br />

and homogenized paste into a<br />

Fig. 1: Schematic drawing of different pressing principles<br />

left: bilateral pressing, middle: HPF pressing principle, right: unilateral pressing<br />

40 ALUMINIUM · 1-2/2008<br />

Illustrations: Laeis


SPECIAL<br />

ALUMINIUM SMELTING INDUSTRY TMS & ALUMINIUM INDIA 2008<br />

dosing unit; this feeds a weighing bin<br />

which measures the paste nee<strong>de</strong>d for<br />

the next pressing stroke. The dosing<br />

and weighing unit maintains an overall<br />

dosing accuracy of ±5 kg and can<br />

work with cycle times of about one<br />

minute. It can be <strong>de</strong>signed as single<br />

or as a twin unit to be used for 1-cavity<br />

respectively 2-cavity moulds, <strong>de</strong>pending<br />

on the size of the ano<strong>de</strong>s to<br />

Parameter Unit Value<br />

Pressing force max. kN<br />

t<br />

Fig. 2: Influence of vertical <strong>de</strong>nsity distribution in a pressed product<br />

be pressed. A reversible conveyor allows<br />

scrap paste to be discharged (e. g.<br />

during start up of the process) without<br />

it going through the weighing system<br />

and the press.<br />

Hydraulic vacuum press: A high<br />

performance hydraulic press type<br />

MEGA 1600 AV is used for the shaping<br />

of the ano<strong>de</strong>s. It belongs to the well<br />

known Laeis HPF press series with the<br />

so-called ‘active mould’ movement<br />

which has been proven as state-of-theart<br />

presses in the refractory industry<br />

for many years. Together with a very<br />

flexible control system, the HPF pressing<br />

principle (Figs. 1 and 2) provi<strong>de</strong>s<br />

the advantages of a bilateral pressing<br />

system (optimum <strong>de</strong>nsification and<br />

controlled <strong>de</strong>nsity distribution over<br />

the height of the ano<strong>de</strong>), but avoids<br />

the traditional disadvantages of such<br />

presses (<strong>de</strong>ep pits up to 6 m necessary,<br />

high costs for foundation works).<br />

The MEGA 1600 AV with a pressing<br />

force of 16,000 kN (1,600 t) has<br />

been specifically adapted for the<br />

production of prebaked ano<strong>de</strong>s. For<br />

instance, it features an exten<strong>de</strong>d die<br />

surface area for pressing ano<strong>de</strong>s up<br />

to about 1700 mm long, about 1200<br />

mm wi<strong>de</strong> and maximum 1200 mm<br />

<strong>de</strong>ep, so as to form ano<strong>de</strong>s of practically<br />

all dimensions used today. The<br />

mould <strong>de</strong>sign allows direct pressing<br />

of stub holes for rodding of the ano<strong>de</strong>s.<br />

A <strong>special</strong> mould filling <strong>de</strong>vice<br />

ensures homogeneous filling of the<br />

pre-weighed paste into the mould (1<br />

or 2 cavities) and a vacuum system<br />

evacuates air from the mould before<br />

compaction. A <strong>special</strong> mould changing<br />

<strong>de</strong>vice is available which can complete<br />

a mould change in less than one<br />

hour. The main performance data of<br />

the MEGA 1600 AV press are summarized<br />

in Table 1.<br />

Press control: The flexible press<br />

control system allows a fully automated<br />

and safe plant operation. It also collects<br />

and stores comprehensive data,<br />

and it provi<strong>de</strong>s for comfortable evaluation<br />

using standard software for individual<br />

data processing. The operator<br />

interface has a clear and easy-to-un<strong>de</strong>rstand<br />

structure <strong>de</strong>signed around<br />

Windows technology with mainly<br />

graphic display (Fig. 3). When ano<strong>de</strong>s<br />

are pressed, the press continuously<br />

monitors the height of each an-<br />

41 ALUMINIUM · 1-2/2008<br />

ALUMINIUM · 1-2/2008 41<br />

16,000<br />

1,600<br />

Useful die surface max. mm x mm 1200 x 1800<br />

Filling <strong>de</strong>pth max. mm 1200<br />

Time per stroke min. min ≥ 1<br />

Throughput capacity (1 or 2 cavities) pcs/h ≥ 60/120<br />

Height accuracy mm ± 2<br />

Vacuum mbar < 100<br />

Pressing temperature (approx.) °C 110-130<br />

Noise level dBA ≤ 76<br />

Mould changing time h ≤ 1<br />

Table 1: Performance data of hydraulic ano<strong>de</strong> press MEGA 1600 AV<br />

Fig. 3: Main menu of ProVi press control showing the graphic orientation of the<br />

machine/operator interface �


ALUMINIUM SMELTING INDUSTRY<br />

Fig. 4: Pressing regime for pressing to nominal ano<strong>de</strong> height<br />

o<strong>de</strong> and the applied pressure.<br />

Different pressing regimes can be<br />

selected, but for the production of<br />

ano<strong>de</strong>s the standard mo<strong>de</strong> is ‘pressing<br />

to nominal height’ (Fig. 4). Many<br />

individual pressing parameters can be<br />

set and/or changed in or<strong>de</strong>r to optimize<br />

the pressing sequence and the<br />

resulting ano<strong>de</strong> properties. Table 2<br />

shows some of these parameters and<br />

their main effects. The control system<br />

additionally provi<strong>de</strong>s communication<br />

links with external systems, such as<br />

upstream and downstream plant components<br />

as well as host computer.<br />

These links can be used in many different<br />

ways, such as for plant operation<br />

supervision as well as for quality<br />

control, documentation and statistical<br />

evaluation.<br />

Advantages of hydraulic<br />

pressing of ano<strong>de</strong>s<br />

Plant productivity and flexibility:<br />

One of the most important features of<br />

the hydraulic press MEGA 1600 AV<br />

is its high production capacity of up<br />

to 60 or 120 ano<strong>de</strong>s/h (1- or 2-cav-<br />

ity mould) in a single line. For most<br />

ano<strong>de</strong> sizes it can form up to 50 t/h<br />

or even more. Two additional factors<br />

contribute to the plant’s exceptionally<br />

high performance:<br />

• The press needs only short down-<br />

times for maintenance, thanks to<br />

its heavy duty <strong>de</strong>sign and to the<br />

reliable pressing technology (no<br />

vibration). Typically two weeks<br />

downtime suffice per year for<br />

preventive inspection and<br />

maintenance.<br />

• Mould changes take only a very<br />

short time. The <strong>special</strong> mould<br />

changing <strong>de</strong>vice ‘Hydrofast’<br />

performs a complete change of<br />

the mould within less than one<br />

hour. This is e<strong>special</strong>ly important<br />

for ano<strong>de</strong> producers who supply<br />

ano<strong>de</strong>s of various formats and<br />

sizes to different customers and<br />

who therefore frequently need<br />

to change the mould.<br />

Product quality: An important feature<br />

of hydraulic presses in general, and of<br />

the HPF presses in particular, is the<br />

extreme dimensional accuracy which<br />

they can achieve. Despite the relative-<br />

Parameter Effect<br />

ly large height of the typical ano<strong>de</strong>s<br />

and the corresponding long <strong>de</strong>nsification<br />

stroke of the press plunger,<br />

these presses guarantee a <strong>de</strong>viation<br />

in ano<strong>de</strong>s height of less than ±2 mm.<br />

The <strong>special</strong> HPF pressing principle,<br />

together with the vacuum pressing<br />

technology, provi<strong>de</strong>s optimum <strong>de</strong>nsification<br />

and even <strong>de</strong>nsity distribution<br />

within the ano<strong>de</strong>. Pressing un<strong>de</strong>r<br />

vacuum can be expected to lead to<br />

several advantages such as:<br />

• Higher green <strong>de</strong>nsity of the<br />

ano<strong>de</strong>s<br />

• Higher green strength of the<br />

ano<strong>de</strong>s, which can be pressed<br />

and handled at higher temperatures<br />

than when pressing<br />

without vacuum<br />

• Lower electrical resistance, which<br />

is aggravated by entrapped air<br />

• Less <strong>de</strong>nsity variation in vertical<br />

direction within the ano<strong>de</strong>s.<br />

In general, hydraulic presses can form<br />

ano<strong>de</strong>s at much lower temperatures<br />

than can vibrocompacting (typically<br />

30 to 40 K lower). This again contributes<br />

to a higher strength and dimensional<br />

stability of the green ano<strong>de</strong>s<br />

Charger moving speed Cycle time; homogeneity of mould cavity filling<br />

Charger movement Complete discharge of paste batch into mould cavity<br />

Mould moving speed during filling Cycle time; even cavity filling<br />

Plunger speed (multiple adjustable) Cycle time; paste <strong>de</strong>nsification; <strong>de</strong>nsity distribution<br />

Mould frame movement relative to plunger movement Paste <strong>de</strong>nsification; <strong>de</strong>nsity distribution<br />

Vacuum application (time, duration, final vacuum) Cycle time; paste <strong>de</strong>nsification<br />

Pressing speed(s) Cycle time; paste <strong>de</strong>nsification<br />

Pressure increase speed limitation Cycle time; paste <strong>de</strong>nsification<br />

High pressure holding time, pressure relief Cycle time; paste <strong>de</strong>nsification; ano<strong>de</strong> back expansion<br />

Ano<strong>de</strong> ejection (with or without load; load weight) Cycle time; ano<strong>de</strong> back expansion<br />

Table 2: Press control parameters to be set and/or changed by the operator<br />

42 ALUMINIUM · 1-2/2008


SPECIAL<br />

ALUMINIUM SMELTING INDUSTRY TMS & ALUMINIUM INDIA 2008<br />

(no bulging) and avoids the need for<br />

additional water cooling of the ano<strong>de</strong>s<br />

after forming.<br />

Environmental impact reduction:<br />

The low forming temperature reduces<br />

the environmental impact of ano<strong>de</strong><br />

manufacture in several ways:<br />

• As mentioned above, ano<strong>de</strong>s need<br />

no water cooling, thus saving<br />

direct investment costs and<br />

running costs, but also reducing<br />

water consumption and avoiding<br />

contamination of cooling water<br />

• There is less emission of volatile<br />

pitch components (e<strong>special</strong>ly<br />

PAHs) from the forming area, thus<br />

improving the working environment.<br />

Exhaust connections at all<br />

critical points minimize air pollution<br />

and can be combined with<br />

existing air cleaning systems.<br />

Another remarkable contribution to<br />

environmental impact reduction and<br />

labour comfort is the low noise level<br />

of the MEGA 1600 AV with ≤ 76 dBA.<br />

Summary<br />

A new hydraulic pressing concept for<br />

ano<strong>de</strong>s has been <strong>de</strong>veloped with the<br />

Laeis hydraulic vacuum press MEGA<br />

1600 AV. It is based on state-of-the-art<br />

pressing technology with matching<br />

plant components for paste cooling<br />

and conditioning, dosing and weighing<br />

units as well as for other peripheral<br />

equipment.<br />

This press can produce highest<br />

quality ano<strong>de</strong>s of all sizes required<br />

today, and has an unmatched production<br />

capacity of up to 50 t/h or higher<br />

in a single line. A high plant availability,<br />

together with low maintenance<br />

costs and reduced environmental impact,<br />

make this technology attractive<br />

for ano<strong>de</strong> producers.<br />

References<br />

[1] R. Kremer and R. Lutz: Quality improvement<br />

of shaped refractories by<br />

Visit us at<br />

TMS 2008<br />

Booth #211<br />

mo<strong>de</strong>rn pressing technology; Preprints<br />

49. Internat. Colloquium on Refractories<br />

(2006), 223–226.<br />

[2] R. Lutz: Use of closed loop controls in<br />

hydraulic press forming of ceramic products<br />

to obtain highest dimensional accuracy;<br />

Stahl und Eisen Special, Refractories<br />

in Steelmaking, 47. Internat. Colloquium<br />

on Refractories (2004), 222–224.<br />

[3] W. K. Fischer and M. W. Meier: Advances<br />

in Ano<strong>de</strong> Forming; Light Metals<br />

(1999), ed. C. E. Eckert (TMS, Warrendale,<br />

Pa), 541-546.<br />

[4] K. L. Hulse: Ano<strong>de</strong> Manufacture – Raw<br />

Materials, Formulation and Processing<br />

Parameters, Ph. D. Thesis, R&D Carbon<br />

Ltd., (2000).<br />

[5] A. Kaiser: Hydraulic pressing promises<br />

better ano<strong>de</strong>s, Part I, <strong>Alu</strong>minium 80 (2004)<br />

3, 192-198, Part II: <strong>Alu</strong>minium 80 (2004)<br />

4, 276-281.<br />

Author<br />

Dr. Alfred Kaiser is Manager Business<br />

Development of LAEIS GmbH, based in<br />

Wecker, Luxembourg.<br />

43 ALUMINIUM · 1-2/2008<br />

ALUMINIUM · 1-2/2008 43


ALUMINIUM SMELTING INDUSTRY<br />

Zero fuel baking – the total heat recovery concept<br />

W. Leisenberg, Butzbach<br />

Fuel costs are going up rapidly,<br />

and to protect the environment<br />

emissions of greenhouse gases<br />

must be as low as possible. The<br />

‘Total Heat Recovery Concept’<br />

will be a big step towards meeting<br />

these requirements. It will<br />

bring the ano<strong>de</strong> plant and also<br />

the electrolysis to a more efficient<br />

state of thermal energy efficiency,<br />

e<strong>special</strong>ly in combination with a<br />

thermal power station.<br />

The greenhouse gas situation<br />

Since the ano<strong>de</strong> is the biggest source<br />

of CO 2 evolved from the smelter, great<br />

efforts have been ma<strong>de</strong> to replace the<br />

carbon ano<strong>de</strong> by non-consumable<br />

electro<strong>de</strong>s, but without significant impact<br />

so far. But is the carbon ano<strong>de</strong><br />

technology really such a bad technology<br />

with regard to the environment?<br />

The most electrical energy world-wi<strong>de</strong><br />

is generated from fossil fuels in thermal<br />

power stations. The energy efficiency<br />

of this conversion process is below 50<br />

percent. By contrast, the chemical efficiency<br />

of the carbon ano<strong>de</strong> in Hall-<br />

Héroult electrolysis is 60 percent. If<br />

we need to use fossil fuel anyway, why<br />

not use it with such a high efficiency as<br />

has the carbon ano<strong>de</strong> in the smelter?<br />

Finally, compared to non-consumable<br />

electro<strong>de</strong>s, the overall greenhouse gas<br />

mass balance for carbon ano<strong>de</strong>s suggests<br />

that no other technology shows<br />

a higher efficiency.<br />

This technology inclu<strong>de</strong>s a most<br />

efficient use of fuel for calcining of the<br />

carbon ano<strong>de</strong>s; and there is a really<br />

consi<strong>de</strong>rable potential left for heat<br />

recovery.<br />

Ano<strong>de</strong> baking heat balance<br />

As shown in Fig. 1, ano<strong>de</strong> baking is<br />

a highly exothermal process. The<br />

quantity of tar pitch fed to the process<br />

represents far more energy than is<br />

nee<strong>de</strong>d to bake the ano<strong>de</strong> [1].<br />

In theory the baking process as<br />

such requires less than 350 MJ/t of<br />

ano<strong>de</strong>. Most of the energy is stored as<br />

heat as the ano<strong>de</strong> reaches 1100°C at<br />

the end of the soaking time. In practice<br />

we also heat up the baking furnace<br />

structure and the packing material, so<br />

the real baking process needs much<br />

more energy as shown in Fig. 2.<br />

Not all of that stored heat can be<br />

recovered, because the ano<strong>de</strong>s usually<br />

are unloa<strong>de</strong>d at a temperature of<br />

about 200°C. Therefore some residual<br />

heat is left in the ano<strong>de</strong>s, in the refractory<br />

and in the packing coke, as<br />

shown in Fig. 3.<br />

Baking furnace heat balance<br />

Today open pit horizontal flue ring<br />

Fig. 1: Ano<strong>de</strong> baking heat balance<br />

Fig. 2: Total stored heat<br />

Fig. 3: Residual heat<br />

furnaces are used for ano<strong>de</strong> baking.<br />

The principle of the ring furnace is<br />

to internally recycle some of the heat<br />

stored in the cooling area. In terms of<br />

heat flow, the ring furnace consists of<br />

two convection heat exchangers with<br />

a firing zone between. In the first heat<br />

exchange process, cold air is blown<br />

into the cooling area and is heated<br />

by hot ano<strong>de</strong>s, packing material and<br />

furnace structure. This air then passes<br />

into the firing zone as preheated<br />

combustion air, becomes flue gas,<br />

and further downstream it transfers<br />

the majority of its heat content to the<br />

cold ano<strong>de</strong>s. Fig. 4 shows the heat<br />

balance of a baking furnace typical<br />

44 ALUMINIUM · 1-2/2008<br />

Illustrations: innovatherm


SPECIAL<br />

ALUMINIUM SMELTING INDUSTRY TMS & ALUMINIUM INDIA 2008<br />

Fig. 4: Baking furnace heat balance<br />

Fig. 5: Improved furnace <strong>de</strong>sign and control<br />

Fig. 6: Baking process with ‘complete pitch burn’<br />

for the situation twenty years ago.<br />

Firstly we can see that little or no<br />

tar pitch burns, so its energy is mostly<br />

lost. The furnace <strong>de</strong>sign was not optimized,<br />

and so the fuel consumption<br />

was as high as 3300 MJ/t of ano<strong>de</strong>. A<br />

great amount of waste heat – 1900 MJ/<br />

t – blows from the cooling area into<br />

the furnace hall. The heat balance of<br />

the furnace is completed by the various<br />

other losses from the furnace.<br />

The end of the 20 th century saw<br />

improvements in furnace <strong>de</strong>sign,<br />

such that impulse firing technology,<br />

and control of both the firing zone and<br />

preheat area became state-of-the-art.<br />

Due to the higher homogeneity of the<br />

pit temperatures, the peak temperature<br />

of the flues could be reduced from<br />

nearly 1300 to less than 1200°C.<br />

This lower peak temperature, together<br />

with lower refractory mass of<br />

the furnace structure, led to a lower<br />

stored heat in the cooling area (Fig. 5)<br />

and finally to lower the fuel consumption,<br />

down to typically 2400 MJ/t [2].<br />

A further big step in reducing of<br />

fuel consumption was the ‘Complete<br />

Pitch Burn Technology’ introduced by<br />

Innovatherm in the last few years [3].<br />

By using practically all of the energy<br />

in the tar pitch, this technology has<br />

reduced fuel consumption dramatically<br />

to a bench mark of 1800 MJ/t<br />

today (Fig. 6).<br />

We see from the Sankey diagram<br />

shown in Fig. 6 that a lot of heat is<br />

still not used. Part of this waste heat<br />

blows from the cooling area into the<br />

furnace hall, creating oppressively<br />

hot ambient temperatures e<strong>special</strong>ly<br />

in hot countries.<br />

The other part leaves the furnace<br />

with the flue gas. Since not all the heat<br />

content of the volatiles can be kept in<br />

the baking process, the waste gas temperature<br />

is about 100°C higher than<br />

with incomplete pitch burn.<br />

Heat recovery<br />

Obviously there is a lot more surplus<br />

heat available from the baking furnace,<br />

so two questions arise: how can<br />

we take that heat from the furnace and<br />

where can we use it?<br />

The answer to the ‘where?’ is: coke<br />

heating in the paste plant is the only<br />

major heat sink in the ano<strong>de</strong> �<br />

45 ALUMINIUM · 1-2/2008<br />

ALUMINIUM · 1-2/2008 45


ALUMINIUM SMELTING INDUSTRY<br />

plant. About 200 MJ/t are necessary<br />

to heat the coke to about 150°C, including<br />

some heat for supplementary<br />

equipment. Regarding the ‘how?’: if<br />

we look at a simplified Sankey diagram<br />

for the baking process, including<br />

the fume treatment plant shown<br />

in Fig. 7 we will find that the flue gas<br />

and the waste heat in the cooling area<br />

are the two main heat sources.<br />

A technology to use the heat of the<br />

flue gas in the paste plant has been<br />

proposed by the author earlier [4].<br />

But this concept is hardly accepted<br />

because the paste plant would need<br />

serious modification due to the relatively<br />

low temperature of the flue<br />

gases. So the energy now is <strong>de</strong>leted<br />

in the conditioning tower of the fume<br />

treatment plant (FTP).<br />

The paste plant needs higher gas<br />

temperatures if its technology will<br />

not be changed. As shown in Fig. 5,<br />

the ring furnace recovers some heat<br />

from the cooling area. Another small<br />

part disappears as heat loss due to<br />

radiation, convection and ‘blow-out’<br />

of hot air via leakages, or remains as<br />

residual heat in the ano<strong>de</strong>s, the packing<br />

material and the refractory. The<br />

balance heat of 1200 MJ/t blows into<br />

the furnace hall.<br />

In or<strong>de</strong>r to create an energy link,<br />

the thermal transfer oil for the paste<br />

plant collects the baking furnace<br />

waste heat from the cooling area. This<br />

thermal transfer oil then serves as a<br />

heat supply for the heating screw and<br />

the kneading/mixing plant.<br />

To realize this recovery technology,<br />

firstly one of the two blower ramps<br />

in the cooling area is replaced by an<br />

exhaust ramp. So there is no change<br />

in the number of equipment units on<br />

the furnace or in the investment costs,<br />

as shown in Fig. 8<br />

Further, a second hot air duct, besi<strong>de</strong>s<br />

the flue gas duct, is installed to<br />

collect the hot air from the cooling<br />

areas of all fires and to direct it to a<br />

heat exchanging unit. Here the hot air<br />

gives its energy to the thermal transfer<br />

oil for the paste plant (Fig. 9). The heat<br />

exchange unit is not subject to corrosion<br />

because the hot air from the<br />

cooling area is not contaminated by<br />

any corrosive or acid fumes.<br />

Since the temperature of the air<br />

taken from the cooling area is about<br />

Fig. 7: Heat balance including fume treatment<br />

Fig. 8: Cooling area equipment<br />

400°C, it easily provi<strong>de</strong>s the thermal<br />

oil temperature of 300°C which the<br />

paste plant needs. This concept supplies<br />

all thermal energy required from<br />

the paste plant without changing the<br />

proven paste plant technology. For<br />

start-up operation or to bridge any<br />

temporary lack of heat, a heat generator<br />

is placed in the hot air duct. So<br />

the boiler for the thermal transfer oil<br />

in the paste plant, including its stand<br />

by unit, is eliminated completely. The<br />

overall investment costs are kept the<br />

same.<br />

Of course, the hot air, after passing<br />

the heat exchanger, can be re-used<br />

for other purposes such as for coke<br />

drying or for building heating in cold<br />

countries.<br />

Total heat recovery concept<br />

A complete heat recovery can be realised<br />

in a second step if a thermal<br />

power station is located near to the<br />

smelter.<br />

Every thermal power station heats<br />

water for the boiler to generate steam<br />

for the turbines. The amount of water<br />

required is so large, and the temperature<br />

of the fresh water is so low, that<br />

it acts as an i<strong>de</strong>al heat sink to recover<br />

any remaining heat from the furnace.<br />

Even a portion of the whole amount of<br />

water will suffice to recover all waste<br />

heat of the baking process.<br />

The remaining heat of the hot air<br />

from the cooling area can easily be<br />

extracted by installing a second heat<br />

exchange unit downstream from the<br />

unit for the thermal transfer medium<br />

(Fig. 10).<br />

The water for the power station<br />

can also recover residual heat from<br />

the flue gas. A two-step heat exchange<br />

plant transfers all usable heat to the<br />

water. This cools the flue gas to about<br />

130°C as it enters the fume treatment<br />

46 ALUMINIUM · 1-2/2008


SPECIAL<br />

ALUMINIUM SMELTING INDUSTRY TMS & ALUMINIUM INDIA 2008<br />

Fig. 9: Coke heating by hot air from cooling area<br />

Fig. 10: ‘Total Heat Recovery Concept’<br />

plant. A lower flue gas temperature is<br />

un<strong>de</strong>sirable because acid components<br />

would con<strong>de</strong>nse at the <strong>de</strong>w point of<br />

the waste gas. As a si<strong>de</strong> effect, the flue<br />

gas temperature will be kept constant<br />

and so minimise the <strong>de</strong>mand of water<br />

in the conditioning.<br />

If we assume about 90 percent efficient<br />

heat transfer to the boilers in the<br />

power station and in the paste plant,<br />

then each recovered Joule saves 11<br />

percent more fuel at the power station<br />

respectively at the paste plant.<br />

The equivalent-to-fuel heat recovery<br />

then is nearly 1900 MJ/t, which is<br />

more than what the baking furnace<br />

requires as fuel. This means that the<br />

baking process, including all losses, is<br />

virtually fed by tar pitch only and can<br />

be consi<strong>de</strong>red to run at zero fuel. This<br />

concept will set a new benchmark<br />

for the fuel efficiency in aluminium<br />

smelters.<br />

Summary<br />

With the ‘Total Heat Recovery Concept’<br />

technology consi<strong>de</strong>red in this<br />

paper, the fuel efficiency of the ano<strong>de</strong><br />

baking process can be brought very<br />

close to the theoretical limit of running<br />

at zero fuel. All equipment which<br />

is necessary for this concept is proven<br />

and available today.<br />

References<br />

[1] B. J. Racunas: Ano<strong>de</strong> baking furnace<br />

thermal balance, Light Metals 1980, ed.<br />

H.O. Bohner (TMS, Warrendale, Pa).<br />

[2] Alcan/AP, Inst. Paul Heroult: Ano<strong>de</strong>s<br />

Baking, AN 3 5 CAEN V3, 2004.<br />

[3] W. Leisenberg: Firing and control technology<br />

for complete pitch burn and its<br />

consequences for ano<strong>de</strong> quality, energy<br />

efficiency and fume treatment plant, 9 th<br />

Intl Conf. on Non Ferrous Metals, July 8-9,<br />

2005, Pune.<br />

[4] D. Maiwald and W. Leisenberg: The<br />

<strong>de</strong>velopment of ano<strong>de</strong> baking technology<br />

from past to future, Light Metals 2007, ed.<br />

M. Sørlie (TMS, Warrendale, Pa), pp. 947-<br />

952.<br />

Author<br />

Prof. Dr. Wolfgang Leisenberg is Director<br />

of innovatherm Prof. Dr. Leisenberg<br />

GmbH u. Co. KG, Butzbach, Germany.<br />

47 ALUMINIUM · 1-2/2008<br />

ALUMINIUM · 1-2/2008 47


ALUMINIUM SMELTING INDUSTRY<br />

Best available technology<br />

for the fume treatment of ano<strong>de</strong> production plants<br />

M. Hagen, B. Schricker; Goldkronach<br />

The new IPPC regulation [1] as<br />

well as local legislation force aluminium<br />

manufacturers to improve<br />

their air emission control systems.<br />

Furthermore a critical neighbourhood<br />

puts pressure on plant managers<br />

to think about the future of<br />

their plant.<br />

<strong>Alu</strong>minium production plants have<br />

several sources of emissions. Dust<br />

emissions are trapped using bag<br />

house filters for many years. For the<br />

additional adsorption of HF, recycled<br />

from the electrolysis cells, these filters<br />

have been equipped with alumina<br />

injection. All these systems are stateof-the-art<br />

and are accepted as ‘best<br />

available technology’.<br />

Based on this favourable experience,<br />

companies often copied these<br />

fume treatment systems for the abatement<br />

of particulate pitch and tar fumes<br />

coming from the baking furnace and<br />

from paste production. But the pitch<br />

and tar at high temperatures also generates<br />

other volatile emissions, which<br />

potline filters cannot treat. These fumes<br />

contain a mix of odorous and carcinogenic<br />

substances, known as polycyclic<br />

aromatic hydrocarbons (PAH).<br />

For these volatile compounds, as<br />

well as for con<strong>de</strong>nsed particulates, a<br />

fume treatment system based on regenerative<br />

thermal oxidation (RTO) is<br />

the ‘best available technology’ according<br />

to the IPPC. The aim of LTB was to<br />

create an abatement system, capable<br />

of fulfilling the emission control levels<br />

even in the long term. During three<br />

years of testing with a small plant and<br />

of running a full scale pilot unit LTB<br />

created a specific ‘Carbon <strong>de</strong>sign’-<br />

RTO. In or<strong>de</strong>r to explain the <strong>de</strong>tails<br />

of this <strong>special</strong> <strong>de</strong>sign this article will<br />

again present the basic principles of<br />

RTO.<br />

Type of emissions<br />

In or<strong>de</strong>r to <strong>de</strong>sign an appropriate fume<br />

treatment system we need to know the<br />

type and amount of pollutants. The<br />

two main processes which generate<br />

air emissions from ano<strong>de</strong> production<br />

plants are: paste production and baking.<br />

Even if the rough numbers seem<br />

to be equal, there are huge differences<br />

in emissions from paste plants compared<br />

to baking furnaces. The reason<br />

Fig. 1: Composition of PAH emission from a baking furnace (example)<br />

is mainly the different temperature<br />

at which the fumes are generated.<br />

The most important factors for paste<br />

plants are:<br />

• Type of mixer<br />

• Type of cooler and amount of<br />

cooling water/temperature<br />

• Mass of produced paste<br />

• Additional connected sources.<br />

The most important factors for baking<br />

furnaces are:<br />

• Type of furnace (open or closed<br />

type baking)<br />

• Production cycle and output<br />

• Type of fuel and firing system<br />

• Raw materials for ano<strong>de</strong>s (e. g. HF<br />

due to re-use of butts; SOx due to<br />

sulphur content 0.5 to 4%).<br />

Table 1 (next page) shows the range of<br />

possible emissions at furnaces without<br />

a fume treatment.<br />

In particular the polycyclic aromatic<br />

hydrocarbons (PAHs) are critical target<br />

substances for the <strong>de</strong>sign of a RTO,<br />

e<strong>special</strong>ly those PAHs which consist of<br />

more than two benzoic rings.<br />

Depending on the temperature<br />

they can appear as volatile gases or<br />

as con<strong>de</strong>nsed particles. Fig. 1 shows<br />

an example analysis of PAH- �<br />

48 ALUMINIUM · 1-2/2008<br />

Illustrations: LTB


ALUMINIUM SMELTING INDUSTRY<br />

open type<br />

furnace<br />

containing flue gas containing various<br />

amounts of particulate and gaseous<br />

matter (PAH listed with increasing<br />

boiling point from left to right).<br />

A typical example in the middle of<br />

the PAH list is benzo(a)pyrene, which<br />

has five rings, a molecular weight of<br />

252 and a boiling point of 496°C. As<br />

Fig. 1 shows, the substances with a<br />

lower molecular weight are mostly<br />

gaseous un<strong>de</strong>r the conditions of a furnace.<br />

Therefore a large part of them<br />

will burn already in the furnace (e<strong>special</strong>ly<br />

in the open type furnace). With<br />

increasing boiling temperature, most<br />

of the PAH appear solid or con<strong>de</strong>nsed<br />

(Fig. 1).<br />

Historical background<br />

and state-of-the-art technology<br />

To trap particle emissions, electrostatic<br />

precipitators (ESP) have often<br />

been used. To improve the efficiency<br />

of these ESP in trapping con<strong>de</strong>nsed<br />

tars, lots of them have been equipped<br />

with an upstream cooler. Based on<br />

stricter limits for the total carbon emissions<br />

imposed during the late 1980s,<br />

new systems have been <strong>de</strong>veloped [3].<br />

Their <strong>de</strong>sign was similar to the fume<br />

close type<br />

furnace<br />

Ano<strong>de</strong> specific<br />

flue gas volume<br />

m3 /t 5,000 3,500<br />

CO mg/Nm3 < 1,200 < 1,500<br />

Total carbon mg/Nm3 100-300 < 1000<br />

Tar/con<strong>de</strong>nsates mg/Nm3 200-400 800-1,200<br />

PAH mg/Nm3 20-200 40-500<br />

Soot/dust mg/Nm3 100-200 50-100<br />

SOx mg/Nm3 100-800 100-800<br />

HF mg/Nm3 5-300 5-300<br />

Tab. 1: Typical gross emissions during ano<strong>de</strong> baking [1]<br />

Fig. 3 and 4: Redundant prefilter system<br />

Fig. 2: LTB RTO test plant [2]<br />

treatment centres of the electrolysis<br />

pots, using a dry scrubbing process<br />

with alumina as an ab- and adsorbent<br />

to eliminate the particulate pollutants.<br />

Due to complaints from neighbours<br />

and to stricter emission limits,<br />

in the 1990s volatile compounds and<br />

odour started to get more and more<br />

critical attention. In Europe an increasing<br />

number of countries reduced<br />

the legal limits for polycyclic aromatic<br />

hydrocarbons (PAH) e<strong>special</strong>ly<br />

benzo(a)pyrene, which is supposed<br />

to be carcinogenic. The only known<br />

technology to reduce these PAH, as<br />

well as total carbon, below the required<br />

limits is a thermal oxidation.<br />

I<strong>de</strong>ally this thermal oxidation plant<br />

is equipped with a regenerative heat<br />

exchanger so as to recover most of the<br />

energy the process requires.<br />

Already in 1994 the German Environmental<br />

Protection Agency started<br />

a test plant in Germany to reduce PAH<br />

emissions downstream of an electro-<br />

static filter [4]. In the late 1990s a<br />

German company entered the market<br />

with an RTO system. Two plants were<br />

built but had huge problems due to<br />

clogging of the valve system.<br />

Since 2005 a combination of prefilter,<br />

RTO and packed bed filter (for HF<br />

adsorption) treats the emissions of an<br />

open type furnace in the Netherlands.<br />

In 2004 LTB started to operate a<br />

test plant in the bypass of a closed<br />

type baking furnace. Closed furnaces<br />

generally produce very concentrated<br />

emissions compared to open type furnaces<br />

(see Table 1).<br />

The target of the test runs was to<br />

check the basic cleaning efficiency<br />

and to find an appropriate <strong>de</strong>sign for<br />

the valve system. As the valve system<br />

is an essential component of a low<br />

emission system, it has to work reliably<br />

even un<strong>de</strong>r the heavy pollutant<br />

load coming from a baking furnace.<br />

The tests showed that the <strong>de</strong>struction<br />

of total carbon in the RTO is not<br />

a problem at sufficient burning tem-<br />

50 ALUMINIUM · 1-2/2008


SPECIAL<br />

ALUMINIUM SMELTING INDUSTRY TMS & ALUMINIUM INDIA 2008<br />

Fig. 5: 4-chamber RTO for continuous burn-out with separate burn-out fan<br />

peratures (Fig. 3). But the tests also<br />

showed that the almost complete<br />

<strong>de</strong>struction of the PAH is a very ambitious<br />

task. The test plant reached<br />

a cleaning efficiency of single PAH<br />

compounds between 88 and 98%, <strong>de</strong>pending<br />

on the concentration and the<br />

type of PAH. But a pre-cleaning filter<br />

is necessary to increase the overall efficiency<br />

above 97%.<br />

This can be done, for example,<br />

with a fixed bed filter which collects<br />

the con<strong>de</strong>nsed PAH fraction. As this<br />

filter will accumulate con<strong>de</strong>nsables<br />

and tar, it has to be cleaned periodically.<br />

Therefore two redundant fixed<br />

bed filters have to be installed to enable<br />

continuous operation by cleaning<br />

the fume gases in one filter during purification<br />

of the other prefilter (Figs.<br />

3 and 4). An alternative filter could<br />

be an electrostatic precipitator (ESP),<br />

which often already exists at ano<strong>de</strong><br />

production plants.<br />

An opposite approach is to increase<br />

the temperature of the flue gases entering<br />

the RTO by changing the burn-<br />

ing curve or even by adding a heater.<br />

As tests from LTB prove, this will only<br />

lead to increased energy consumption<br />

but not to a significant reduction of<br />

the PAH load. The reason is the very<br />

high boiling temperature of many<br />

PAHs which usually is much hotter<br />

than the flue gas temperature of the<br />

furnace, and so cannot be reached<br />

with only a mo<strong>de</strong>rate increase of the<br />

flue gas temperature.<br />

For this <strong>special</strong> kind of flue gas<br />

composition (Fig. 1) LTB therefore<br />

has focused on the <strong>de</strong>velopment of<br />

a highly efficient pre-filter system in<br />

combination with an optimized burnout<br />

mo<strong>de</strong>.<br />

Current LTB <strong>de</strong>velopments<br />

During operation of a conventional<br />

RTO-plant, tar and other high-boiling<br />

hydrocarbons, tend to <strong>de</strong>posit and accumulate<br />

on the inner valvebox walls<br />

and on the inlet surface of the ceramic<br />

heat exchanger blocks (Fig. 6). This<br />

con<strong>de</strong>nsate compromises cleaning<br />

Fig. 8: Valve box <strong>de</strong>sign Fig. 9: RTO during erection<br />

Fig. 6: Ceramics before bake out<br />

Fig. 7: Ceramics after bake out<br />

efficiency in two ways: the pressure<br />

drop of the plant increases, and the<br />

higher gas velocity will partially strip<br />

off precipitated tar from the valveboxwalls<br />

so that part of the PAH fraction<br />

may get back into the clean gas.<br />

In or<strong>de</strong>r to keep the cleaning efficiency<br />

at a high level, a periodical<br />

cleaning of the tar coated parts<br />

is therefore necessary, the so called<br />

burn-out mo<strong>de</strong>.<br />

In the burn-out mo<strong>de</strong>, a separate<br />

burn-out fan sucks hot burning chamber<br />

gases down through the ceramics.<br />

The con<strong>de</strong>nsates, as well as inclu<strong>de</strong>d<br />

un-burnable particles, start to liquefy<br />

and to drop into the bottom discharge<br />

cone (drop-out mo<strong>de</strong>). This con<strong>de</strong>nsed<br />

tar will inclu<strong>de</strong> around 10% ash and<br />

other inert compounds. So most of the<br />

non-combustibles, dust and ash will be<br />

removed from the system. By further<br />

increasing the temperature up �<br />

51 ALUMINIUM · 1-2/2008<br />

ALUMINIUM · 1-2/2008 51


ALUMINIUM SMELTING INDUSTRY<br />

Fig. 10: RTO with collecting ductwork and prefilter Fig. 11: LTB HF absorbers<br />

to a maximum of 550°C, it is possible<br />

to gasify all con<strong>de</strong>nsed hydrocarbons.<br />

These gases have a high calorific value<br />

and they can therefore be re-used as a<br />

fuel in the burning chamber. For this<br />

purpose <strong>special</strong> tar burners are installed.<br />

The result is a clean surface of<br />

the heat exchange blocks (Fig. 7).<br />

In any case, an upward airflow<br />

<strong>de</strong>sign from the bottom of the ceramics<br />

up to the burning chamber should<br />

be avoi<strong>de</strong>d because this would only<br />

lead to a complete infiltration of the<br />

ceramic heat exchanger media.<br />

At very high tar loads in the flue gas,<br />

it becomes necessary to run the burnout<br />

mo<strong>de</strong> continuously and in<strong>de</strong>pen<strong>de</strong>ntly<br />

from the normal three-chamber<br />

operation. In this <strong>special</strong> case a fourth<br />

chamber is ad<strong>de</strong>d to the RTO (Fig. 5).<br />

This allows a normal three-chamber<br />

operation while there is always one<br />

chamber in burn-out mo<strong>de</strong>.<br />

In or<strong>de</strong>r to reach the required low<br />

emission limits, the valves of a RTO are<br />

the most important parts. If they are<br />

not tight enough, the resulting leakage<br />

will allow some flue gases to pass<br />

directly to the clean gas duct without<br />

passing the burning chamber. For this<br />

difficult application the standard <strong>de</strong>sign<br />

of the valve system was adapted<br />

by LTB. E<strong>special</strong>ly during the<br />

drop-out mo<strong>de</strong>, con<strong>de</strong>nsates<br />

drop<br />

down<br />

Fig. 12: Layout with furnace<br />

from the ceramic bed into the valve<br />

box. In or<strong>de</strong>r to avoid clogging of the<br />

valves, the complete valve-box has<br />

been re-<strong>de</strong>signed (see Figs. 8 and 9).<br />

The valves have been placed outsi<strong>de</strong><br />

the dropping area so as to keep<br />

them and the sealing clean. All dropping<br />

con<strong>de</strong>nsates are collected in the<br />

heated cone below, from where they<br />

can be discharged easily.<br />

However, normal ‘poppet’ valves<br />

or rotary systems would fail for technical<br />

<strong>de</strong>sign reasons, e<strong>special</strong>ly at the<br />

influence of high temperatures caused<br />

by the burn-out mo<strong>de</strong>.<br />

Experience and results<br />

In the experience of LTB, the RTObased<br />

type of flue gas cleaning is the<br />

only system which can reach the<br />

required low limits for volatile compounds<br />

un<strong>de</strong>r the hard conditions at<br />

baking furnaces. This experience is<br />

also used in green ano<strong>de</strong> plants which<br />

run modified versions of the RTO.<br />

With the <strong>special</strong> carbon-<strong>de</strong>sign of the<br />

RTO, LTB achieved more than 97%<br />

cleaning efficiency for PAH and more<br />

than 98% related to benzo-a-pyrene,<br />

respectively.<br />

Nevertheless, the required<br />

PAH<br />

limits are<br />

quite low<br />

and hard<br />

to reach.<br />

Therefore<br />

additional,<br />

new methods<br />

of prefiltering<br />

and post-treating<br />

the clean gases are being<br />

tested to further reduce<br />

the emissions. The results will be<br />

presented later in a separate article.<br />

As a final stage of the plant, a HF treatment<br />

system could be ad<strong>de</strong>d (Fig. 12).<br />

As wet scrubbing systems would create<br />

waste water from this application,<br />

a dry packed bed scrubber is preferred.<br />

This technology was <strong>de</strong>veloped<br />

by LTB in the 1980s and is used<br />

in several installations of the ceramic<br />

industry (Fig. 11). Insi<strong>de</strong> the casing<br />

there are several casca<strong>de</strong>s, filled with<br />

grainy limestone. These absorption<br />

zones ensure a good contact of the HF<br />

with the absorbent, which will react<br />

spontaneously to fluori<strong>de</strong> (CaF 2 ).<br />

References<br />

[1] Reference Document on Best Available<br />

Technology in the non ferrous metals industry,<br />

May 2000, European IPPC Bureau,<br />

Sevilla http://eippcb.irc.es.<br />

[2] M. Hagen: New requirements and solutions<br />

for the fume treatment at paste mixing<br />

and ano<strong>de</strong> baking plants; Light Metals<br />

2006, ed. T. J. Galloway (TMS, Warrendale,<br />

Pa), 615-619.<br />

[3] Procedair leaflet air pollution control<br />

12/99.<br />

[4] W. Hammer et al.: UBA-FB AP 2058;<br />

Vermin<strong>de</strong>rung von PAH-Emissionen<br />

durch Errichtung und Betrieb einer thermischen<br />

Nachverbrennung mit Wärmerückgewinnung<br />

für Ringöfen zur Herstellung<br />

von Elektrographit; SGL Carbon<br />

GmbH; August 1994.<br />

[5] M. Hagen, W. Hilgert and R. Skiba:<br />

Results of operating a RTO based fume<br />

treatment system at a baking furnace; Light<br />

Metals 2007, ed. M. Sørlie (TMS, Warrendale,<br />

Pa), 977-980.<br />

Authors<br />

Dipl.- Ing. (FH) Matthias Hagen has been<br />

working for LTB for 20 years and is responsible<br />

for all sales.<br />

Dr.- Ing. Bernd Schricker at LTB is responsible<br />

for process <strong>de</strong>sign and new <strong>de</strong>velopments.<br />

52 ALUMINIUM · 1-2/2008


SPECIAL<br />

ALUMINIUM SMELTING INDUSTRY TMS & ALUMINIUM INDIA 2008<br />

53 ALUMINIUM · 1-2/2008<br />

ALUMINIUM · 1-2/2008 53


ALUMINIUM SMELTING INDUSTRY<br />

New generation<br />

of FLSmidth Möller direct pot feeding system<br />

C. Duwe, Pinneberg; T. Letz, Dubai<br />

<strong>Alu</strong>minium has become more important<br />

for many industries and branches<br />

in the last 20 years. Primary aluminium<br />

is produced in so-called electrolytic<br />

cells in aluminium smelter<br />

potlines. In the past, large pot room<br />

cranes fed these electrolytic cells with<br />

the following disadvantages:<br />

• Non-continuous feeding of the<br />

electrolytic cells<br />

• Dust emission when refilling the<br />

alumina bunkers on the pots<br />

• Significant loss of alumina during<br />

filling<br />

• Consi<strong>de</strong>rable crane capacity<br />

nee<strong>de</strong>d<br />

• Extra man-power nee<strong>de</strong>d<br />

• Fluctuating electrolyte composition<br />

causes polluting ano<strong>de</strong> effects<br />

• Ano<strong>de</strong> effects reduce the efficiency<br />

of the smelting process<br />

• High investment and maintenance<br />

costs for the potroom cranes.<br />

Because of this, Möller <strong>de</strong>veloped a<br />

direct pot feeding system.<br />

General <strong>de</strong>scription<br />

The secondary oxi<strong>de</strong> (fluorinated alumina)<br />

from the gas treatment centres<br />

(GTC) is stored in silos near the GTC.<br />

This fluorinated alumina is then taken<br />

from the silos and transported di-<br />

rectly by the direct<br />

pot feeding system<br />

to each of the electrolytic<br />

cells. This<br />

transport system<br />

is pneumatic and it<br />

continuously feeds<br />

the fluorinated<br />

alumina to each<br />

of the electrolytic<br />

cells. The direct<br />

pot feeding system<br />

works in<strong>de</strong>pen<strong>de</strong>ntly of the potroom<br />

cranes; it is fully automatic and absolutely<br />

tight. This <strong>de</strong>sign minimises<br />

maintenance work as well as the<br />

quantity of spare parts nee<strong>de</strong>d.<br />

Functional <strong>de</strong>scription<br />

The new generation of Möller direct<br />

pot feeding (DPF) is no longer a <strong>de</strong>nse<br />

phase conveying system with pressure<br />

vessel for the long distance transport<br />

combined with super feeding system<br />

pipe air sli<strong>de</strong> for conveying to each<br />

of the electrolytic cells. The new DPF<br />

system consists of 100 percent Möller<br />

fluidflow (MF) pipe air sli<strong>de</strong>s DN 100<br />

– 300 to avoid scaling-effects, attrition<br />

(generation of fines) and segregation.<br />

The fluorinated alumina is taken<br />

from the silo at the gas treatment<br />

Fig. 2: Fluorinated alumina silo, Möller fluidflow (MF) pipe air sli<strong>de</strong> to potroom wall, main<br />

intermediate bin, fluidflow pipe air sli<strong>de</strong> along the potroom<br />

Fig. 1: Process flow diagram for the new generation of Möller<br />

direct pot feeding system<br />

centre and transported to the main<br />

intermediate bins, normally one main<br />

intermediate bin for each half of a pot<br />

room.<br />

More MF sli<strong>de</strong> pipes transport<br />

the alumina to the main intermediate<br />

bins (near the potroom walls) as well<br />

as along the two potroom walls. The<br />

main MF pipe air sli<strong>de</strong> DN 300 along<br />

the potroom feeds distribution bins.<br />

Each of these bins feeds two electrolysis<br />

cells via fluidflow super feeding<br />

system pipes DN 100.<br />

All necessary venting domes are<br />

connected with the gas duct.<br />

The fluidflow DPF system works<br />

fully automatically and is more or<br />

less 100 percent filled with alumina<br />

all the time.<br />

Customers often have different requirements<br />

as regards access to crust<br />

breakers and to dosing <strong>de</strong>vices, and the<br />

options for removing alumina ore bunkers<br />

during potline operation. These<br />

requirements influence the final <strong>de</strong>sign<br />

of the MF super feeding system pipe<br />

DN 100 on top of the electrolyte cell.<br />

When the bunker of an electrolysis<br />

cell is full, the bulk material cone<br />

Fig. 3: Möller distribution bin<br />

54 ALUMINIUM · 1-2/2008<br />

Illustrations: FLSmidth Möller


ALUMINIUM SPECIALSMELTING<br />

INDUSTRY TMS & ALUMINIUM INDIA 2008<br />

Fig. 4: Various <strong>de</strong>signs of MF super feeding system (SFS)<br />

pipe DN 100 on top of the electrolysis cell<br />

level blocks the filling spout discharge<br />

opening of the MF air sli<strong>de</strong> pipe, and<br />

so the flow of alumina stops automatically.<br />

As fluorinated alumina is<br />

removed from the ore bunker of the<br />

electrolytic cell, the level drops and<br />

the pneumatic transport starts again<br />

automatically, ensuring a constant<br />

and reliable mass feed rate to the pots.<br />

Fluidising of the fluorinated alumina<br />

insi<strong>de</strong> the MF air sli<strong>de</strong> pipe works<br />

permanently to ensure a constant<br />

bulk <strong>de</strong>nsity.<br />

The self-closing filling<br />

spout due to the material<br />

cone level in the ore<br />

bunker of an electrolytic<br />

cell allows a self-regulating<br />

and continuous refilling<br />

of the ore bunkers<br />

during operation of the<br />

smelting plant. The selfclosed<br />

filling spout and<br />

the filling process of the<br />

ore bunker are shown in<br />

Fig. 6 (see next page).<br />

Furthermore, the system<br />

needs no pressure-tight sealing of<br />

the electrolysis cell thanks to the low<br />

(over) pressure in the<br />

MF air sli<strong>de</strong> pipe.<br />

The main advantages<br />

of the new generation<br />

of MF direct pot<br />

feeding system are:<br />

• Self-regulating and<br />

continuous feeding of<br />

ore bunkers<br />

• Absolutely dust-free<br />

operation<br />

• No generation of fine particles<br />

• No segregation<br />

• No scaling<br />

• Lowest possible (over) pressure<br />

• No pressure-tight sealing of the<br />

electrolyte cell<br />

• Minimized energy consumption<br />

• Minimized maintenance work.<br />

The fluidisation air for the MF pipe is<br />

supplied by rotary piston blowers. The<br />

fluidisation air for the MF super feeding<br />

system on top of the electrolysis<br />

cells comes from frequency-controlled<br />

rotary piston blowers in or<strong>de</strong>r to<br />

reduce the energy consumption down<br />

to that nee<strong>de</strong>d for the air actually �<br />

Fig. 5: SFS pipe DN 100 on top of the electrolysis cell<br />

BUSS Ano<strong>de</strong> Technology<br />

we engineer your plant!<br />

from conceptual stage to realization<br />

Hohenrainstrasse 10; CH-4133 Pratteln 1; Switzerland<br />

+41(0) 618 256 462; info@buss-ct.com; www.buss-ct.com<br />

…see you at<br />

TMS 2008<br />

New Orleans<br />

March 09 – 13<br />

Booth No. 631


ALUMINIUM SMELTING INDUSTRY<br />

Fig. 6: Self-closed filling spout and filling process of the ore bunker<br />

Technical Data (example)<br />

Location of erection: Russia<br />

Altitu<strong>de</strong> of plant location: 367 m above sea level<br />

Ambient temperature: min. -50°C, max. 36°C<br />

Conveyed material: Al 2 O 3 (fluorinated alumina)<br />

Bulk <strong>de</strong>nsity: 0.95 – 1,05 t/m 3<br />

Particle size distribution: 100% < 200 μm<br />

90% < 125 μm<br />

up to 15% < 45 μm<br />

Material temperature: 30°C to 60°C<br />

Moisture content: < 0,5 weight % moisture content<br />

(during summer months < 0,6 weight %)<br />

Material characteristics: free flowing, not adhesive,<br />

fluidisable with 1-2 m 3 /min/m 3<br />

Number of potlines: 2<br />

Number of potrooms: 4<br />

Number of CAD units: 4<br />

Number of cells: 672 (4 CAD with 168 cells)<br />

Design conveying capacity: 250 kg/h (each cell)<br />

Fluidisation air for<br />

fluidflow:<br />

Fluidisation air for<br />

SFS pipe air sli<strong>de</strong>s:<br />

4 x 1 group of 3 blowers (2 duty, 1 stand-by)<br />

frequency controlled<br />

4 x 1 group of 3 blowers (2 duty, 1 stand-by)<br />

frequency controlled<br />

Metal treatment update<br />

B. Maltais, D. Privé and M.-A. Thibault; Chicoutimi<br />

At the TMS annual conference in<br />

2002, an interesting and timely<br />

paper (A Technical Perspective on<br />

Molten <strong>Alu</strong>minium Processing)<br />

was presented, in which the author<br />

<strong>de</strong>scribed the quality requirements<br />

for aluminium and its alloys. In<br />

particular, he stated that only<br />

“step-wise improvements to quality<br />

/ productivity / capacity are anticipated”.<br />

During the last six years<br />

following this presentation, there<br />

has in<strong>de</strong>ed been a “step-wise” improvement<br />

in metal treatment.<br />

For example, once metal is siphoned<br />

from pots in the pot room, then the<br />

used. The technical <strong>de</strong>sign data and requirements<br />

for direct pot feeding systems tend to be very similar<br />

but vary <strong>de</strong>pending on the local conditions. The<br />

data below are from a smelter plant in Siberia.<br />

Conclusion<br />

The new generation of Möller fluidflow direct pot<br />

feeding system has been or<strong>de</strong>red for Dubai potline<br />

6b (40 electrolysis cells), Hormozal Smelter (228<br />

electrolyte cells) as well as for Taishet Smelter (672<br />

electrolyte cells) and Boguchansky Smelter (672<br />

electrolyte cells).<br />

This system is <strong>de</strong>signed to ensure the most constant<br />

and reliable feed possible from the ore bunkers<br />

into the electrolysis cell.<br />

Lowest possible conveying velocities preserve the<br />

particle size distribution and the flow ability of the<br />

secondary alumina and so avoiding scaling effects.<br />

This most competitive system is superior also by<br />

minimizing wear and maintenance as well as energy<br />

consumption and last but not least by high operating<br />

reliability.<br />

The successful story of the company’s direct pot<br />

feeding will continue with this new technology,<br />

started at Hamburger <strong>Alu</strong>minium Werk in 1997 and<br />

at <strong>Alu</strong>minij Mostar in 2001.<br />

Authors<br />

prevention of potline bath carry-over<br />

is an ongoing battle. A new <strong>de</strong>tection<br />

method was presented at the recent<br />

Australian Cast House Conference, in<br />

which the presence of bath is automatically<br />

signalled thus alerting the<br />

operators to take preventive action.<br />

Automated skimmers are being installed<br />

in many plants to ensure that<br />

any bath carry over is removed prior<br />

to transport to the casthouse or to the<br />

treatment of aluminium in crucible<br />

(TAC) station, for which several new<br />

<strong>de</strong>signs have been recently implemented.<br />

TAC stations eliminate the<br />

need for sodium removal downstream<br />

in the cast house.<br />

Dipl.-Ing. Carsten Duwe is Head of Technical Department<br />

of FLSmidth Möller, based in Pinneberg, Germany.<br />

Dipl.-Ing. Timo Letz is Senior Engineer Sales and Project<br />

Department of FLSmidth Middle East, Dubai.<br />

More and more plants are turning to<br />

siphoning from the pot crucibles into<br />

the casting furnaces. This approach<br />

is particularly recommen<strong>de</strong>d when a<br />

new furnace is being installed so that<br />

the <strong>de</strong>sign criteria can be easily met.<br />

In ol<strong>de</strong>r plants, there are often height<br />

limitations or restrictions for access<br />

into the furnace for the siphon tube.<br />

Siphoning reduces metal turbulence<br />

and hence minimizes dross generation.<br />

To meet the ongoing requirement<br />

to reduce chlorine gas in plants, the<br />

use of either manual additions of salts<br />

in the casting furnaces or automated<br />

rotary flux injectors was <strong>de</strong>veloped.<br />

56 ALUMINIUM · 1-2/2008


Illustrations: STAS<br />

SPECIAL<br />

ALUMINIUM SMELTING INDUSTRY TMS & ALUMINIUM INDIA 2008<br />

Fig. 1: TAC and automatic skimming unit Fig. 2: Efficiencies observed with use of TAC<br />

It is now clearly <strong>de</strong>monstrated and<br />

well established that alkali and inclusion<br />

removal is possible without using<br />

chlorine gas. The salts used for this<br />

application contain magnesium and<br />

potassium chlori<strong>de</strong> with compositions<br />

using less magnesium chlori<strong>de</strong><br />

yet attaining equivalent removal efficiencies.<br />

In a continuing effort to reduce<br />

chlorine usage, new procedures have<br />

shown that additions of chlorine to<br />

a limited number of rotors in a multi-stage<br />

<strong>de</strong>gasser can be more effective<br />

in reducing inclusions. Moreover,<br />

chlorine usage can be completely<br />

eliminated from <strong>de</strong>gassers when salt<br />

additions are ma<strong>de</strong> to optimize inclusion<br />

removal.<br />

Technologies for metal treatment<br />

Automatic skimming machine: Most<br />

producers in the past removed bath<br />

material manually, exposing the operators<br />

to safety and hygiene risks<br />

while still not efficiently removing<br />

bath. Now, automatic skimming machines<br />

are available on the market,<br />

adapted to specific customer needs,<br />

and to the particular transport mo<strong>de</strong>s<br />

in the plant. Many new <strong>de</strong>signs now<br />

available are equipped with a tool e<strong>special</strong>ly<br />

<strong>de</strong>signed to remove the maximum<br />

of solid bath and dross from the<br />

metal surface. In fact, the skimming<br />

efficiency of this machine can be up<br />

to 85 percent dross / bath removal on<br />

a consistent basis. Moreover, the automatic<br />

skimming machine does not<br />

require an operator.<br />

Treatment of aluminium in a crucible:<br />

The TAC technology injects of<br />

aluminium fluori<strong>de</strong> directly into the<br />

crucible to effectively remove the alkali<br />

and alkaline earth metals from<br />

molten aluminium without using<br />

chlorine gas.<br />

Prior to the TAC operation, the<br />

bath material has to be removed. An<br />

automatic skimming machine can be<br />

integrated with the TAC station to remove<br />

this bath material, and can also<br />

reduce labour costs and safety and<br />

hygiene problems. If required, the<br />

skimmer can be used again to remove<br />

dross after the TAC operation.<br />

The TAC technology can efficiently<br />

achieve a concentration of sodium<br />

after treatment as low as few ppm<br />

within a treatment time between 5<br />

and 10 minutes, from an initial value<br />

over 100 ppm.<br />

One of the main advantages of the<br />

TAC is that the flux material (aluminium<br />

fluori<strong>de</strong>) is readily available<br />

in the smelter and it can be recycled<br />

to the pots when the crucible walls<br />

are cleaned with a crucible cleaning<br />

machine. Smelter gra<strong>de</strong> AlF3 is suitable.<br />

Typically, 1 kg of flux per tonne<br />

of aluminium is used.<br />

Brief <strong>de</strong>scription of the equipment:<br />

Figure 1 shows an example of TAC<br />

installations in mo<strong>de</strong>rn smelters. The<br />

rotation of the TAC agitator is powered<br />

by an electric motor coupled to<br />

a gearbox. The rotation speed is in the<br />

range of 100 to 200 rpm. The complete<br />

equipment and its installation<br />

are in accordance with EC standard<br />

to ensure a high level of safety for the<br />

operators.<br />

Advantages of the TAC-automatic<br />

skimming equipment: no chlorine<br />

is used; pot room crucible used; extremely<br />

rapid (less than 10 minutes);<br />

automatic, PLC operation; integrated<br />

dust collector system; low operating<br />

cost.<br />

�<br />

57 ALUMINIUM · 1-2/2008<br />

ALUMINIUM · 1-2/2008 57


ALUMINIUM SMELTING INDUSTRY<br />

Fig. 3: Rotary injector Fig. 4: Alcan compact <strong>de</strong>gasser<br />

Rotary fluxing technologies (e. g. RFI/<br />

RGI): In several plants, furnace fluxing<br />

is still used to meet product requirements<br />

with respect to dissolved<br />

alkalis (lithium, sodium, calcium),<br />

non-metallic inclusions and hydrogen.<br />

Furnace fluxing has been traditionally<br />

done either manually with a<br />

salt mix or else using static lances with<br />

a mixture of chlorine / nitrogen gases.<br />

These processes have been progressively<br />

replaced by rotary injectors using<br />

chlorine gas (RGI) or salt mixtures<br />

(RFI).<br />

Alkalines are removed significantly<br />

faster with the RFI / RGI rotary<br />

equipment in comparison with lance<br />

fluxing. The RGI still uses a mixture of<br />

chlorine / nitrogen, but it uses much<br />

less chlorine than does conventional<br />

lance fluxing. On the other hand, the<br />

RFI completely replaces chlorine by<br />

salts containing magnesium and potassium<br />

chlori<strong>de</strong>.<br />

Fig. 5: Conventional versus sealed ACD<br />

58<br />

Rotary salt fluxing processes help<br />

achieve high removal efficiencies<br />

within limited process times. However,<br />

the main gain is in terms of environment<br />

and safety issues.<br />

Brief <strong>de</strong>scription of the equipment:<br />

The injection module is composed of a<br />

graphite rotor and shaft, a driving system<br />

and a flux fee<strong>de</strong>r. The flux fee<strong>de</strong>r<br />

contains and doses the flux required<br />

for one treatment. The dosing system<br />

allows for the precise distribution of<br />

the flux during a treatment.<br />

The injection module must be<br />

placed at a very specific location into<br />

molten metal. Since each plant and<br />

even each furnace is different, several<br />

<strong>de</strong>signs have been <strong>de</strong>veloped to meet<br />

customer requirements. Some equipment<br />

can be used to treat one furnace<br />

only, while others can treat two furnaces<br />

in sequence. Mobile units have<br />

also been <strong>de</strong>veloped to process several<br />

furnaces.<br />

Advantages of the RFI equipment:<br />

reduces alkalis, inclusions, HCl and<br />

dust emissions; ensures temperature<br />

and alloy homogeneity by stirring action;<br />

eliminates the use of chlorine gas<br />

for furnace fluxing.<br />

Degassing technologies (e. g. ACD):<br />

The aluminium compact <strong>de</strong>gasser<br />

(ACD) is a multi-stage, in-line <strong>de</strong>gassing<br />

machine that treats molten aluminium<br />

directly in the trough. Several<br />

papers have <strong>de</strong>scribed this technology<br />

in the past ten years.<br />

Brief <strong>de</strong>scription of the equipment:<br />

The ACD is composed of three main<br />

components:<br />

• One or more driving modules:<br />

drive assembly for the graphite<br />

rotors used to inject and disperse<br />

the treatment gases (mixture of<br />

chlorine/argon or argon only)<br />

• A sealed hood: this supports<br />

the drive module(s), encloses the<br />

fumes generated during treatment,<br />

ALUMINIUM · 1-2/2008


SPECIAL<br />

ALUMINIUM SMELTING INDUSTRY TMS & ALUMINIUM INDIA 2008<br />

and shields the metal from ambient<br />

conditions<br />

• A retraction system: lowers and raises the<br />

hood and maintains it at the position<br />

required for maintenance operations.<br />

Control is automatic through the use of a<br />

PLC.<br />

Advantages of the <strong>de</strong>gassing technologies:<br />

removes alkalis and inclusions when chlorine<br />

is used; allows treatment with 2 to 8 rotor systems<br />

for metal flow rates from 20 up to 1,500<br />

kg/min for the ACD; avoids loss of metal due<br />

to alloy changes for the ACD; avoids need to<br />

heat unit for the ACD; suits inline salt injection<br />

system.<br />

Technology comparison – conventional vs<br />

sealed ACD: In the recent years, the ACD has<br />

been improved to operate un<strong>de</strong>r sealed conditions<br />

(see Fig. 5 for <strong>de</strong>sign changes).<br />

Conventional unit: Conventional ACDs<br />

create forced air circulation through the interior<br />

of the hood. This mo<strong>de</strong> of operation<br />

originally served to eliminate dross reactivity<br />

by (burning) after treatment of AlMg alloys.<br />

Sealed unit: The basic principle is to maintain<br />

the insi<strong>de</strong> of the ACD hood un<strong>de</strong>r argon<br />

atmosphere to exclu<strong>de</strong> oxygen as far as possible.<br />

For that purpose, the ACD hood has been<br />

completely re<strong>de</strong>signed. All means have been<br />

implemented to eliminate air infiltration.<br />

Benefits of sealed ACD: lowers dross generation;<br />

allows ACD operation without the<br />

use of chlorine; reduces emission of particulate<br />

matter.<br />

In-line salt feeding system: In-line salt injection<br />

involves adding of very small amounts<br />

of solid flux un<strong>de</strong>rneath the molten aluminium<br />

surface. This technology takes advantage<br />

of the strong shearing forces <strong>de</strong>veloped<br />

around the ACD rotor heads to properly disperse<br />

the liquid salt droplets. The solid flux<br />

assists alkali removal and inclusion removal<br />

using commercial fused or non-fused MgCl 2 /<br />

KCl mixtures.<br />

This approach is an alternative for plants<br />

that want to avoid or eliminate gaseous chlorine<br />

injection in in-line <strong>de</strong>gassers. The theory<br />

of alkali and inclusion removal from aluminium<br />

by using MgCl 2 /KCl mixtures is well <strong>de</strong>scribed<br />

in the literature.<br />

Brief <strong>de</strong>scription of the equipment: The inline<br />

flux fee<strong>de</strong>r takes advantage of the ACD<br />

rotor <strong>de</strong>sign to inject solid flux through the<br />

shaft central opening. The flux is then directly<br />

<strong>de</strong>livered insi<strong>de</strong> the rotating disperser un<strong>de</strong>rneath<br />

the metal surface. Hence, the liquefied<br />

salt droplets are efficiently dispersed within<br />

the molten metal. This configuration, as for<br />

salt injection, is the key element for the �<br />

59 ALUMINIUM · 1-2/2008<br />

59


ALUMINIUM SMELTING INDUSTRY<br />

efficiency of the ACD salt injection<br />

process. Thanks to its patented disperser<br />

<strong>de</strong>sign, the ACD is among the<br />

few technologies that can offer inline<br />

salt injection.<br />

A more <strong>de</strong>tailed <strong>de</strong>scription can be<br />

found in the TMS article presented in<br />

2007.<br />

Metallurgical performances with<br />

different configurations of ACDs<br />

To compare different configurations<br />

in various plants, metallurgical performance<br />

tests have been performed,<br />

the results of which are briefly presented<br />

below. The ACD configurations<br />

are:<br />

• ACD without chlorine<br />

• ACD with chlorine (original<br />

<strong>de</strong>sign, where chlorine is injected<br />

through all but one rotor)<br />

• ACD with chlorine (by limiting<br />

the number of rotors for chlorine<br />

injection)<br />

• ACD with salt injection (in replacement<br />

of chlorine).<br />

Hydrogen removal: The most important<br />

function of an ACD is to remove<br />

dissolved hydrogen from molten aluminium.<br />

It is worth mentioning that<br />

using the ACD for hydrogen removal<br />

is equivalent to using a box type <strong>de</strong>gasser.<br />

Since the hydrogen escapes<br />

in bubbles of other gases, there is no<br />

difference between using the ACD argon<br />

with chlorine, without chlorine or<br />

even with the salt injection system. In<br />

fact, the results <strong>de</strong>pend on the volume<br />

Fig. 6: Salt injection system<br />

of gas injected, the efficiency of gas<br />

dispersion, and the resi<strong>de</strong>nce time of<br />

the gas bubbles in the molten metal.<br />

Using the AlSCAN method to<br />

monitor the results, ACDs have shown<br />

similar <strong>de</strong>gassing efficiency with or<br />

without chlorine. Results based on the<br />

latest improvement using an MgCl 2<br />

based salt to replace chlorine have<br />

shown equivalent removal performances<br />

in similar process conditions.<br />

Inclusion removal:<br />

Without use of chlorine: Over the<br />

last years, there has been a worldwi<strong>de</strong><br />

movement toward the elimination of<br />

chlorine from cast houses because of<br />

environmental, hygiene and safety<br />

concerns.<br />

Six years ago, only a few ACDs<br />

were operated without chlorine injection.<br />

Inclusion removal was characterised<br />

as inconsistent, to say the<br />

least. The dross generated insi<strong>de</strong> the<br />

ACD was found to be much ‘wetter’<br />

without chlorine than with it. In these<br />

conditions, the inclusions can be easily<br />

re-entrained into the melt, thus<br />

explaining the low or non existent<br />

inclusion removal.<br />

Nowadays, more than 20 ACDs of<br />

the latest sealed <strong>de</strong>sign are in operation<br />

using argon only.<br />

However, even with sealed ACDs,<br />

which generate and show no surface<br />

dross, inclusion removal efficiency is<br />

still inconsistent without chlorine. To<br />

achieve consistent inclusion removal,<br />

a modified agent is nee<strong>de</strong>d to make<br />

the inclusions less wettable, so that<br />

they stay separate<br />

at the aluminium<br />

surface.<br />

With use of<br />

chlorine: It is well<br />

documented that<br />

consistent inclusion<br />

removal efficiency<br />

through in-line <strong>de</strong>gassing<br />

requires a<br />

minimum input of<br />

chlorine.<br />

From the first<br />

<strong>de</strong>velopment of the<br />

ACD in the early<br />

1990s, chlorine was<br />

injected un<strong>de</strong>rneath<br />

the metal surface<br />

through all the rotors<br />

but the last one,<br />

which injects argon only. The typical<br />

inclusion removal performance associated<br />

with a standard chlorine injection<br />

configuration may vary from 25<br />

up to 60 percent. However, it is important<br />

to highlight that the higher the<br />

cleanliness of the metal coming from<br />

the furnace, the lower the proportion<br />

of inclusion removal will be.<br />

Recent plant experiments have<br />

shown that limiting the number of<br />

rotors that inject chlorine can help<br />

achieve higher and more consistent<br />

inclusion removal efficiencies<br />

(Fig. 7).<br />

Salt Injection: As published at the<br />

last TMS, inclusion removal is more<br />

efficient when salt is used instead of<br />

chlorine (Fig. 8).<br />

Alkali removal: Except for the configuration<br />

that uses argon only, alkali<br />

removal is equivalent for all other<br />

configurations (with chlorine or salt<br />

injection), with a removal efficiency<br />

of 40 to 60 percent.<br />

As a comparison, the performance<br />

obtained without injection of a chemically<br />

active reactant (argon only) are<br />

also inclu<strong>de</strong>d in the figure. Argon<br />

alone achieved a 20 percent efficiency<br />

of alkali removal since the turbulent<br />

mixing vaporizes sodium into the<br />

bubbles. In<strong>de</strong>ed, sodium’s high activity<br />

coefficient and vapour pressure<br />

favour it removal in the ACD.<br />

Conclusion<br />

To the authors’ knowledge, of a dozen<br />

customers who have installed or <strong>de</strong>monstrated<br />

a strong interest in the TAC<br />

over the six last years, most have coupled<br />

their machines with a skimming<br />

machine. The new automatic skimming<br />

machines remove bath more<br />

precisely than the manual method,<br />

and they avoid health and safety problems<br />

for the operators.<br />

It is worth noting that the use of<br />

the flux injection technology is more<br />

and more an option for smelters and<br />

recycling plants to treat liquid metal<br />

in furnaces. A lower magnesium chlori<strong>de</strong><br />

content in salt flux has proved as<br />

effective as a higher content.<br />

With the ACD, reducing the number<br />

of rotors injecting chlorine has given<br />

similar or even better results in terms<br />

of alkali or inclusion removal.<br />

60 ALUMINIUM · 1-2/2008


SPECIAL<br />

ALUMINIUM SMELTING INDUSTRY TMS & ALUMINIUM INDIA 2008<br />

Finally, as presented at the TMS 2007,<br />

the new salt injection system offers an<br />

improved solution which completely<br />

eliminates chlorine gas from the cast<br />

house.<br />

Acknowledgement<br />

Sincere thanks are due to the Alcan’s<br />

personnel and the STAS <strong>de</strong>sign team,<br />

without whose <strong>de</strong>dication the success<br />

of this work would not have been possible.<br />

Authors<br />

Bruno Maltais, Dominique Privé and<br />

Marc-André Thibault are with STAS Inc.,<br />

based in Chicoutimi, Canada. Fig. 7: Inclusion removal efficiency<br />

Fig. 8: Inclusion removal efficiency: in-line salt injection<br />

versus chlorine injection<br />

Fig. 9: Alkali removal efficiency: argon only, chlorine injection,<br />

salt injection<br />

Auto control system for quality casting<br />

J. Strömbeck, Hono<br />

This article explains how an existing<br />

casthouse can easily become<br />

a mo<strong>de</strong>rn automated factory using<br />

Precimeter’s step-by-step process<br />

upgra<strong>de</strong> philosophy. The foundry<br />

industry has traditionally been<br />

regar<strong>de</strong>d as a low tech, heavy and<br />

dangerous working environment.<br />

With the Precimeter ‘auto control<br />

system’ all this can change into a<br />

mo<strong>de</strong>rn, clean and safe environment.<br />

Traditionally in casting, the metal<br />

flow has been manually controlled by<br />

an operator. Casting plants <strong>de</strong>pend on<br />

their most experienced operators for<br />

high productivity and good quality.<br />

These professionals are getting har<strong>de</strong>r<br />

to find. If they are on sick leave, or replaced<br />

by someone less experienced,<br />

production suffers.<br />

Often, the control of metal flow into<br />

the mould <strong>de</strong>pends on floaters. These<br />

<strong>de</strong>vices are inaccurate since they can<br />

change over time as frozen metal adheres<br />

to them or they can malfunction<br />

due to mechanical friction and wear.<br />

The throttling <strong>de</strong>vice moves in direct<br />

proportion to the floater position,<br />

and disregards the characteristics of<br />

flow rate versus sli<strong>de</strong>r position. The<br />

level controlled is <strong>de</strong>termined by the<br />

individual floater, and so cannot be<br />

changed during the cast. Also, floaters<br />

provi<strong>de</strong> no inherent way of recording<br />

the metal levels using floaters.<br />

The Precimeter auto control sys-<br />

tem revolutionizes the whole casting<br />

process by offering step-by-step<br />

automation from a single metal level<br />

control to a fully automatic casting<br />

process. The system provi<strong>de</strong>s benefits<br />

including:<br />

• Improved quality due to steady<br />

metal levels throughout the process<br />

• Increased productivity since<br />

eliminating human error gives<br />

better recovery rates<br />

• Safer working environment for<br />

the operators<br />

• Casting repeatability<br />

• Documentation of the process<br />

• Step-by-step improvements<br />

• Flexibility in setting metal levels<br />

throughout the casting process<br />

• Better use of manpower. �<br />

61 ALUMINIUM · 1-2/2008<br />

ALUMINIUM · 1-2/2008 61


ALUMINIUM SMELTING INDUSTRY<br />

Fig. 1: Stationary furnace controlled by<br />

TXP-6E tap-out actuator, ProH sensor and<br />

control system<br />

Fig. 2: Tilting furnace controlled by ProH<br />

sensor and control system<br />

Fig. 3: Control of molten metal level for<br />

rod casting with PXP-2E pin position<br />

actuator<br />

Fig. 4: Control of molten metal level in<br />

sheet casting with PXP-2E actuator<br />

Illustrations: Precimeter<br />

The concept of a fully automatic casting<br />

process can be implemented in existing<br />

casting processes. Using a step<br />

by step approach one can upgra<strong>de</strong><br />

one part at a time.<br />

The normal approach to automating<br />

casting begins by analysing the<br />

current manual process and isolating<br />

the crucial elements to optimize<br />

the return on the initial investment.<br />

This could for example begin with<br />

automating the furnace control or the<br />

filling of the mould.<br />

The way to begin <strong>de</strong>pends on what<br />

the customer regards as the key element<br />

to improve. Once installed, the<br />

auto control system is ready for the next<br />

level of automation just by adding the<br />

Precimeter components, which consist<br />

of the well known, market leading molten<br />

metal level sensor ProH together<br />

with a range of suitable actuators.<br />

Today, most furnace tapping processes<br />

are manually controlled. There<br />

are two main types of furnaces: tilting<br />

and stationary.<br />

The tilting furnace employs a hydraulic<br />

piston that slowly tilts the<br />

furnace to let the molten metal flow<br />

into the laun<strong>de</strong>r system. The tilting action<br />

is manually controlled using push<br />

buttons up / down. The operator looks<br />

at the level downstream and uses his<br />

experience to control the metal level<br />

in or<strong>de</strong>r to get a good flow of molten<br />

metal.<br />

The stationary (also called gravity)<br />

furnace has a low positioned tap<br />

hole which is opened to start casting.<br />

The operator adjusts the flow manually<br />

using a control rod to a cone in<br />

the tap hole. This is a dangerous operation<br />

where the operator is close<br />

to the molten metal; in addition, it is<br />

very difficult to estimate by eye and<br />

accurately control the level further<br />

downstream. The process obviously<br />

<strong>de</strong>pends on an expert proficient with<br />

the process.<br />

Precimeter has, together with<br />

leading furnace manufacturers and<br />

aluminium foundries, studied and<br />

<strong>de</strong>veloped advanced, affordable solutions<br />

to automate these operations.<br />

The first priority for the stationary<br />

furnace has of course been the safety<br />

of the operator. The employer is responsible,<br />

and cannot ignore the risk<br />

to a man standing close to the furnace<br />

tap out hole for hours to adjust the<br />

control rod. Such working hazards<br />

must be avoi<strong>de</strong>d.<br />

New as well as old stationary furnaces<br />

can now be equipped with a tapout<br />

actuator TXP-6E or TXP-10. The<br />

actuator clamps onto the control rod<br />

with the cone, moving it in or out of the<br />

tap hole, so as to maintain the <strong>de</strong>sired<br />

metal level in the laun<strong>de</strong>r. The actual<br />

metal level downstream is measured<br />

with the ProH digital camera sensor,<br />

which feeds a signal back to a closed<br />

loop auto control system, type MLC<br />

M1, controlling the tap-out actuator.<br />

This complete system (actuator,<br />

sensor and control unit) guarantees<br />

the <strong>de</strong>sired metal level on set point<br />

within an accuracy of 0.5 mm. This is<br />

better than any human operator can<br />

achieve, and improves safety for the<br />

operators, who do not need to stand as<br />

close to the molten metal (Fig. 1).<br />

Accurate level control ensures<br />

quality casting by reducing variables<br />

to constants. A computerized control<br />

system is able to reliably repeat the<br />

same casting results over and over<br />

again. This means less scrap and less<br />

down time.<br />

A tilting furnace does not represent<br />

the same hazards for the employees as<br />

a stationary furnace. The control buttons<br />

can be placed further away from<br />

the molten metal, so the operator can<br />

be further from the danger zone. But<br />

the operator still has a great difficulty<br />

in keeping the same metal level during<br />

each cast and from cast to cast.<br />

This regulation <strong>de</strong>pends on an experienced<br />

operator who estimates metal<br />

level by eye and tries to keep it constant<br />

only by manual adjustment. The<br />

solution to this problem is the new<br />

Precimeter system for tilting furnaces<br />

that uses a ProH sensor measuring the<br />

level downstream. When the operator<br />

<strong>de</strong>ci<strong>de</strong>s that the level is perfect, he<br />

switches to automatic mo<strong>de</strong>, and then<br />

the tilting of the furnace is controlled<br />

automatically; keeping the level on set<br />

point within 0.5 mm (Fig. 2).<br />

This system employs a ProH camera<br />

sensor and an auto control system<br />

MLC M1 as a very convenient retrofit<br />

kit. This leads to less scrap, less down<br />

time and better use of manpower as it<br />

frees up one operator from the duties<br />

of watching the metal levels.<br />

62 ALUMINIUM · 1-2/2008


SPECIAL<br />

ALUMINIUM SMELTING INDUSTRY TMS & ALUMINIUM INDIA 2008<br />

Moving one step further down in the process, there is<br />

obviously a need to control the metal levels in the mould.<br />

This is easily done with a flow control actuator and a<br />

ProH level sensor reading the metal level in the mould.<br />

The company has experience with casting installations,<br />

starting with controlling the mould and implementing<br />

the auto control system MLC M1 or A1, <strong>de</strong>pending on<br />

how far the plant wants to automate. See figures 3 (rod),<br />

4 (sheet) and 5 (ingot) as examples of different types of<br />

systems installed in production plants.<br />

The next natural step is to combine the furnace automation<br />

with the mould automation. This combined system<br />

is called ‘auto control flexible’, and it can handle up<br />

to 4 different levels in a casting process. It works with<br />

pre-programmed casting parameters and has an excellent<br />

repeatability. The system is easily handled through<br />

Fig. 5: Control of<br />

molten metal level<br />

in ingot casting<br />

with TXP-6E and<br />

starter dam actuators<br />

Fig. 6: Billet casting with<br />

ProH sensor and Precimeter<br />

control system<br />

Fig. 7: Slab casting<br />

with PXP-2E and<br />

starter dam actuators<br />

the operator interface, a touch screen. See figure 6 (billet<br />

casting) as an example.<br />

For a more advanced casting process control, the company<br />

offers the auto control system ‘MLC Advanced’. This<br />

system fully automates management of the entire casting<br />

process. Using this system has proved that it increases productivity<br />

and produces less rejects. The process can be<br />

recor<strong>de</strong>d for traceability, and it learns to repeat the same<br />

top quality casting time after time. See figure 7 (slab) as<br />

an example.<br />

The company’s auto control systems can communicate<br />

with all major PLC brands used in factory automation<br />

worldwi<strong>de</strong>; they can interconnect with any existing factory<br />

process control system to make the upgra<strong>de</strong> smooth.<br />

To provi<strong>de</strong> safe and accurate function, all of the<br />

above systems use the ‘Smart Filter’ software <strong>de</strong>veloped<br />

and perfected by Precimeter’ software engineers during<br />

years of testing. The systems are being sold and installed<br />

worldwi<strong>de</strong> by members of the company group and their<br />

representatives. These inventions take the industry a<br />

step forward by eliminating hazards, reducing scrap and<br />

rejects, improving quality, and utilizing manpower in a<br />

more efficient way.<br />

Author<br />

Jan Strömbeck, M. Sc., is Managing Director of Precimeter Control<br />

AB, based in Hono near Gothenburg in Swe<strong>de</strong>n.<br />

63 ALUMINIUM · 1-2/2008<br />

ALUMINIUM · 1-2/2008 63


ALUMINIUM SMELTING INDUSTRY<br />

History of intensive mixing<br />

for ano<strong>de</strong> paste used in aluminium electrolysis<br />

B. Hohl, Hardheim<br />

About 84% of the world’s production<br />

of primary aluminium uses<br />

prebaked ano<strong>de</strong>s: this amounted<br />

to approximately 30 million tonnes<br />

of the 35.5 million tonnes ma<strong>de</strong> in<br />

2006. The remaining 5.5m tonnes<br />

came from ol<strong>de</strong>r works with Soe<strong>de</strong>rberg<br />

technology so that the<br />

requirement for ano<strong>de</strong> paste was<br />

about 16.5m tonnes for prebaked<br />

ano<strong>de</strong>s and 3m tonnes for Soe<strong>de</strong>rberg.<br />

More than every second<br />

prebaked ano<strong>de</strong> is produced from<br />

either completely (Eirich Mixing<br />

Casca<strong>de</strong>, ‘EMC’) or partially (cooler)<br />

intensively prepared paste. So,<br />

intensive mixers for ano<strong>de</strong> paste<br />

have become state-of-the-art in the<br />

primary aluminium industry.<br />

Remixing and cooling<br />

of ano<strong>de</strong> paste<br />

Already in the 1970s, individual intensive<br />

mixers were used as continuously<br />

operating coolers for ano<strong>de</strong> paste e. g.,<br />

in the Netherlands a n d<br />

in Bahrain, then<br />

an exten-<br />

Fig. 1:<br />

Intensive<br />

mixing principle<br />

tinuously operating Eirich<br />

intensive mixer proved it<br />

could not only cope reliably<br />

with cooling but could<br />

also achieve excellent homogenization<br />

of the paste.<br />

By directly adding water<br />

which immediately evaporates<br />

from the ano<strong>de</strong> paste<br />

it achieves far higher cooling<br />

capacities than established<br />

systems have ever<br />

reached.<br />

On top of that is the<br />

effect of an almost ‘costfree’<br />

homogenizer: the<br />

cooler also achieves a consi<strong>de</strong>rably<br />

improved paste quality compared to<br />

single-step preparation thanks to the<br />

relatively long retention time of 4 to<br />

5 minutes, the intensive mixing effect,<br />

and the additionally introduced mixing<br />

energy of approximately 4 kWh/t.<br />

This is why hardly any single-step<br />

paste preparation lines were built in<br />

the last 15 years. In the same period,<br />

numerous existing plants were retrofitted<br />

with Eirich intensive remixercoolers.<br />

Integrating this additional<br />

machine into an existing building<br />

often posed a great challenge for the<br />

engineers. In the end, they always<br />

found a solution so as to profit from<br />

the <strong>de</strong>cisive advantages.<br />

The advantages are:<br />

• Agglomerate-free paste with<br />

constant temperature<br />

• Essentially more stable paste<br />

quality by reducing parameter<br />

variations to less than 50%<br />

Fig. 3: Development of baked <strong>de</strong>nsity<br />

sive test series at the Pechiney works in<br />

Sabart (France) led to the breakthrough<br />

of this technology around 1990 with<br />

two more machines in France and<br />

Australia. At that time, the customer<br />

was looking for a paste cooler of high<br />

performance and efficiency. The con- Fig. 2: Green paste porosity as an indicator of mixing efficiency<br />

• Hot mixing temperature<br />

optimized (increased) since it<br />

becomes in<strong>de</strong>pen<strong>de</strong>nt of the<br />

forming temperature<br />

• Long retention time and intensive<br />

remixing of the paste<br />

• Additional mixing energy<br />

• Higher green and baked <strong>de</strong>nsity<br />

and/or less pitch consumption<br />

• Lower electric resistance of the<br />

ano<strong>de</strong><br />

• Clearly reduced porosity and<br />

optimized pore structure<br />

• Lower chemical reactivity<br />

• Allows some overall increase in<br />

the performance of the paste<br />

preparation.<br />

It is important to note that such plants<br />

have a greater construction height because<br />

they need an efficient exhaust<br />

air treatment system to extract steam<br />

and pitch fumes efficiently.<br />

The effect of the Eirich cooler becomes<br />

e<strong>special</strong>ly apparent when retrofitting<br />

into existing lines because here<br />

64 ALUMINIUM · 1-2/2008<br />

Illustrations: Eirich


SPECIAL<br />

ALUMINIUM SMELTING INDUSTRY TMS & ALUMINIUM INDIA 2008<br />

Fig. 4: Flow diagram EMC<br />

a direct comparison of preparation<br />

quality is easily to do.<br />

All-intensive preparation<br />

of ano<strong>de</strong> paste<br />

The success of the intensive mixing<br />

principle for paste cooling led to the<br />

<strong>de</strong>velopment of the EMC. Two seriesconnected<br />

intensive mixers perform<br />

first hot mix the coke and binding<br />

pitch and then subsequent remix and<br />

cool the paste. The operational advantages<br />

of the Eirich intensive mixer<br />

show up as low operating and maintenance<br />

costs, short standstill periods<br />

for any wear-related repairs, long re-<br />

Fig. 5: RV24 EMC 35 t/h at Aostar China<br />

tention time, compensation<br />

of short-time variations in<br />

paste composition, e<strong>special</strong>ly<br />

efficient and thus mo<strong>de</strong>rate<br />

energy input etc. On top<br />

of that the machines are also<br />

available for up to the highest<br />

throughput rates so that<br />

an ano<strong>de</strong> plant with just one<br />

single preparation line can<br />

supply most mo<strong>de</strong>rn smelters<br />

with more than 600,000<br />

tpy of aluminium. EMC lines<br />

are available for throughputs<br />

from 10 t/h to more than 60<br />

t/h. In recent years several<br />

lines were built in Europe,<br />

Africa and East Asia. In 2008,<br />

the first high-performance<br />

line with a throughput rate<br />

of 60 t/h will be supplied to<br />

an aluminium smelter at the<br />

Persian Gulf.<br />

Conclusion<br />

Thanks to its <strong>de</strong>cisive benefits, Eirich<br />

intensive mixing has already become<br />

proven technology in the ano<strong>de</strong> paste<br />

preparation sector. Further technical<br />

and commercial growth is sure to follow.<br />

The future lies with continuous ano<strong>de</strong><br />

paste preparation thanks to their<br />

high efficiency at low investment and<br />

operating costs.<br />

References<br />

1) P. Stokka, Green paste porosity as an<br />

indicator of mixing efficiency, Light Metals<br />

TMS 1997, pp. 565-568.<br />

2) B. Hohl and L. Gocnik, Installation of<br />

an ano<strong>de</strong> paste cooling system at Slovalco,<br />

Light Metals TMS 2002, pp. 583-586.<br />

3) B. Hohl and You Lai Wang,<br />

Experience Report – Aostar<br />

– ano<strong>de</strong> paste preparation<br />

by means of a continuously<br />

operated intensive mixing<br />

casca<strong>de</strong>, Light Metals TMS<br />

2006, pp. 583-587.<br />

Author<br />

Dipl.-Ing. Berthold Hohl is<br />

Product Manager Carbon<br />

Technology at Maschinenfabrik<br />

Gustav Eirich GmbH<br />

& Co KG, Hardheim, Germany.<br />

65 ALUMINIUM · 1-2/2008<br />

ALUMINIUM · 1-2/2008 65


Fotos: Ebner<br />

MARKT UND TECHNIK<br />

Ebner Industrieofenbau<br />

Anspruchsvolle Anwendungen<br />

bei <strong>de</strong>r Wärmebehandlung<br />

B. Rieth, Meerbusch<br />

Luftaufnahme vom Ebner-Standort Leonding nahe Linz, Österreich<br />

Aerial view of Ebner site at Leonding near Linz, Austria<br />

Diversifizierung ist eine <strong>de</strong>r Strategien,<br />

mit <strong>de</strong>nen internationale Anlagenbaufirmen<br />

versuchen, durch<br />

eine Erweiterung ihres Portfolios<br />

Einbußen an Sachlieferungen auszugleichen,<br />

die sie durch frühere<br />

Zugeständnisse zu umfangreichen<br />

Lokalfertigungen in aufstreben<strong>de</strong>n<br />

Märkten wie China hinnehmen<br />

mussten. Dies gilt nicht für die<br />

österreichische Firma Ebner Industrieofenbau,<br />

die zu <strong>de</strong>n weltweit<br />

renommierten Anbietern von<br />

Wärmebehandlungsanlagen zählt.<br />

Die Erfolgsfaktoren dieses Unternehmens<br />

sind Spezialisierung<br />

auf Hochtechnologie, Qualität aus<br />

eigenen Fertigungsbetrieben und<br />

stetige Produktentwicklung.<br />

Schmelz- und Gießöfen sowie konventionelle<br />

Erwärmungsanlagen im<br />

Strangpressbereich sucht man bei<br />

Ebner vergeblich. Statt<strong>de</strong>ssen hat sich<br />

das Familienunternehmen im Laufe<br />

seiner 60-jährigen Geschichte auf an<strong>de</strong>re<br />

Produktlinien für die Wärmebehandlung<br />

von Halbzeugen aus Stahl<br />

und NE-Metallen konzentriert und<br />

mit diesen eine führen<strong>de</strong> Marktposition<br />

erreicht. Dieses sind:<br />

• Haubenöfen für Stahlbandbun<strong>de</strong><br />

sowie Stahldrahtbun<strong>de</strong><br />

• Stahlbandvergüteanlagen<br />

• Bandglühofenanlagen für legierte<br />

und unlegierte Stahlbän<strong>de</strong>r<br />

• Haubenöfen für Messingband-<br />

bun<strong>de</strong> sowie Messingdrahtbun<strong>de</strong><br />

• Stoßöfen zum Homogenisieren<br />

und Anwärmen von <strong>Alu</strong>minium-<br />

Walzbarren<br />

• Durchlaufglühöfen als Bandsch<strong>web</strong>eöfen<br />

zum kontinuierlichen<br />

Glühen von Bän<strong>de</strong>rn sowie<br />

Rollenherdöfen für <strong>Alu</strong>miniumplatten<br />

und -bleche<br />

• Kammer-Glühöfen für <strong>Alu</strong>miniumbun<strong>de</strong><br />

in Einzel- o<strong>de</strong>r Mehrfachbelegung.<br />

Der hohe technologische Anspruch<br />

<strong>de</strong>r Wärmebehandlungsanlagen von<br />

Ebner drückt sich im gemeinsamen<br />

„Hicon“-Logo aus. Es steht für High<br />

Convection und be<strong>de</strong>utet <strong>de</strong>n Einsatz<br />

<strong>de</strong>r von Ebner entwickelten Hochkonvektions-Technologie,<br />

die sich<br />

durch eine funktionsspezifische und<br />

verlustarme Umwälzung <strong>de</strong>r Ofenatmosphäre,<br />

optimierten Medienfluss<br />

um die gesamte Charge sowie einen<br />

sehr geringen Energieverbrauch dank<br />

effizienter Isolierung und externer<br />

Rekuperatoren für je<strong>de</strong> Ofenzone<br />

auszeichnet.<br />

Ebner Industrieofenbau<br />

Demanding<br />

heat treatment<br />

applications<br />

B. Rieth, Meerbusch<br />

Diversification is one of the strategies<br />

with which international<br />

plant manufacturers seek, by<br />

extending their product range, to<br />

counteract the inroads ma<strong>de</strong> into<br />

<strong>special</strong>ist supply sectors affected<br />

by earlier concessions which encouraged<br />

local manufacture in <strong>de</strong>veloping<br />

markets such as China.<br />

This does not apply to the Austrian<br />

company Ebner Industrieofenbau,<br />

one of the most renowned<br />

suppliers of heat treatment equipment<br />

worldwi<strong>de</strong>. The factors that<br />

shape the company’s success are<br />

<strong>special</strong>isation in high technology,<br />

quality from its own production<br />

operations, and continual product<br />

<strong>de</strong>velopment.<br />

Do not expect to get melting and<br />

casting furnaces and conventional<br />

heating units for the extrusion sector<br />

from Ebner. Over its 60-year history<br />

the family-owned firm has concentrated<br />

on other product lines for the<br />

heat treatment of steel and NF-metal<br />

semis, and has achieved a marketleading<br />

position with them. They inclu<strong>de</strong>:<br />

• bell annealing furnaces for steel<br />

strip and wire coils<br />

• steel strip tempering units<br />

• strip annealing units for alloyed<br />

and unalloyed steel strips<br />

• bell annealing furnaces for brass<br />

strip and wire coils<br />

• pusher-type furnaces for homo-<br />

genising and heating aluminium<br />

rolling ingots<br />

• continuous furnaces as floatertype<br />

units for the continuous<br />

annealing of strips, and roller<br />

hearth furnaces for aluminium<br />

plates and sheets<br />

• chamber furnaces for annealing<br />

aluminium coils individually or<br />

in batches.<br />

The high technological sophistication<br />

of Ebner heat treatment units is<br />

proclaimed by the tra<strong>de</strong>mark ‘Hicon’,<br />

66 ALUMINIUM · 1-2/2008


This stands for ‘High Convection’,<br />

<strong>de</strong>noting the use of the high-convection<br />

technology <strong>de</strong>veloped by Ebner<br />

which is characterised by functionspecific<br />

and low-loss circulation of<br />

the furnace atmosphere, optimised<br />

media flow around the whole charge,<br />

and very low energy consumption<br />

thanks to the effective insulation and<br />

external recuperators for each furnace<br />

zone.<br />

Orientation towards<br />

the aluminium industry<br />

Besi<strong>de</strong>s the Hicon/H 2 annealing technique,<br />

which is preferably used for<br />

annealing steel strip coils in a pure<br />

hydrogen atmosphere un<strong>de</strong>r high<br />

convection conditions, Ebner has <strong>de</strong>veloped<br />

numerous technologies and<br />

<strong>de</strong>signs for heat treatment units for<br />

the aluminium industry. Examples<br />

are:<br />

• an optimised slot nozzle system<br />

for pusher-type furnaces, which<br />

ensures rapid and uniform<br />

heating of the whole charge in<br />

the furnace<br />

• an air-flow-controlled carrier<br />

system, which supports an<br />

aluminium strip up to 8 mm thick<br />

in the floater-type strip furnace<br />

• optimised quenching technology<br />

for the quenching of plates, bars<br />

and sections in water after the<br />

roller hearth furnace.<br />

The key components important for a<br />

heat treatment unit, such as fan aggregates<br />

for circulating the furnace<br />

atmosphere, burners, radiation tubes<br />

and much more, were <strong>de</strong>veloped in<br />

the company’s own laboratory, are<br />

constantly being improved, and tested<br />

for operational reliability in long-term<br />

tests. They are of course produced in<br />

the company’s own workshops.<br />

With its own <strong>de</strong>sign <strong>de</strong>partment<br />

for the sectors of mechanical engineering,<br />

gas and regulation technology,<br />

electro-technology, automation<br />

and visualisation, Ebner can not only<br />

react more flexibly to customers’<br />

wishes and ever-stricter customer<br />

standards, but also take advantage of<br />

every improvement and accumulated<br />

knowledge from the commissioning<br />

of furnace units for the <strong>de</strong>sign of new<br />

equipment. �<br />

ALUMINIUM · 1-2/2008<br />

Ausrichtung auf<br />

die <strong>Alu</strong>miniumindustrie<br />

Neben <strong>de</strong>r Hicon/H 2 -Glühtechnik, die<br />

vorzugsweise zum Glühen von Stahlbandbun<strong>de</strong>n<br />

in reiner Wasserstoffatmosphäre<br />

unter Hochkonvektionsbedingungen<br />

eingesetzt wird, hat Ebner<br />

eine Vielzahl von Technologien und<br />

Konstruktionen für Wärmebehandlungsanlagen<br />

für die <strong>Alu</strong>miniumbranche<br />

entwickelt. Beispiele sind:<br />

• ein optimiertes Schlitzdüsen-<br />

system für Stoßöfen, das eine<br />

rasche und gleichmäßige<br />

Erwärmung <strong>de</strong>r gesamten<br />

Charge im Ofen garantiert,<br />

• ein luftströmungsgesteuertes<br />

Tragesystem, das ein bis zu<br />

8 mm dickes <strong>Alu</strong>miniumband<br />

im Sch<strong>web</strong>ebandofen trägt<br />

• eine optimierte Quenchtechnologie<br />

zum Abschrecken von<br />

Platten, Stangen und Profilen im<br />

Wasser beim Rollenherdofen.<br />

Die für eine Wärmebehandlungsanlage<br />

wichtigen Schlüsselkomponenten<br />

wie Ventilatoraggregate zum Umwälzen<br />

<strong>de</strong>r Ofenatmosphäre, Brenner,<br />

Strahlrohre und vieles mehr wur<strong>de</strong>n<br />

im hauseigenen Labor entwickelt,<br />

permanent verbessert und in Langzeittests<br />

über Jahre auf ihre Betriebsicherheit<br />

geprüft. Gefertigt wer<strong>de</strong>n<br />

sie selbstverständlich in <strong>de</strong>n eigenen<br />

Werken.<br />

Mit eigenen Konstruktionsabteilungen<br />

in <strong>de</strong>n Bereichen Maschinenbau,<br />

Gas- und Regeltechnik,<br />

Elektrotechnik, Automatisierung und<br />

Visualisierung kann Ebner nicht nur<br />

MARKETS AND TECHNOLOGY<br />

Industrieofenbau seit 1902<br />

��������������������������������������<br />

auf Kun<strong>de</strong>nwünsche und die immer<br />

strenger wer<strong>de</strong>n<strong>de</strong>n Kun<strong>de</strong>nstandards<br />

flexibel reagieren, son<strong>de</strong>rn<br />

bei Neukonstruktionen von Wärmebehandlungsanlagen<br />

auch rasch<br />

sämtliche Weiterentwicklungen und<br />

Erkenntnisse berücksichtigen, die bei<br />

<strong>de</strong>n Inbetriebnahmen von Ofenanlagen<br />

gemacht wur<strong>de</strong>n.<br />

Marktführer bei Stoßöfen<br />

Beispiel Stoßöfen für Walzbarren: Mit<br />

bisher 35 weltweit gebauten Anlagen<br />

in <strong>de</strong>n letzten 20 Jahren gilt Ebner<br />

als Marktführer auf diesem Gebiet.<br />

Stoßöfen wer<strong>de</strong>n eingesetzt zum<br />

Homogenisieren und Anwärmen auf<br />

Walztemperatur von Walzbarren mit<br />

Gewichten bis zu 30 Tonnen und Abmessungen<br />

bis zu 8650 x 2200 x 650<br />

mm. Kürzest mögliche Anwärmzeiten<br />

mit einer maximalen Temperaturdifferenz<br />

von 6o K über die gesamte<br />

Charge wer<strong>de</strong>n durch Anwendung<br />

<strong>de</strong>r Hicon-Technologie erreicht.<br />

Neben zwei Stoßöfen, die im neuen<br />

Warmwalzwerk von Yantai Nanshan<br />

in China bereits in Betrieb genommen<br />

wur<strong>de</strong>n, liefert Ebner nach China drei<br />

weitere für Asia <strong>Alu</strong>minium sowie<br />

zwei für das neue Qualitäts-Bandwalzwerk<br />

von Xiamen Xiashun. Auch<br />

in Russland kommen neue Stoßöfen<br />

von Ebner zum Einsatz, und zwar im<br />

Alcoa-Werk Samara.<br />

Große Erwartungen auf eine Belebung<br />

<strong>de</strong>s nordamerikanischen Marktes<br />

knüpft Ebner an einen neuen<br />

Auftrag von Alcoa Rigid Packaging<br />

in Knoxville, Tennessee. Die �<br />

������������� ���������������� ������������<br />

�������������� �������������� ��������������<br />

����������� � ����<br />

�����������������������������������������<br />

����������������������������������������������<br />

���������������������������������������������������������������������<br />

<strong>Alu</strong>minium 2008 in Essen, 23.–25. September, Halle 4, Stand 4C24<br />

67


MARKT UND TECHNIK<br />

bei<strong>de</strong>n Stoßöfen, die im Herbst 2008<br />

in Betrieb gehen wer<strong>de</strong>n, können mit<br />

48 Barren, das entspricht 1.200 Tonnen,<br />

beschickt wer<strong>de</strong>n. Sie sind damit<br />

die weltgrößten dieser Bauart. Nicht<br />

nur durch die verbesserte Qualität<br />

und die niedrigeren Wartungskosten,<br />

son<strong>de</strong>rn vor allem auch durch die<br />

von Ebner garantierte hohe Energieausnutzung<br />

angesichts <strong>de</strong>r enorm gestiegenen<br />

Energiepreise rechnet sich<br />

diese Investition für Alcoa innerhalb<br />

weniger Jahre.<br />

Vergüten von <strong>Alu</strong>minium-Platten<br />

und Blechen: Wärmebehandlung<br />

im Grenzbereich<br />

Der von <strong>de</strong>r Luftfahrtindustrie ausgehen<strong>de</strong><br />

Investitionsboom für Plattenerzeugungsanlagen<br />

bescherte <strong>de</strong>m<br />

Unternehmen in <strong>de</strong>r jüngeren Vergangenheit<br />

mehrere beachtenswerte Aufträge.<br />

Die hierfür eingesetzten Rollenherdöfen<br />

nutzen neben <strong>de</strong>r Hicon-<br />

Technologie eine ebenfalls im Labor<br />

von Ebner entwickelte Quenchtechnologie,<br />

die auch die erfor<strong>de</strong>rliche<br />

Trocknung einschließt. Da es sich<br />

bei <strong>de</strong>n Endprodukten zumeist um<br />

Platten und Bleche für die Luft- und<br />

Raumfahrt han<strong>de</strong>lt, wer<strong>de</strong>n die Anlagen<br />

nach <strong>de</strong>r strengen Luftfahrtnorm<br />

AMS 2750 D ausgelegt. Diese for<strong>de</strong>rt,<br />

dass die Temperatur im Ofen (furnace<br />

class 1) während <strong>de</strong>r Haltezeit an <strong>de</strong>n<br />

bei<strong>de</strong>n Grenztemperaturen nur um<br />

+/- 3 o K abweicht.<br />

Vor kurzem in Betrieb genommen<br />

wur<strong>de</strong>n die Rollenherdöfen für OAO<br />

KUMZ in Kamensk Uralski sowie für<br />

Alcoa OAO in Belaja Kalitva, bei<strong>de</strong> in<br />

Russland. Die Plattendicken betragen<br />

11 bis 150 mm bei einer beheizten<br />

Ofenlänge von 31,5 m bzw. 6 bis 200<br />

mm bei 36 m beheizter Ofenlänge.<br />

Auch westeuropäische Werke haben<br />

sich für Rollenherdöfen von Ebner<br />

entschie<strong>de</strong>n. Amag rolling GmbH in<br />

Österreich erhielt eine weitere Anlage<br />

für Plattendicken von 15 bis 100<br />

mm bei einer beheizten Ofenlänge<br />

von 9,9 m, mit <strong>de</strong>r Möglichkeit, die<br />

Anlage um eine weitere Zone zu verlängern.<br />

Für Aleris in Duffel, Belgien,<br />

wur<strong>de</strong> eine Anlage für Plattendicken<br />

von 3 bis 150 mm bei einer beheizten<br />

Ofenlänge von 19,8 m in Betrieb genommen.<br />

Das Ergebnis in all diesen<br />

Fällen: bestmögliche Planheit, beschädigungsfreie<br />

Oberflächen und<br />

einwandfreie Gefügestrukturen <strong>de</strong>r<br />

vergüteten Platten.<br />

Gera<strong>de</strong> auf <strong>de</strong>m Gebiet <strong>de</strong>r Wärmebehandlung<br />

von <strong>Alu</strong>miniumplatten<br />

konnte Ebner duch die Forschungsmöglichkeiten<br />

im betriebseigenen<br />

Großlabor einen wichtigen Beitrag<br />

zur Produkt- und Produktionsverbesserung<br />

liefern. Durch die innovativen<br />

Maßnahmen <strong>de</strong>r F&E-Abteilung<br />

konnten in enger Zusammenarbeit<br />

mit <strong>de</strong>n Anwen<strong>de</strong>rn völlig neu entwickelte<br />

Konzepte realisiert wer<strong>de</strong>n,<br />

die auf mo<strong>de</strong>rnste Qualitäts- und Leistungsanfor<strong>de</strong>rungen<br />

von Hightech-<br />

Produzenten und <strong>de</strong>ren Produkte<br />

zugeschnitten sind.<br />

In diesem Zusammenhang mel<strong>de</strong>t<br />

Ebner die erstmalige Lieferung einer<br />

Rollenherdofenanlage: nicht, wie bisher<br />

üblich, zur Wärmebehandlung<br />

von <strong>Alu</strong>miniumplatten, son<strong>de</strong>rn von<br />

Profilen aus <strong>Alu</strong>miniumlegierungen.<br />

Die für Aleris in Duffel bestimmte<br />

Anlage ist für die über <strong>de</strong>n gesamten<br />

Querschnitt verzugfreie Wärmebehandlung<br />

von komplexen Strangpressprofilen<br />

mit maximalen Außenmaßen<br />

250 x 560 mm und einer Länge von<br />

13 m vorgesehen,<br />

die im<br />

Fahrzeug- und<br />

Flugzeugbau<br />

zur Anwendung<br />

kommen.<br />

Dieser Ofen<br />

stellt eine echte<br />

Innovation<br />

dar, bei <strong>de</strong>ren<br />

Realisierung<br />

das Labor von<br />

Ebner in enger<br />

Zusammenarbeit<br />

mit <strong>de</strong>m<br />

Kun<strong>de</strong>n seine<br />

weitreichen<strong>de</strong>n Möglichkeiten einbringen<br />

konnte. Die bisherige vertikale<br />

Ofenbauweise mit all ihren Einschränkungen<br />

wird hier durch eine<br />

Horizontalanlage ersetzt.<br />

Kammeröfen mit Rechenmo<strong>de</strong>ll<br />

für optimalen Glühzyklus<br />

Auch bei dieser Produktlinie sucht<br />

Ebner die Marktnische von technologisch<br />

anspruchsvollen Anwendungen,<br />

Market lea<strong>de</strong>r for<br />

pusher-type furnaces<br />

Consi<strong>de</strong>r the example of pusher-type<br />

furnaces for rolling ingots: with 35<br />

units built all over the world over<br />

the past 20 years, Ebner is the market<br />

lea<strong>de</strong>r in this field. Pusher-type<br />

furnaces are used for homogenising<br />

and heating rolling ingots weighing<br />

up to 30 tonnes and measuring up to<br />

8650 x 2200 x 650 mm, to their rolling<br />

temperature. The shortest possible<br />

heating times with a maximum<br />

temperature difference of 6°K over<br />

the whole charge are achieved by<br />

the application of Hicon technology.<br />

Besi<strong>de</strong>s two pusher-type furnaces already<br />

commissioned at the new rolling<br />

plant of Yantai Nanshan in China,<br />

Ebner is also to <strong>de</strong>liver three more to<br />

China for Asia <strong>Alu</strong>minium and two for<br />

the new high-gra<strong>de</strong> strip rolling plant<br />

of Xiamen Xiashun. In Russia too new<br />

pusher-type furnaces by Ebner are in<br />

use, in particular at Alcoa in the Samara<br />

works.<br />

High expectations for the revival of<br />

the North American market are linked<br />

by Ebner to a new contract from Alcoa<br />

Rigid Packaging in Knoxville, Tennes-<br />

Rollenherdofenanlage bei <strong>de</strong>r AMAG rolling GmbH in Österreich<br />

Roller hearth furnace unit at AMAG rolling GmbH, Austria<br />

see. The two furnaces which will begin<br />

operating in autumn 2008 can take up<br />

to 48 ingots, corresponding to 1,200<br />

tonnes, and are therefore the largest of<br />

their type in the world. Alcoa expects<br />

a pay-back time of only a few years<br />

for this investment, not only because<br />

of improved quality and lower maintenance<br />

costs, but above all because<br />

of Ebner’s guarantee of high energy<br />

efficiency set against the enormously<br />

increased energy prices.<br />

68 ALUMINIUM · 1-2/2008


Tempering of aluminium plates<br />

and sheets: heat treatment in<br />

the limiting range<br />

The investment boom in plate production<br />

plants created by the aviation<br />

industry has in the recent past<br />

secured a number of notable or<strong>de</strong>rs<br />

for Ebner. Besi<strong>de</strong>s Hicon technology<br />

the roller hearth furnaces used for this<br />

employ quenching technology also<br />

<strong>de</strong>veloped in the company’s laboratories,<br />

which also inclu<strong>de</strong>s the necessary<br />

drying. Since the end products<br />

are mostly plates and sheets for use<br />

in aerospace, the plant is <strong>de</strong>signed in<br />

accordance with the strict AMS 2750<br />

D aviation standard, which <strong>de</strong>mands<br />

that in a Class 1 furnace the temperature<br />

may only <strong>de</strong>viate at the two limit<br />

values by no ore than ± 3°K.<br />

Recently commissioned were the<br />

roller hearth furnaces for OAO KUMZ<br />

in Kamensk Uralski and Alcoa OAO<br />

in Belaja Kalitva, both in Russia. �<br />

PROFHAL entwickelt, fertigt<br />

und vere<strong>de</strong>lt hochwertige<br />

<strong>Alu</strong>minium-Profil-System-<br />

Komponenten für<br />

unterschied lichste<br />

Anwendungsgebiete.<br />

INDIVIDUELLE LÖSUNGEN<br />

AUS ALUMINIUM<br />

ALUMINIUM · 1-2/2008<br />

bei <strong>de</strong>nen in zunehmen<strong>de</strong>m Maße die<br />

Luftfahrtnormen zur Anwendung kommen.<br />

Dazu zählen auch die an Aleris<br />

Koblenz gelieferten Kammeröfen zum<br />

Glühen und Altern von Platten für die<br />

Flugzeugindustrie, wobei die zuletzt<br />

gelieferte Anlage für zukünftige Plattenlängen<br />

von 34 m und eine maximale<br />

Charge von 150 Tonnen bezüglich<br />

<strong>de</strong>r gefor<strong>de</strong>rten Temperaturgleichmäßigkeit<br />

hervorzuheben ist, die weit<br />

unterhalb <strong>de</strong>r von <strong>de</strong>r Luftfahrt bisher<br />

gefor<strong>de</strong>rten Toleranzen liegt.<br />

Die bei Ebner im Laufe <strong>de</strong>r Jahre<br />

über viele Versuchsreihen angelegten<br />

Datenbanken über Temperaturverläufe<br />

bei <strong>de</strong>n unterschiedlichen <strong>Alu</strong>miniumlegierungen<br />

sind die Basis für<br />

eine Spitzenpositionierung bei <strong>de</strong>r<br />

Entwicklung von Rechenmo<strong>de</strong>llen.<br />

Übertragen auf die Produktionsanlagen<br />

steuern sie mit hoher Zuverlässigkeit<br />

die Temperaturführung während<br />

<strong>de</strong>s gesamten Wärmebehandlungsvorgangs.<br />

Erwähnenswert ist in die-<br />

MARKETS AND TECHNOLOGY<br />

sem Zusammenhang <strong>de</strong>r Einsatz <strong>de</strong>s<br />

von Ebner für Einzelbundöfen entwickelten<br />

Rechenmo<strong>de</strong>lls „BOS“ (Batch<br />

Furnace Optimization System), das<br />

erstmals auch bei einem Mehrbund-<br />

Kammerofen angewen<strong>de</strong>t wur<strong>de</strong>.<br />

Das Rechenmo<strong>de</strong>ll ermittelt für die<br />

jeweiligen Bunddimensionen und<br />

Legierungen sowie <strong>de</strong>ren Glühparameter<br />

<strong>de</strong>n optimalen Glühzyklus. Die<br />

vorausberechneten Temperatur- und<br />

Zeitwerte wer<strong>de</strong>n laufend mit <strong>de</strong>n gemessenen<br />

Werten kontrolliert und bei<br />

Bedarf angepasst. Dies garantiert optimale<br />

metallurgische Eigenschaften<br />

und eine Reduktion <strong>de</strong>r Durchlauf-<br />

und somit <strong>de</strong>r Produktionszeit.<br />

Autor<br />

PROFHAL ALUMINIUM PROFIL<br />

BEARBEITUNG GMBH<br />

Ein Unternehmen <strong>de</strong>r<br />

HAARMANN-GRUPPE<br />

Dettenheimer Straße 30<br />

91781 Weißenburg<br />

Tel. 0 91 41/8 55 65-0<br />

www.profhal.<strong>de</strong><br />

Dipl.-Ing. Bernhard Rieth ist Marketingspezialist<br />

und freier Fachjournalist.<br />

Als Inhaber <strong>de</strong>r Marketing Xpertise Rieth<br />

in Meerbusch berät er Ausrüstungspartner<br />

<strong>de</strong>r NE-Metall-Halbzeugindustrie in Marketingfragen.<br />

69<br />

www.haarmann-gruppe.<strong>de</strong>


MARKETS AND TECHNOLOGY<br />

Stoßofenanlage bei Yantai Nanshan <strong>Alu</strong>minium in China<br />

Pusher-type furnace unit at Yantai Nanshan <strong>Alu</strong>minium, China<br />

The plate thicknesses range from 11<br />

to 150 mm in a furnace with a hot zone<br />

31.5 m in length, or 6 to 200 mm in<br />

one with a hot zone 36 m long, respectively.<br />

Plants in western Europe<br />

too have opted for roller hearth furnaces<br />

by Ebner. Amag rolling GmbH<br />

in Austria is getting another unit for<br />

plate thicknesses of 15 to 100 mm in<br />

a furnace hot zone 9.9 m long, with the<br />

possibility of extending the unit by an<br />

additional zone. For Aleris in Duffel,<br />

Belgium, a unit for plate thicknesses<br />

of 3 to 150 mm in a furnace hot zone<br />

19.8 m long has begun operating. The<br />

result in all these cases has been the<br />

best possible flatness, surfaces free<br />

from damage, and perfect metallurgical<br />

structures in the tempered plates.<br />

Precisely in the field of aluminium<br />

plate heat treatment and thanks<br />

to the research facilities in its own<br />

major laboratory, Ebner has been<br />

able to make important contributions<br />

towards product and production improvement.<br />

Thanks to the innovative<br />

activities of its R & D <strong>de</strong>partment and<br />

in close collaboration with customers,<br />

completely new concepts have been<br />

<strong>de</strong>veloped which are tailor-ma<strong>de</strong> for<br />

the most mo<strong>de</strong>rn quality and performance<br />

<strong>de</strong>mands ma<strong>de</strong> by high-tech<br />

manufacturers and their products.<br />

In this connection Ebner has announced<br />

the first <strong>de</strong>livery of a roller<br />

hearth furnace unit, not as previously<br />

usual for the heat treatment of aluminium<br />

plates, but instead for that of aluminium<br />

alloy sections. The plant, <strong>de</strong>stined<br />

for Aleris in Duffel, is <strong>de</strong>signed<br />

for the heat treatment of complex ex-<br />

tru<strong>de</strong>d sections<br />

with maximum<br />

overall dimensions<br />

of 250 x<br />

560 mm and<br />

a length of 13<br />

m, all over the<br />

cross-section<br />

without any<br />

distortion or<br />

warping. These<br />

are inten<strong>de</strong>d for<br />

use in automotive<br />

and aircraft<br />

engineering.<br />

The furnace is<br />

a real innovation,<br />

for whose<br />

realisation the Ebner laboratory collaborated<br />

closely with the customer<br />

by providing its far-reaching possibilities.<br />

The previous, vertical furnace<br />

structure with all its limitations<br />

is in this case replaced by a horizontal<br />

unit.<br />

Chamber furnaces with a<br />

computed mo<strong>de</strong>l for<br />

optimal annealing cycles<br />

In this product line too Ebner has<br />

sought to serve the market niche of<br />

technologically sophisticated applications,<br />

for which the aviation standards<br />

are applied to an ever-increasing<br />

extent. These also inclu<strong>de</strong> the<br />

chamber furnaces supplied to Aleris<br />

Koblenz for annealing and ageing<br />

plates for the aircraft industry. In relation<br />

to the temperature uniformity<br />

<strong>de</strong>man<strong>de</strong>d, it should be stressed that<br />

the unit recently <strong>de</strong>livered for future<br />

plate lengths of 34 m and a maximum<br />

charge of 150 tonnes achieves results<br />

far below the tolerances <strong>de</strong>man<strong>de</strong>d<br />

for aviation until now.<br />

The database compiled by Ebner<br />

over the years on temperature variations<br />

in the various aluminium alloys,<br />

which are the fruit of numerous test<br />

series, are the basis for achieving a<br />

peak position in the <strong>de</strong>velopment of<br />

computed mo<strong>de</strong>ls. When transferred<br />

to the production units these ensure<br />

very reliable control of the temperature<br />

management throughout the heat<br />

treatment process. In this connection<br />

it is worth mentioning Ebner’s use<br />

of the computed mo<strong>de</strong>l ‘BOS’ (Batch<br />

Furnace Optimisation System) <strong>de</strong>veloped<br />

by the company itself for<br />

single-coil furnaces, which was for<br />

the first time used also for a multicoil<br />

chamber furnace. The computer<br />

mo<strong>de</strong>l <strong>de</strong>termines the optimum annealing<br />

cycle for the coil dimensions<br />

and alloy concerned, and the annealing<br />

parameters required. The pre-calculated<br />

temperature and time values<br />

are continuously checked against the<br />

measured values and adaptations are<br />

ma<strong>de</strong> as necessary. This ensures optimum<br />

metallurgical properties and<br />

speeds up the throughput and hence<br />

the production time.<br />

Author<br />

Ebner Industrieofenbau – facts & figures<br />

Dipl.-Ing. Bernhard Rieth is a marketing<br />

<strong>special</strong>ist and freelance technical journalist.<br />

As proprietor of Marketing Xpertise<br />

Rieth in Meerbusch he advises equipment<br />

partners of the NF-metal semis industry on<br />

marketing-related issues.<br />

Founding year 1948<br />

Main product lines Bell annealing furnaces, strip annealing furnaces,<br />

pusher-type furnaces, floater-type furnaces,<br />

roller hearth furnaces, chamber furnaces<br />

Total turnover 150 million euros<br />

Manufacturing locations<br />

Linz, Austria<br />

Wadsworth, Ohio/USA<br />

Taicang, P.R. China<br />

Employment<br />

750<br />

60<br />

120<br />

Additional service stations Japan, Taiwan<br />

Industries served<br />

Steel<br />

<strong>Alu</strong>minium<br />

Copper & Cu-alloys<br />

Turnover in percent<br />

70%<br />

25%<br />

5%<br />

Annual R & D expenditure At present: 5 to 6 percent of turnover<br />

In future: 8 percent of turnover<br />

70 ALUMINIUM · 1-2/2008


Peter H. Ebner: “The <strong>de</strong>cisive factor<br />

for our success is the high<br />

quality standards we insist upon”<br />

Robert Ebner: “In the coming<br />

years we intend to increase<br />

our research and <strong>de</strong>velopment<br />

expenditure to eight percent of<br />

turnover”<br />

“We <strong>de</strong>ci<strong>de</strong> the<br />

competition in<br />

terms of quality”<br />

Interview with Peter H. Ebner and<br />

Robert Ebner, CEO of Ebner<br />

Industrieofenbau GmbH<br />

ALUMINIUM: Mr. Ebner, for products<br />

such as Hicon / H 2 bell annealing furnaces<br />

your company has <strong>de</strong>veloped to<br />

become the undisputed world market<br />

lea<strong>de</strong>r, and for other furnace types<br />

you are one of the top suppliers. To<br />

what do you attribute your outstanding<br />

position among international furnace<br />

manufacturers?<br />

Peter Ebner: The <strong>de</strong>cisive factor for<br />

our success is the high quality standards<br />

we insist upon, and from which<br />

we will not <strong>de</strong>viate at any price. Even<br />

if we occasionally miss the mark and<br />

do not get a chance. Ebner’s focus is<br />

ALUMINIUM · 1-2/2008<br />

the customer and his <strong>special</strong> technical<br />

requirements. Our aim is to offer him<br />

the technically optimum solution for<br />

his needs.<br />

ALUMINIUM: With no thought of<br />

price in this?<br />

P. Ebner: We are aware that our prices<br />

are at or near the top of the range. We<br />

cannot and do not wish to win or<strong>de</strong>rs<br />

by aggressive price competition.<br />

Rather, we look to establish a fair partnership<br />

with our customers, to whom<br />

we offer tailor-ma<strong>de</strong> plant solutions<br />

which work absolutely reliably for a<br />

long time. That cannot be done for<br />

bargain prices. When one looks not<br />

just purely at the purchase price of a<br />

unit but also at its long-term economy,<br />

we have no reason to fear competition<br />

from elsewhere.<br />

ALUMINIUM: Let us focus on the<br />

economic aspect. What are your main<br />

thoughts about that where a furnace<br />

is concerned?<br />

Robert Ebner: An essential criterion<br />

which is becoming continually more<br />

important is the energy-efficiency of<br />

our furnaces. I refer here to our Hicon<br />

technology, with which we equip all<br />

our furnaces. For example, at present<br />

we are building two pusher-type furnaces<br />

for our long-term customer<br />

Alcoa in the USA – in fact, the largest<br />

of their kind built anywhere in<br />

the world. Thanks to the substantially<br />

more efficient use of energy that is<br />

possible today compared with existing<br />

box furnaces, and also to their low<br />

maintenance needs, the customer’s<br />

pay-back time on the investment will<br />

amount to only a few years.<br />

ALUMINIUM: How much importance<br />

do you attach to the international<br />

orientation of your company with<br />

its facilities in Austria, the USA and<br />

China?<br />

P. Ebner: Ebner was foun<strong>de</strong>d in Linz<br />

sixty years ago by my father. That is<br />

still the headquarters and technical<br />

centre for our company’s know-how.<br />

Our American plant in Wadsworth,<br />

Ohio, was established in 1987. Our<br />

aim was to gain a foothold in the dollar<br />

area. From Wadsworth we serve<br />

the North American market and the<br />

regions that operate with US dollars.<br />

For Ebner, business in America grew<br />

rapidly until 1999. In the USA we<br />

sometimes even achieved a turnover<br />

MARKETS AND TECHNOLOGY<br />

fraction of almost fifty percent of all<br />

our business.<br />

ALUMINIUM: How is that plant justified<br />

today in view of the investment<br />

slump of the steel and NF industries<br />

there, which has lasted for some<br />

years?<br />

P. Ebner: Even through hard times<br />

I have continued believing in our<br />

commitment in America. Without a<br />

presence in the dollar area the region<br />

cannot be served, as is shown all too<br />

clearly now by the present weakness<br />

of the dollar.<br />

ALUMINIUM: So will you continue<br />

operating in America?<br />

R. Ebner: Of course. In the USA there<br />

are many furnaces which have been<br />

operating since the late forties or early<br />

fifties and which, in view of the high<br />

cost of energy, must now be replaced<br />

by mo<strong>de</strong>rn, energy-saving units.<br />

ALUMINIUM: Let us now look at the<br />

most dynamic economic area of all:<br />

how do you assess <strong>de</strong>velopment in<br />

Asia?<br />

P. Ebner: Our Asian business has been<br />

growing bit by bit for many years, and<br />

we have approached that market in<br />

small, well-prepared steps. After initially<br />

gaining a presence with servicing<br />

stations in Japan and Taiwan, it<br />

became increasingly clear as the years<br />

passed that we nee<strong>de</strong>d a production<br />

base of our own in Asia.<br />

R. Ebner: To begin with, we looked for<br />

suitable locations in South Korea. It is<br />

true that Korea would have had the<br />

necessary infrastructure, but it was<br />

very expensive. Thailand would have<br />

been suitable in terms of living conditions<br />

for our Austrian employees,<br />

but there the environment was not<br />

right. At the end of the day we opted<br />

for China. We had many preliminary<br />

talks to clarify location-related questions<br />

such as: what are the stumbling<br />

blocks, where is there an appropriate<br />

industrial estate, etc. Finally, in 2002<br />

we <strong>de</strong>ci<strong>de</strong>d to build a plant of our own<br />

in Taicang, near Shanghai, where we<br />

recently completed the fourth expansion<br />

stage.<br />

ALUMINIUM: How free were you in<br />

your <strong>de</strong>cision-making?<br />

P. Ebner: What we built up in Taicang<br />

was created without any restrictions<br />

on the part of Chinese authorities.<br />

In any case it is not a joint �<br />

71


MARKETS AND TECHNOLOGY<br />

venture, but a company wholly owned<br />

by Ebner. I would not have gone to<br />

China if it had been necessary to set<br />

up a joint venture there with a Chinese<br />

partner.<br />

ALUMINIUM: What experiences can<br />

you pass on to others who are faced<br />

with similar <strong>de</strong>cisions?<br />

P. Ebner: Our USA project taught<br />

us that we could not rely purely on<br />

American staff, but that at least for<br />

some years we had to send across<br />

highly qualified technical personnel<br />

from Linz. Precisely for a company<br />

such as Ebner which sets great store<br />

by quality, that is unavoidable. The<br />

commitment of technicians from Linz<br />

on the basis of three- to five-year contracts<br />

was <strong>de</strong>cisive in ensuring that<br />

both qualitatively<br />

and in terms of<br />

production figures,<br />

the plant attained<br />

satisfactory levels<br />

within two years.<br />

R. Ebner: The learning<br />

curve we travelled<br />

in the USA in<br />

our first years there,<br />

we could then avoid<br />

in China. From<br />

the beginning, the<br />

new production<br />

management and<br />

quality monitoring<br />

were in the hands<br />

of senior staff from<br />

our parent plant in<br />

Austria. Of course, that is not to belittle<br />

the importance of our Chinese<br />

employees, who have to <strong>de</strong>al with<br />

‘China-internal’ issues.<br />

ALUMINIUM: It must surely have<br />

been an enormous challenge for a<br />

medium-sized company to do without<br />

some of its <strong>special</strong>ists at the parent<br />

plant.<br />

P. Ebner: Quite right, but there was<br />

no other way to guarantee our high<br />

quality standards – which for us, is<br />

indispensable.<br />

ALUMINIUM: Do you perceive signs<br />

that India’s steel and NF-metal industries<br />

will soon be following in China’s<br />

footsteps and so catching up?<br />

R. Ebner: In our estimation China has<br />

moved far ahead of India in terms of<br />

infrastructure and the quality of life of<br />

personnel in recent years. It is true that<br />

India has the major advantage of using<br />

the English language, but the progress<br />

of its infrastructure is slow. Nevertheless,<br />

India is a very important growth<br />

market with a steadily expanding<br />

middle class, with many ‘consumers’,<br />

who stimulate the economy. India is<br />

becoming continually more important<br />

for us Europeans, but its <strong>de</strong>velopment<br />

will not be as rapid as in China.<br />

P. Ebner: To return to our plant in China:<br />

we are naturally very interested<br />

in exporting from Taicang to the surrounding<br />

Asian countries, including<br />

India for at least the past year, where<br />

we are at present carrying out some<br />

major assembly projects. We provi<strong>de</strong><br />

the less expensive parts of furnaces<br />

Ebner laboratory at Leonding<br />

from Taicang – at prices that are very<br />

acceptable in India.<br />

ALUMINIUM: That raises the question:<br />

what do you now still produce<br />

in Linz?<br />

P. Ebner: Here in Linz we make all<br />

the components that are quality-critical<br />

for our business and which, if they<br />

were to be copied, would threaten the<br />

future of our company. Thus, so long<br />

as there is still no effective copyright<br />

or patent law in China, we will supply<br />

such know-how-rich components<br />

from Linz.<br />

ALUMINIUM: So how do you divi<strong>de</strong><br />

the production between your three<br />

plants?<br />

R. Ebner: We have analysed our various<br />

furnace types and split them into<br />

A-, B- and C-components. A-compo-<br />

nents are ma<strong>de</strong> only in Austria or the<br />

USA, B-components at all three locations,<br />

while because of labour costs<br />

it makes sense to produce C-components<br />

only in China.<br />

In the 1990s we resisted pressure<br />

from several customers who wanted<br />

us to produce key-components of our<br />

units – for example the bases of our<br />

bell annealing furnaces – in China as<br />

well. We strictly refused to do that,<br />

even at the risk of no longer receiving<br />

any or<strong>de</strong>rs. This led to four or five relatively<br />

slack years when we got fewer<br />

or<strong>de</strong>rs for bell annealing furnaces, until<br />

finally things changed again. Today,<br />

it is more of a selling-point for our furnaces<br />

that the core of our units come<br />

from Linz or the USA.<br />

ALUMINIUM:<br />

What other functions<br />

have you concentrated<br />

in Linz?<br />

R. Ebner: Our company<br />

philosophy<br />

is to do all the research<br />

in our laboratory<br />

in Austria,<br />

because the experience<br />

from all<br />

our plants comes<br />

together here and<br />

we do not want to<br />

operate a two-track<br />

system. Whether in<br />

good years or bad,<br />

we invest five to six<br />

percent of turnover<br />

in research and <strong>de</strong>velopment. That<br />

is already a high proportion and in<br />

the coming years we even intend to<br />

increase it to eight percent. We are<br />

convinced that to secure the future of<br />

our company this is vitally important.<br />

Among other things we want to enlarge<br />

our laboratory.<br />

ALUMINIUM: What are the laboratory’s<br />

main tasks?<br />

P. Ebner: Consi<strong>de</strong>r for example the<br />

support of sales: quite often a customer<br />

comes to us because he cannot<br />

achieve the necessary product quality<br />

with his existing equipment. Nobody<br />

who comes to Ebner has to base<br />

his purchasing <strong>de</strong>cisions on written<br />

guarantee values alone. Instead, we<br />

can <strong>de</strong>monstrate the quality guarantee<br />

we give using our own equipment.<br />

72 ALUMINIUM · 1-2/2008


For this, as a rule we work with test<br />

equipment on a one-to-ten scale and<br />

occasionally, for certain problems,<br />

with full-size units – for example the<br />

annealing of coil batches. We fit these<br />

with thermocouples all over, anneal<br />

and heat treat them in the presence of<br />

the customer, and he can then inspect<br />

the analyses himself or send them on<br />

to his own buyer.<br />

It is important that in our research<br />

we tend to and optimise the dovetailing<br />

and interplay of all the individual<br />

plant components. For example, we<br />

have long been <strong>de</strong>veloping our own<br />

burner technology because we do not<br />

want to rely on others for important<br />

plant components.<br />

ALUMINIUM: Has the <strong>de</strong>velopment<br />

potential for furnaces not now been<br />

largely exhausted?<br />

R. Ebner: I do not believe so. As an<br />

ALUMINIUM · 1-2/2008<br />

example: in the case of bell annealing<br />

furnaces for steel coils, which with<br />

their hydrogen technology and high<br />

convection we have been selling very<br />

successfully for some thirty years, we<br />

have meanwhile arrived at the sixth<br />

generation. In this, we have boosted<br />

furnace performance by forty to fifty<br />

percent, whereas the price has moved<br />

downwards. Such <strong>de</strong>velopment can<br />

only be achieved with a laboratory of<br />

one’s own.<br />

P. Ebner: Another thing that must not<br />

be un<strong>de</strong>restimated: to help us remain<br />

an attractive employer the laboratory<br />

is a very important factor. That<br />

is where the technical staff can try<br />

out their own i<strong>de</strong>as, and this has so<br />

often been to our benefit, while in the<br />

meantime we have formed an international<br />

thirty-man team.<br />

ALUMINIUM: So the laboratory plays<br />

Siemens liefert Fertigstraße für<br />

<strong>Alu</strong>minium-Warmwalzwerk nach China<br />

Siemens Metals Technologies hat von<br />

<strong>de</strong>r Chinalco <strong>Alu</strong>minium <strong>de</strong>n Auftrag<br />

über die mechanische und elektrische<br />

Ausrüstung einer neuen Fertigstraße<br />

mit Zwillingshaspel erhalten. Das<br />

Warmwalzwerk wird bei <strong>de</strong>r Chinalco<br />

Ruimin in Mawei/Fuzhou, Provinz<br />

Fukien, errichtet. Das Auftragsvolumen<br />

beträgt rund 20 Mio. Euro. Das<br />

erste <strong>Alu</strong>miniumband soll im September<br />

2009 gewalzt wer<strong>de</strong>n. Die<br />

Fertigstraße ist Teil eines geplanten<br />

neuen Warmwalzwerkes, das im Zuge<br />

eines großangelegten Ausbauprojekts<br />

von Chinalco Ruimin in <strong>de</strong>n nächsten<br />

Jahren errichtet wer<strong>de</strong>n soll. Das<br />

Vorgerüst und <strong>de</strong>r vertikale Staucher<br />

wer<strong>de</strong>n von einem lokalen Lieferanten<br />

mit technischer Unterstützung<br />

von Siemens beigestellt.<br />

Die zu liefern<strong>de</strong> Fertigstraße umfasst<br />

ein Quarto-Gerüst mit automatischer<br />

hydraulischer Walzspaltregelung<br />

sowie positiver und negativer<br />

Arbeitswalzenbiegung. Das Warmwalzwerk<br />

wird über eine Kapazität<br />

von 270.000 Jahrestonnen verfügen<br />

und ist für Bän<strong>de</strong>r mit Breiten<br />

MARKETS AND TECHNOLOGY<br />

a major part among the factors that<br />

contribute to your success …<br />

P. Ebner: … as also does the low<br />

fluctuation level of our employment<br />

structure. We have people who already<br />

represent the third generation<br />

that has worked for Ebner. They often<br />

come to us as apprentices and stay on<br />

at Ebner all their working life. Every<br />

year we train twenty apprentices, and<br />

we have also adopted in America the<br />

same apprentice training as in Linz.<br />

We also offer our most able employees<br />

the chance to attend engineering<br />

college in the evenings and become<br />

more highly trained. We then place<br />

such employees in the laboratory, the<br />

<strong>de</strong>sign and construction <strong>de</strong>partments,<br />

or in sales.<br />

ALUMINIUM: Mr. Peter and Mr. Robert<br />

Ebner, many thanks for this discussion.<br />

Siemens supplies new<br />

aluminum hot finishing mill to China<br />

Siemens Metals Technologies has<br />

received an or<strong>de</strong>r from Chinalco<br />

<strong>Alu</strong>minium Co., Ltd, to supply the<br />

mechanical and electrical equipment<br />

for a new hot aluminium twin coiling<br />

finishing mill. The plant will be built<br />

at Chinalco Ruimin at Mawei/Fuzhou<br />

in Fujian province. The or<strong>de</strong>r volume<br />

is around 20 million euros; production<br />

of the first coil is scheduled for<br />

September 2009. This mill will form<br />

a key part of a proposed new aluminium<br />

1+1 hot line, which is the key<br />

process component of a major plant<br />

expansion planned by Ruimin. The<br />

roughing stand and the vertical edger<br />

will be built by a local supplier with<br />

technical support by Siemens.<br />

The finishing mill will comprise a<br />

4-high stand equipped with hydraulic<br />

automatic gauge control and positive<br />

and negative bending. The mill itself<br />

will be <strong>de</strong>signed to roll a wi<strong>de</strong> range<br />

of products and alloys, and will be capable<br />

of rolling over 270,000 tonnes<br />

per year at widths in excess of 2.2<br />

metres. In addition to the mechanical<br />

equipment, Siemens is also supplying<br />

the entire automation system and the<br />

drive systems as well as the process<br />

automation system for the complete<br />

hot line. All the components and systems<br />

used are part of ‘Siroll <strong>Alu</strong>’, the<br />

integrated solution for aluminium hot<br />

mills.<br />

UK facilities become Competence<br />

Centre for plate rolling mills and<br />

aluminium plants<br />

Siemens Metals Technologies has<br />

combined its two UK locations in<br />

Sheffield and Christchurch into the<br />

<strong>special</strong> subdivision ‘Plate & <strong>Alu</strong>minium<br />

Rolling’, which will be responsible<br />

for the worldwi<strong>de</strong> business<br />

� �<br />

73


MARKT UND TECHNIK<br />

von mehr als 2,2 Meter ausgelegt.<br />

Neben <strong>de</strong>r mechanischen Ausrüstung<br />

liefert Siemens das komplette Automatisierungssystem<br />

und die Antriebstechnik,<br />

außer<strong>de</strong>m die Prozessautomatisierung<br />

für das gesamte Warmwalzwerk.<br />

Alle eingesetzten Systeme<br />

und Komponenten sind Bestandteil<br />

von „Siroll <strong>Alu</strong>“, <strong>de</strong>r integrierten Lösungsplattform<br />

vom Siemens für <strong>Alu</strong>minium-Warmwalzwerke.<br />

Britischer Standort wird Kompetenzcenter<br />

für Grobblech-Walzstraßen<br />

und <strong>Alu</strong>miniumanlagen<br />

Siemens Metals Technologies hat<br />

seine bei<strong>de</strong>n britischen Standorte<br />

Sheffield und Christchurch zu <strong>de</strong>m<br />

Geschäftszweig „Plate and <strong>Alu</strong>minium<br />

Rolling” zusammengefasst, in<br />

<strong>de</strong>m künftig das weltweite Geschäft<br />

mit Grobblech- und <strong>Alu</strong>miniumwalzstraßen<br />

betrieben wird. Der steigen<strong>de</strong><br />

Bedarf an Grobblechen beflügele auch<br />

das Anlagengeschäft mit Walzstraßen,<br />

sagte Hans-Werner Linne, Leiter <strong>de</strong>s with plate and aluminium rolling<br />

neuen Geschäftszweiges.<br />

mills. The growing <strong>de</strong>mand for heavy<br />

Während vor allem in China, Indien plate was also boosting project busi-<br />

und Russland <strong>de</strong>r Neubau von Anlaness with rolling mills, Hans-Werner<br />

gen geplant wird, liegt <strong>de</strong>r Schwer- Linne, head of the new subdivision,<br />

punkt in Europa und Nordamerika said.<br />

auf <strong>de</strong>r Mo<strong>de</strong>rnisierung, um durch There are plans to construct new<br />

die Leistungssteigerung bestehen<strong>de</strong>r plants, e<strong>special</strong>ly in China, India and<br />

Anlagen die wachsen<strong>de</strong> Nachfrage zu Russia, whereas, in Europe and North<br />

befriedigen. Dies lässt sich jedoch nur America, the focus is on mo<strong>de</strong>rnisa-<br />

mit <strong>de</strong>m Ausbau <strong>de</strong>s Serviceangebots tion. Here, improving the perform-<br />

erreichen. Um das Angebot zu erweiance of existing plants is supposed<br />

tern, wur<strong>de</strong> daher die Plate Mill Con- to satisfy rising <strong>de</strong>mand. This will<br />

sulting Group in Sheffield gegrün<strong>de</strong>t. involve expansion in the scope of<br />

Im Mo<strong>de</strong>rnisierungsgeschäft ver- maintenance solutions on offer as<br />

fügt <strong>de</strong>r neue Geschäftszweig Siemens well as a wi<strong>de</strong>r range of services for<br />

zufolge weltweit über einen Marktan- plant mo<strong>de</strong>rnisation. To this end, a<br />

teil von 48 Prozent bei <strong>Alu</strong>minium- Plate Mill Consulting Group was set<br />

anlagen. Schon heute, in einer Zeit up in Sheffield.<br />

boomen<strong>de</strong>r Neuanlagen-Projekte, According to Siemens the new busi-<br />

will sich Siemens mit dieser Strategie ness unit has global shares of 48% in<br />

auf neue Marktgegebenheiten künf- mo<strong>de</strong>rnising of aluminium mills. The<br />

tiger Jahre vorbereiten. „Mittelfristig task of the company is to take action in<br />

erwarten wir einen starken Anstieg a time of booming ‘greenfield’ projects<br />

<strong>de</strong>s Mo<strong>de</strong>rnisierungsgeschäftes”, so in or<strong>de</strong>r to a<strong>de</strong>quately prepare for the<br />

Linne.<br />

� market in the future.<br />

�<br />

<strong>Alu</strong>minium for building and construction in China<br />

Shi Lili, Beijing<br />

Chinas’s aluminium extrusion industry<br />

for building and construction<br />

took its first steps in 1980.<br />

In the 1990s China’s aluminium<br />

industry for building and construction<br />

moved into a new era<br />

featured by quality, variety, profits<br />

and product structure. Today China’s<br />

construction industry is the<br />

driving force of the growing <strong>de</strong>mand<br />

for aluminium products. In<br />

the long run aluminium products<br />

for construction will maintain the<br />

leading position in the aluminium<br />

extrusion industry.<br />

Brief history and status quo<br />

Although China had its own complete<br />

aluminium products extrusion line as<br />

early as 1956 when Northeast Light<br />

Alloys Company was set up, and also<br />

brought over eight hydraulic machines<br />

from Japan UBE Machinery<br />

in 1971, these units were all <strong>de</strong>voted<br />

to aluminium products for industrial<br />

use. China’s aluminium extrusion<br />

industry for building and construction<br />

took its first steps in March 1980<br />

when Guangzhou Dongjiao Yuncun<br />

<strong>Alu</strong>minium 6 th Plant was put into production.<br />

This was a joint venture be-<br />

tween Guangzhou 2 nd Light Industry<br />

<strong>Alu</strong>minium Products Company and<br />

China <strong>Alu</strong>minium Corporation, Hong<br />

Kong. Except for a melting furnace<br />

and the anodic oxidation treatment<br />

line, all other technologies <strong>de</strong>pen<strong>de</strong>d<br />

on Hong Kong and Taiwan. Also in<br />

74 ALUMINIUM · 1-2/2008<br />

All sources: Beijing Antaike


the same year, Liaoning Yingkou <strong>Alu</strong>minium<br />

Products Plant and Tianjin<br />

<strong>Alu</strong>minium Alloy Plant introduced<br />

16.3 MN hydraulic machines from Japan<br />

UBE Machinery. This means that<br />

China’s aluminium production for<br />

building and construction started in<br />

both Northern and Southern regions<br />

almost at the same time. In the middle<br />

of the 1980s China was un<strong>de</strong>rgoing<br />

its first boom of the aluminium<br />

extrusion industry. By 1986 China<br />

had 175 aluminium extrusion plants<br />

with 380 kt/a of production capacity<br />

and 400 extrusion machines. However,<br />

a cold snap followed since the<br />

country adopted policies to restrict<br />

aluminium products and application<br />

in building and construction<br />

that year and aluminium production<br />

accordingly dropped substantially.<br />

Yet another surge of aluminium<br />

products in China began from 1991<br />

to 1998 with <strong>de</strong>eper and more wi<strong>de</strong>spread<br />

influence than that of the mid<br />

1980s. All provinces except for Tibet<br />

had their own extrusion plants, including<br />

five in Hainan Province in<br />

the far south of China. There were<br />

1,142 plants in total with 4,000 extrusion<br />

machines and a total production<br />

capacity of 4,300 kt/a of at that time.<br />

Since then, China’s aluminium industry<br />

for building and construction has<br />

mo<strong>de</strong>rated the pursuit of quantity<br />

and moved into a new era featured<br />

by quality, variety, profits and product<br />

structure.<br />

After years of booming <strong>de</strong>velopment<br />

since 1999, the number of extrusion<br />

plants dropped below 600 and<br />

all five of the plants in Hainan were<br />

shut down, mainly because of increasingly<br />

intense competition among the<br />

market participants and aggravating<br />

market conditions. After 2000, China<br />

began to shift its strategy and put<br />

more effort into the ad<strong>de</strong>d value of<br />

aluminium products. Thus, production<br />

capacity increased at a lower rate<br />

of approximately 10 percent annually.<br />

By the end of 2005 the number of aluminium<br />

extrusion plants had fallen to<br />

650, with approximately 5,100 kt/a of<br />

production capacity and 3,000 extrusion<br />

machines, and China held first<br />

place in terms of number of companies,<br />

production capacity and total<br />

production.<br />

ALUMINIUM · 1-2/2008<br />

After years of adjustment of the<br />

product structure by the market, the<br />

number of extrusion plants has been<br />

on the <strong>de</strong>crease in recent years, yet<br />

total exports have gone up. In 2006<br />

alone total exports amounted to 68 kt<br />

or 45 percent of total world exports,<br />

making China the major aluminium<br />

production base in the world.<br />

By the end of 2006 China’s aluminium<br />

extrusion production reached<br />

4,500 kt/a, of which 80 percent was<br />

for building and construction. Advanced<br />

technologies and machines<br />

contributed a lot to this speedy <strong>de</strong>velopment.<br />

At present, many Chinese<br />

extrusion companies have invested in<br />

foreign equipment and technologies<br />

which helped Chinese enterprises,<br />

both state owned and private, to make<br />

fast progress. This also brought huge<br />

business opportunities for foreign<br />

machine manufacturers. According to<br />

statistics, so far China has introduced<br />

1,026 extrusion machines from other<br />

countries or regions, mainly from<br />

Taiwan and Japan since 1980, and<br />

this accounts for about 70 percent<br />

of the total. Out of this number, 446<br />

machines were for surface treatment,<br />

MARKETS AND TECHNOLOGY<br />

379 for coloured anodising, 86 for<br />

static spraying, 22 for fluorine carbon<br />

spraying, 91 for electrophoretic painting<br />

and 31 for wood treatment lines.<br />

Besi<strong>de</strong>s these, China also paid attention<br />

to the self innovation and its first<br />

7,500 t short-stroke extrusion machine<br />

was put into use in 2006. In the<br />

same year, China also ma<strong>de</strong> its first<br />

1,000 t reverse extrusion machine. Up<br />

to the present China owns 20 big extrusion<br />

machines of 5,000 to 12,500 t,<br />

including those already in use, being<br />

installed, or on or<strong>de</strong>r.<br />

The attractiveness of the Chinese<br />

market has also brought numerous<br />

suppliers of auxiliary equipment and<br />

materials into the country. E<strong>special</strong>ly<br />

with more recognition of Chinese aluminium<br />

products on the international<br />

market and wi<strong>de</strong>r applications, most<br />

market participants, both at home<br />

and abroad, approach China’s market<br />

with confi<strong>de</strong>nce.<br />

Present market situation<br />

China’s construction industry has<br />

been the driving force of the growing<br />

<strong>de</strong>mand for aluminium products. The<br />

75


MARKETS AND TECHNOLOGY<br />

main focus is on three aspects:<br />

• line-supporting poles and pylons,<br />

to reduce total weight<br />

• airplane runways, to increase<br />

flexibility<br />

• satisfying various <strong>de</strong>mands relating<br />

to house <strong>de</strong>coration.<br />

China’s apparent consumption of aluminium<br />

extrusion products grew by<br />

26.4 percent to 4,080 kt/a in 2006.<br />

Among this, aluminium products for<br />

building and construction account for<br />

almost 70 percent of the total. In 2006<br />

China’s production of automobiles,<br />

motorcycles, bicycles, household<br />

appliances, microelectronic<br />

computers,<br />

cell-phones, etc. increased<br />

at a headlong<br />

pace. Also since 2006,<br />

China’s civil aviation<br />

project was activated,<br />

railway transportation<br />

<strong>de</strong>veloped at a<br />

high rate and highspeed<br />

trains entered<br />

a new phase. All these<br />

sectors provi<strong>de</strong> good<br />

market prospects for<br />

extru<strong>de</strong>d aluminium<br />

products.<br />

Yet China’s use of aluminium for<br />

building and construction will continue<br />

to maintain the leading position,<br />

owing to the strong <strong>de</strong>velopment of<br />

China’s construction industry. In 2006<br />

alone, China’s house construction<br />

acreage reached 2.1 billion square<br />

meters, an increase of 21 percent<br />

compared with 2005.<br />

Construction acreage is the pioneer<br />

in<strong>de</strong>x for future aluminium production<br />

for building. On average, the<br />

house completion acreage has been<br />

growing at 4 percent each year from<br />

1995 to 2006. Between 2007 and 2010<br />

China’s real estate investment will<br />

grow at an average annual rate of over<br />

15 percent and the house completion<br />

acreage will increase by over 10 percent<br />

each year. Accordingly, <strong>de</strong>mand<br />

for aluminium products by China’s<br />

construction industry will increase by<br />

a constant 12 percent, corresponding<br />

to an additional <strong>de</strong>mand for aluminium<br />

of 500 kt/a per year.<br />

Statistics show that over 50 percent<br />

of China’s new houses are ma<strong>de</strong><br />

with aluminium door and window<br />

frames. One-third of every 10 million<br />

square meters of completed construction<br />

acreage each year involves<br />

aluminium products and each square<br />

meter consumes 15 kg of aluminium.<br />

Besi<strong>de</strong>s, pipelines, handrails, lad<strong>de</strong>rs,<br />

<strong>de</strong>coration parts, etc. also involve<br />

large quantities of aluminium products.<br />

In the long term, with China’s urbanization<br />

and industrialization in the<br />

years to come, China’s alumina consumption<br />

will continue to increase. It<br />

is forecast that aluminium products<br />

for building and construction will<br />

grow by eight to 15 percent, to 2,430<br />

kt/a, 2,720 kt/a and 2, 940 kt/a in<br />

2005, 2006 and 2007 respectively.<br />

Although aluminium extrusion is<br />

generally regar<strong>de</strong>d as an energy-intensive<br />

industry, the construction acreage<br />

increases by two billion square meters<br />

each year in China. On the basis that<br />

aluminium products for doors, windows<br />

and walls account for 30 percent<br />

of total construction materials,<br />

the prospects for aluminium for construction<br />

and building are quite promising<br />

in the future, granted the annual<br />

increase of about 25 to 30 percent in<br />

real estate investment. It is expected<br />

that with the coming Beijing Olympic<br />

Games in 2008 and the Shanghai<br />

World Expo in 2010, China’s <strong>de</strong>mand<br />

for aluminium construction products<br />

will stay above 3,200 kt/a until 2010.<br />

As for China’s <strong>de</strong>mand for aluminium<br />

consi<strong>de</strong>red sector by sector, the<br />

main products are generally aluminium<br />

sections, plates and foils, casting,<br />

wires, bars and poles. Consi<strong>de</strong>ring the<br />

example year of 2005, China’s total<br />

consumption of aluminium products<br />

in the construction sector was 2,680<br />

kt, of which 77 percent is for aluminium<br />

profiles.<br />

Future prospects<br />

China, as a large aluminium producer<br />

and consumer at present and in the<br />

future, has its own undisputed advantages<br />

in terms of market consumption<br />

and low production cost. Accordingly,<br />

some international aluminium companies<br />

have already or are planning<br />

to set up production bases in China.<br />

It is expected that the production capacity<br />

and total production of China’s<br />

aluminium extru<strong>de</strong>d<br />

products will grow by<br />

5.8 percent and 7.5<br />

percent respectively<br />

on average from 2007<br />

to 2010, and will reach<br />

6,890 kt/a and 5,520<br />

kt/a by 2010.<br />

It is predicted that<br />

China’s apparent aluminium<br />

consumption<br />

for building and construction<br />

will reach<br />

over 3,000 kt by 2010<br />

and will account for<br />

over 60 percent of total aluminium<br />

extrusion consumption. This percentage<br />

may be a little lower due to<br />

rising aluminium consumption for<br />

industrial use.<br />

Until now, the production and<br />

number of companies for aluminium<br />

products used in construction still<br />

maintains the dominant position in<br />

the overall aluminium extrusion industry<br />

in China. At present, over 480<br />

enterprises hold formal legal permits<br />

to produce aluminium products for<br />

building and most of them are privately<br />

owned, e<strong>special</strong>ly in Guangdong.<br />

In the long term aluminium products<br />

for construction will still maintain<br />

the leading position in the extrusion<br />

industry.<br />

Author<br />

Shi Lili works as a freelance journalist for<br />

foreign media and is a consultant for foreign<br />

companies interested in Beijing, P.R.<br />

of China. Amongst others, she has two<br />

years of working experience in the Foreign<br />

Affairs Department of China Nonferrous<br />

Metals Industry Association (CNIA).<br />

76 ALUMINIUM · 1-2/2008


The European <strong>Alu</strong>minium in Renovation<br />

Award, which ran throughout 2007, involved<br />

15 European countries, a series of national<br />

competitions and a European final rewarding<br />

the most innovative and sustainable uses<br />

of aluminium in building renovation. The<br />

winning entries illustrate that whether used<br />

to preserve a piece of national heritage or<br />

to upgra<strong>de</strong> the environmental performance<br />

of resi<strong>de</strong>ntial or utility buildings, aluminium<br />

is the most sustainable solution.<br />

The 2007 Renovation Award is an initiative<br />

of the ‘Building Group’ of the European<br />

<strong>Alu</strong>minium Association (EAA) and the <strong>Alu</strong>minium<br />

For Future Generations programme<br />

in cooperation with national aluminium<br />

associations in many European countries. An<br />

international jury judged 47 entries nomi-<br />

ALUMINIUM · 1-2/2008<br />

nated by seven national competitions. Five<br />

Awards, three Special Prizes, a Jury Prize<br />

and one Honourable Mention were given<br />

to representatives of the winning projects.<br />

Presentation of the awards and other prize<br />

winners took place during the Batimat 2007<br />

at the Expo Center Porte <strong>de</strong> Versailles in<br />

Paris. Batimat is Europe’s biggest Expo for<br />

MARKETS AND TECHNOLOGY<br />

Winners of the<br />

European <strong>Alu</strong>miniumin Renovation Award 2007<br />

Project: The restoration and recovery of the Pirelli building<br />

was conducted via a system of interventions which<br />

provi<strong>de</strong>d the <strong>de</strong>tails of the entire operational process in<br />

or<strong>de</strong>r to verify the formal, performance and technical<br />

material qualities, time and costs for execution.<br />

Before restoration there was the existing aluminium<br />

curtain wall in a stick system with a total surface of approx.<br />

10,800 sqm. The curtain wall is based on a stick<br />

system in anodised aluminium in modules 2850 mm<br />

in width and 1854 mm in height, completely glazed in<br />

opening parts measuring 1900 mm with a chamber and<br />

fixed parts measuring 950 mm. In addition, two bands of<br />

skylights, above and below, constructed in opaque panels<br />

like sandwiches formed with an exterior pane of glass and<br />

an internal sheet in galvanised steel, all linked around the<br />

perimeter by a rubber gasket and weather strip.<br />

Jury judgement: The Pirelli skyscraper is a symbol of mo<strong>de</strong>rn<br />

architecture created by the famous Gio Ponti in the<br />

fifties. The building was partly damaged by an aeroplane<br />

acci<strong>de</strong>nt. There has been a <strong>special</strong> <strong>de</strong>bate in Italy on the<br />

methodology for restoration and conservation. The Region<br />

of Lombardy <strong>de</strong>ci<strong>de</strong>d to proceed using ‘anastylosis’,<br />

a reconstruction technique based on careful study and<br />

Building and Architecture.<br />

The concept of aluminium in renovation<br />

covered not only renovation, but also<br />

restoration and re-construction provi<strong>de</strong>d the<br />

former structure of the building had been<br />

maintained such as changing the function<br />

of an existing building, e. g. turning a warehouse<br />

into apartments.<br />

The following criteria were taken into<br />

account when assessing the entries:<br />

• Significant use of <strong>Alu</strong>minium<br />

• Contemporary <strong>de</strong>sign<br />

• Life cycle thinking<br />

• Energy efficiency<br />

• Socio-economic impact<br />

• Ad<strong>de</strong>d value to the original building<br />

In the following a presentation of some of<br />

the award-winning projects.<br />

Award in the Category Historical Buildings<br />

Pirelli Building Milan, Italy<br />

Architects: Renato Sarno Group and Corvino+Multari <strong>Alu</strong>minium products: Metra<br />

mensuration using original architectural elements where<br />

possible. This building is the first example of applying<br />

this conservation technique to curtain walling.<br />

Furthermore, new performance standards ma<strong>de</strong> it<br />

necessary to test new possibilities in the use of aluminium.<br />

They succee<strong>de</strong>d in restoring the aluminium where<br />

it could be recovered (disassembly, cleaning, re-anodising<br />

and re-assembly of the elements). For parts which<br />

were <strong>de</strong>stroyed new ones had to be ma<strong>de</strong> with the same<br />

morphology. This project truly restored as much of the<br />

original material as possible as well as meeting the highest<br />

of mo<strong>de</strong>rn building standards.<br />

�<br />

<strong>Alu</strong>minium Award Winner Country Special Prize Winner Country<br />

Private Houses Maison à Fleury-les-Aubrais France Cladding & Roofing BMW-Hochhaus, München Germany<br />

Collective Housing Warehouse Nautilus, Scheveningen Netherlands Doors & Windows Borgo Wührer Village, Brescia Italy<br />

Utility Buildings Café Mayer, Vöcklabruck Austria Curtain Walls Plaza 14 Business Centre, Zaragoza Spain<br />

Public Buildings Rich Mix Bethnall Green, London UK Jury Prize San Ponziano Library, Lucca Italy<br />

Historical Buildings Pirelli Skyscraper, Milano Italy Honourable Mention Casino Kursaal Oosten<strong>de</strong> Belgium<br />

The prize winners of the European <strong>Alu</strong>minium in Renovation Award 2007<br />

Photos: EAA<br />

77


MARKETS AND TECHNOLOGY<br />

Award in the Category Public Buildings<br />

Rich Mix Bethnall Green London, England<br />

Architect: Penoyre & Prasad <strong>Alu</strong>minium products: Kalzip<br />

Project: An East End of London property that has been<br />

transformed by the use of external aluminium louvres<br />

whilst still maintaining its original faca<strong>de</strong>. Not only has<br />

the property been totally transformed but also the internal<br />

space has been given a new lease of life by controlling<br />

solar gain.<br />

Jury judgement: The minimal intervention of the existing<br />

building by the use of coloured aluminium louvres<br />

has created a completely new and mo<strong>de</strong>rn view of this<br />

complex. It is not only an architectural feature but also a<br />

way to control the solar heat. Together with the chosen<br />

colours the faca<strong>de</strong> gives a vivid and variable impression.<br />

Special Prize for Cladding and Roofing<br />

BMW Hochhaus Munich, Germany<br />

Architect: eS 21 engineering & structure <strong>Alu</strong>minium products: Otto Valenta<br />

Project: <strong>Alu</strong>minium cladding of the pre-stressed concrete<br />

king pins. One has to be able to open up any such cladding<br />

so that the pre-stressed concrete construction can<br />

be inspected in future. In addition, because there were<br />

only a few points suitable for attaching the large-format<br />

cladding components, the components had to have a low<br />

structural weight while at the same time the structure had<br />

to have a high stiffness. Because of the <strong>special</strong> geometry, it<br />

was necessary to manufacture curved aluminium ribbed<br />

shells with a bi-directional curvature. One has to imagine<br />

a 3D free-form shape such as in car body manufacturing<br />

but significantly larger. Other challenges were the erection<br />

at a height of 100 metres un<strong>de</strong>r difficult conditions,<br />

the high <strong>de</strong>gree of precision and the automation of the<br />

manufacturing using welding <strong>de</strong>vices.<br />

Special Prize for Doors & Windows<br />

Borgo Wührer Village Brescia, Italy<br />

Architect: Studio Racheli Architetti <strong>Alu</strong>minium Products: Metra<br />

Project: Recovering the area of the former Whürer factory,<br />

even the substitution of the windows required particular<br />

attention. The original elements, ma<strong>de</strong> of iron and glass,<br />

were substituted with a personalised version of an existing<br />

aluminium frame system. The use of aluminium gives<br />

remarkable advantages in the maintenance, non-<strong>de</strong>formability<br />

as well as in thermal and acoustic insulation. The<br />

substitution of the windows improved the thermal and<br />

energy-saving performances in the different spaces of the<br />

historical factory. On the other hand, it allowed the keeping<br />

of the continuity of language present in the images of<br />

the industrial complex, which was built in the 1880’s.<br />

Jury judgement: The intervention is <strong>de</strong>dicated to the restoration<br />

of an existing industrial complex now converted<br />

into mixed commercial use. The <strong>de</strong>sign respected the existing<br />

arrangement of windows also tackling the new re-<br />

Jury judgement: This refurbishment shows an innovative<br />

way to use aluminium. It is intelligent cladding, completely<br />

prefabricated and put into position in short time.<br />

quirements dictated by new energy standards. All of this<br />

is done in relation to the significant variety of the existing<br />

window frames. This required research of new profiles in<br />

respect of the 19th century industrial structures. �<br />

78 ALUMINIUM · 1-2/2008


Frie<strong>de</strong>nsnobelpreis für IPCC<br />

Ein Quäntchen Ehre auch für Halvor Kvan<strong>de</strong><br />

Halvor Kvan<strong>de</strong>, <strong>de</strong>r im Bereich<br />

Primary Production bei Hydro<br />

arbeitet, forscht seit vielen Jahren,<br />

um das Elektrolyseverfahren für<br />

<strong>Alu</strong>minium zu verbessern. Seine<br />

Forschungsarbeiten zielen unter<br />

an<strong>de</strong>rem darauf, die Emissionen<br />

von CO 2 und perfluorierter Kohlenwasserstoffe<br />

(PFC) zu reduzieren.<br />

Diese Arbeit war Teil eines<br />

<strong>de</strong>r letzten Berichte <strong>de</strong>s U. N.<br />

Klimapanels IPCC, das zusammen<br />

mit <strong>de</strong>m ehemaligen US-Vizepräsi<strong>de</strong>nten<br />

Al Gore <strong>de</strong>n diesjährigen<br />

Frie<strong>de</strong>nsnobelpreis erhielt.<br />

Kvan<strong>de</strong>, <strong>de</strong>r in Oslo arbeitet, ist einer<br />

von zahlreichen Forschern aus über<br />

130 Län<strong>de</strong>rn, die ihren Beitrag zu<br />

<strong>de</strong>n letzten IPCC-Berichten geleistet<br />

haben. Er ist überzeugt, dass dieser<br />

Preis das öffentliche Bewusstsein verän<strong>de</strong>rn<br />

wird, und fügt hinzu: „Er �<br />

• accessible at least a week before<br />

the printed edition<br />

• available from any location<br />

• simple download<br />

• keyword researches<br />

• linked list of contents<br />

• direct contact with advertisers<br />

ALUMINIUM · 1-2/2008<br />

Nobel Peace Prize for IPCC<br />

A small slice of the glory also for Halvor Kvan<strong>de</strong><br />

Halvor Kvan<strong>de</strong>, who works in the<br />

Primary Production sector of Hydro,<br />

has been working for many<br />

years to improve the aluminium<br />

electrolysis process. Part of his<br />

work inclu<strong>de</strong>s trying to reduce<br />

CO 2 and perfluorocarbon (PFC)<br />

gas emissions to the atmosphere,<br />

and has been inclu<strong>de</strong>d in one of<br />

the recent reports from the Intergovernmental<br />

Panel on Climate<br />

Change (IPCC), which was co-winner<br />

of the Nobel Peace Prize for<br />

2007, along with former U. S. Vice<br />

Presi<strong>de</strong>nt Al Gore.<br />

Kvan<strong>de</strong>, who is based in Oslo, is<br />

among the many researchers from<br />

more than 130 nations who have con-<br />

www<br />

aluminiumePaper.com<br />

Please be our guest<br />

and discover the benefi ts of the<br />

ALUMINIUM-ePaper yourself in a<br />

free three-month trial:<br />

ENVIRONMENT AND ECOLOGY<br />

tributed to the writing of these recent<br />

IPCC reports. “I strongly believe this<br />

prize will make a difference,” he says.<br />

“And it can also be seen in light of the<br />

ongoing <strong>de</strong>bate and the need for political<br />

lea<strong>de</strong>rship. Some activists and<br />

scientists link next year’s presi<strong>de</strong>ntial<br />

election in the US to the <strong>de</strong>stiny of<br />

global environment”.<br />

Better control of the<br />

production process<br />

PFC gases are not ma<strong>de</strong> naturally,<br />

Kvan<strong>de</strong> points out, and their major<br />

source is primary aluminium production.<br />

They contribute to global<br />

warming, as they prevent the infrared<br />

heat loss from the earth passing �<br />

79


UMWELT UND ÖKOLOGIE<br />

kann auch im Licht <strong>de</strong>r gegenwärtigen<br />

Debatte und <strong>de</strong>s Bedarfs für politische<br />

Entscheidungen gesehen wer<strong>de</strong>n. Einige<br />

Aktivisten und Wissenschaftler<br />

verbin<strong>de</strong>n die Präsi<strong>de</strong>ntenwahl 2008<br />

in <strong>de</strong>n USA mit <strong>de</strong>r Entwicklung <strong>de</strong>r<br />

globalen Umwelt“.<br />

Bessere Kontrolle <strong>de</strong>s<br />

Produktionsprozesses<br />

Perfluorierte Kohlenwasserstoffe entstän<strong>de</strong>n<br />

nicht natürlich, unterstreicht<br />

Kvan<strong>de</strong>, die Hauptquelle für diese<br />

Gase sei die Primäraluminiumherstellung.<br />

Sie tragen zur globalen Er<strong>de</strong>rwärmung<br />

bei, da sie verhin<strong>de</strong>rn,<br />

dass die Erdwärme in die Atmosphäre<br />

abgegeben wird.<br />

Die Produktion von einem Kilogramm<br />

<strong>Alu</strong>minium hat gegenwärtig<br />

eine Emission von etwa vier Kilogramm<br />

CO 2 zur Folge. Viele <strong>Alu</strong>miniumhersteller<br />

in <strong>de</strong>r Welt verursachten<br />

noch höhere Emissionswerte, sagt<br />

Kvan<strong>de</strong>. „Vor 15 bis 20 Jahren war<br />

man allgemein <strong>de</strong>r Auffassung, dass<br />

die Ano<strong>de</strong>neffekte in <strong>de</strong>n Elektrolysezellen<br />

notwendig waren, damit diese<br />

gut funktionierten. Heute wissen wir,<br />

dass dies eher ein Zeichen für <strong>de</strong>n<br />

schlechten Betrieb <strong>de</strong>r Zellen ist. Die<br />

gesamte Branche ist sich darüber im<br />

Klaren und Ano<strong>de</strong>neffekte wer<strong>de</strong>n<br />

nun als Abweichung betrachtet, die<br />

durch präziseres und kontrolliertes<br />

Befüllen mit <strong>Alu</strong>miniumoxid vermie<strong>de</strong>n<br />

wer<strong>de</strong>n können“, erklärt er.<br />

Durch eine bessere Kontrolle <strong>de</strong>s Produktionsprozesses<br />

sind diese Emissionen<br />

mittlerweile beträchtlich reduziert<br />

wor<strong>de</strong>n. In Norwegen sei es <strong>de</strong>r<br />

<strong>Alu</strong>miniumindustrie gelungen, <strong>de</strong>n<br />

Ausstoß von Treibhausgasen im Zeitraum<br />

1990 bis 2005 um mehr als 55<br />

Prozent zu verringern, so Kvan<strong>de</strong>.<br />

Dilemma<br />

„Wir müssen uns jedoch das Dilemma<br />

eingestehen“, meint er und verweist<br />

darauf, dass die steigen<strong>de</strong> Nachfrage<br />

nach <strong>Alu</strong>minium zu noch höheren<br />

CO 2-Emissionen führen kann, auch<br />

wenn diese pro produzierter Einheit<br />

zurückgehen.<br />

In <strong>de</strong>n vergangenen Jahren hat<br />

die weltweite <strong>Alu</strong>miniumindustrie<br />

ihre Produktionsmenge beträchtlich<br />

gesteigert – um ganze 31 Prozent<br />

in <strong>de</strong>n Jahren 2000 bis 2005. Die<br />

Treibhausemissionen konnten im<br />

gleichen Zeitraum um sechs Prozent<br />

verringert wer<strong>de</strong>n. Darin enthalten<br />

Halvor Kvan<strong>de</strong> hat dazu beigetragen, das<br />

Elektrolyseverfahren für <strong>Alu</strong>minium zu<br />

verbessern<br />

Hydro researcher Halvor Kvan<strong>de</strong> has been<br />

working for many years to improve the<br />

aluminium electrolysis process<br />

sind die Emissionen aus <strong>de</strong>r Bauxitgewinnung,<br />

<strong>de</strong>r Herstellung von Toner<strong>de</strong>,<br />

<strong>de</strong>r Ano<strong>de</strong>nproduktion sowie<br />

aus <strong>de</strong>m Schmelzen und Gießen von<br />

<strong>Alu</strong>minium.<br />

Laut <strong>de</strong>m Londoner International<br />

<strong>Alu</strong>minium Institute (IAI) ist die Reduktion<br />

um sechs Prozent die Folge<br />

einer 56-prozentigen Reduktion<br />

<strong>de</strong>r Emissionen von perfluorierten<br />

Kohlenwasserstoffen und einer 12prozentigen<br />

Reduktion an<strong>de</strong>rer<br />

Emissionen pro Tonne produziertes<br />

Primäraluminium. „Für uns heißt die<br />

Herausfor<strong>de</strong>rung, diesen Trend weiterzuführen“,<br />

so Kvan<strong>de</strong>.<br />

through the atmosphere.<br />

Production of one kilogram of aluminium<br />

now causes about four kilograms<br />

of CO 2 emissions. Many aluminium<br />

producers around the world<br />

produce even higher emissions than<br />

this, Kvan<strong>de</strong> comments. “About 15<br />

to 20 years ago it was generally believed<br />

that the ano<strong>de</strong> effects in the<br />

electrolytic cells were necessary for<br />

good cell operation. Today we may<br />

consi<strong>de</strong>r them to be a sign of poorly<br />

operated cells. The entire industry is<br />

now aware of this, and ano<strong>de</strong> effects<br />

are now consi<strong>de</strong>red as a <strong>de</strong>viation,<br />

which can be prevented by more precise<br />

and controlled feeding of aluminium<br />

oxi<strong>de</strong>”, he says.<br />

Through better control of the production<br />

process, these emissions have<br />

actually been consi<strong>de</strong>rably reduced. In<br />

Norway, the aluminium industry has<br />

been able to reduce its specific greenhouse<br />

gas emissions by more than 55<br />

percent over the period 1990-2005.<br />

Dilemmas<br />

“We have to be honest about the dilemmas,”<br />

Kvan<strong>de</strong> says, referring to<br />

how increasing <strong>de</strong>mand for materials<br />

can lead to even higher CO2 emissions,<br />

<strong>de</strong>spite lower emissions per<br />

produced unit.<br />

In recent years, the world’s aluminium<br />

industry has increased its total<br />

output consi<strong>de</strong>rably – as much as 31<br />

percent from 2000 to 2005, while its<br />

total greenhouse gas emissions were<br />

reduced by six percent over that period.<br />

This inclu<strong>de</strong>s emissions for bauxite<br />

mining, alumina refining, ano<strong>de</strong><br />

production, aluminium smelting and<br />

casting.<br />

According to the International<br />

<strong>Alu</strong>minium Institute (IAI), the six percent<br />

reduction is the result of 56 percent<br />

reduction in PFC emissions and<br />

12 percent in other direct emissions<br />

per tonne of primary aluminium produced.<br />

“Our challenge is to continue<br />

� this trend,” Kvan<strong>de</strong> says. �<br />

60.000 Literaturangaben zum Thema <strong>Alu</strong>minium<br />

Kontakt: karsten.hein@aluinfo.<strong>de</strong><br />

80 ALUMINIUM · 1-2/2008<br />

Foto: Kåre Foss


OFFICIAL MEDIA PARTNER<br />

Important information for<br />

all exhibitors at<br />

ALUMINIUM 2008<br />

in Essen<br />

<strong>Alu</strong>minium Praxis and APT <strong>Alu</strong>minium News have been jointly<br />

nominated the exclusive offi cial newspapers for German<br />

and English speaking participants respectively,<br />

at ALUMINIUM 2008 in Essen.<br />

Actual schedule:<br />

���� ��������������������������������������������������������������������������������������<br />

��������������������������������������������������������������������������������������<br />

�������������������������������<br />

�������������������������������<br />

������������������������<br />

�����������������������<br />

������������������������<br />

������������������������<br />

������������������������<br />

������������������������<br />

�����������������������<br />

�����������������������<br />

�����������������������������<br />

�����������������������������<br />

������������������������������<br />

������������������������������<br />

������������������������<br />

��������������������������<br />

������������������������<br />

������������������������<br />

��������������������������<br />

��������������������������<br />

����������������������������<br />

����������������������������<br />

�������������������������<br />

�������������������������<br />

�������������������������<br />

�������������������������<br />

�����������������������������<br />

�����������������������������<br />

����������������������������<br />

����������������������������<br />

�����������������<br />

�����������������<br />

��<br />

Giesel Verlag GmbH • Postfach 12 01 58 • 30907 Isernhagen • Deutsche Post AG • PVST H 41947 • Entgelt bezahlt<br />

������������������������<br />

�����������<br />

������������������� ������������������<br />

�<br />

OFFICIAL OFFICIA OFFICIA AL MEDIA MEDIA PARTNER PARTNER<br />

��������������������������<br />

��������������������������<br />

�������������������������<br />

�������������������������<br />

�������������������������<br />

�������������������������<br />

��� ��� ���� ���� ��������� ��������� �������������<br />

�������������<br />

����� ����� ������������ ������������ ��������� ��������� ���� ����<br />

�������������������������������<br />

�������������������������������<br />

����� ����� �������� �������� ������ ������ ������������<br />

������������<br />

� � ������ ������������������ ����� ���������� ��� ��������<br />

���� ��������� �������������<br />

� ��<br />

�������������������������������������������������������������������������������������������������������������<br />

�������������������������������������������������������������������������������������������������������������<br />

����������������������������������<br />

��������� ������������ ������<br />

�������� ���� ����� � � � �������<br />

� �� �����<br />

����������������������<br />

������������������������<br />

��������������������������������<br />

�������������������������<br />

<strong>Alu</strong>minium Praxis, has been for many years the offi cial media partner and since 2006 the offi cial Fair Newspaper. p p<br />

It will publish again the Fair Newspaper for the German speaking audience in September together with<br />

of the forthcoming g ALUMINIUM 2008 in Essen. Due to popular <strong>de</strong>mand, APT <strong>Alu</strong>minium News together<br />

with<br />

will publish a Fair Newspaper edition for the English speaking participants and visitors from<br />

all over the world for the fi rst time.<br />

So every participating exhibitor, will benefi t from:<br />

• Print run of 20,000 copies – instead of 8,000 –<br />

• Direct distribution to all visitors from 2006<br />

• Direct distribution to exhibitors in 2008, ahead of the Fair dates<br />

• Distribution to hotels in Essen hosting guests as<br />

offi cial Fair resi<strong>de</strong>nce<br />

• Distribution to visitors at the entrance as well as insi<strong>de</strong><br />

the Fair grounds by our <strong>de</strong>signated hostesses<br />

• Display on the Technical Press stand<br />

• Special reference from the organisers<br />

Company<br />

With your client target group un<strong>de</strong>r one roof at ALUMINIUM 2008, your<br />

advertisement with our Fair Newspapers will be reaching effectively<br />

Last and First Name<br />

every present and visiting potential customer to your business!<br />

As you may appreciate, we are constantly working in improving our<br />

Address<br />

services to you while keeping costs steady.<br />

Special rates for series advertising with our ALUMINIUM all over<br />

the World journals as per the 2008 media kit will be applicable.<br />

Address<br />

ALUMINIUM 2008 is approaching fast. We would be <strong>de</strong>lighted to<br />

offer our insight to your specifi c marketing requirements for a most<br />

Telephone Fax<br />

successful and cost effective advertising campaign during this unique<br />

event.<br />

Email<br />

To take best advantage of potential benefi ts, you may fi ll in and send<br />

to us the enclosed form or alternatively call<br />

Remarks<br />

Stefan Schwichtenberg on: +49-511/7304-142<br />

or your area agent.<br />

Sincerely,<br />

Your ALUMINIUM 2008 Fair Newspaper Team<br />

����<br />

����������������������������������<br />

�����������������������������������������������<br />

������������������������<br />

������������������<br />

��������������������<br />

�������� �<br />

����������������<br />

������������������ �<br />

�������������������������<br />

����������������������<br />

������������� �<br />

�����������������������<br />

����������������� �<br />

�������������������<br />

������������������<br />

��������� �<br />

���������<br />

���������������������<br />

������������������<br />

��������� �<br />

�������������������<br />

������������������<br />

������������ �<br />

���������������������������<br />

��������������<br />

��������������������������<br />

���������������������������������<br />

�������������������<br />

��������������<br />

������������������<br />

��������������������<br />

��������������������<br />

��������������������<br />

�������������������<br />

����������������������<br />

�������������������<br />

������������������<br />

�����<br />

��������� ����� ��� ����<br />

���� ����� ������ ��� ������<br />

����� ��� ������������� ����� ����<br />

����� ������ ������� ���� �����<br />

��������������������������������<br />

����������� ��� �������� �������<br />

���� �������� ��������� �����<br />

����������������������<br />

��������� �������� ����<br />

������������������������������<br />

������� ��� ������� ������ ����<br />

�������� ����<br />

���������������������������������<br />

������������������ �������� ����<br />

����� �������� ��� ��� ������ ���<br />

��������<br />

���� ���� ���� ����� ���������<br />

�����������������������������<br />

����������� ����� � �<br />

�<br />

����������������������������������<br />

�����������������������������������������������<br />

OFFICIAL OFFICIAL MEDIA PARTNER<br />

������������������������<br />

����� ������� ������� ������<br />

������������������������������<br />

���������������������<br />

ALUMINIUM<br />

��<br />

�������������������������������������<br />

��������������������������������������<br />

���������������������������������������������<br />

����������������������������<br />

���� ��������� ������ ����� �����<br />

����������������������������<br />

�����������������������������<br />

�����������������������������<br />

����������������������������<br />

������������������������������<br />

����� ���� ������� ��� ��� �����<br />

�����������������������������<br />

�������������������������������<br />

������������������������������<br />

���� ��� ���� ����������� �����<br />

����������������������������<br />

��������� ����� ��� ������<br />

����������������������������<br />

��� ��� ����� �������� ��� ���<br />

����� �������� ��� �������<br />

���� ��������� ���� ���������<br />

���������������������������<br />

����������������������������<br />

���������������� ���<br />

�� �<br />

������������ ����� ����������� ���<br />

��������������������������������<br />

��������������������� ���������<br />

����������� ��� ����� ����� �������<br />

��� �� ��������� �����<br />

�������� �������������������<br />

�����������������������������������<br />

��������� ��<br />

���������<br />

����������������������<br />

�������<br />

����������������������<br />

�������<br />

������������������������<br />

��������<br />

������������������������<br />

��������<br />

��������������������<br />

������<br />

��������������������<br />

������<br />

���������� �����<br />

����������<br />

�����<br />

���������������������<br />

�����<br />

���������������������<br />

�����<br />

������������<br />

�����<br />

������������<br />

����<br />

������������������������������� �������������������������������<br />

������������������������������� �������������������������������<br />

������������������������������������ ������������������������������������<br />

���� ����<br />

����������������������������������� �����������������������������������<br />

����������������������������� �����������������������������<br />

�������������������������� ��������������������������<br />

��������������<br />

Yes, we are interested to participate in your Fair Newspapers.<br />

Please get in contact with us as follows:<br />

����<br />

��������������������������<br />

�����������<br />

�������������������������������������<br />

� � � ����������������<br />

Giesel Verlag GmbH<br />

Postfach 120158<br />

D-30907 Isernhagen<br />

Tel. +49 511 7304-142<br />

Fax +49 511 7304-157<br />

schwichtenberg@giesel.<strong>de</strong><br />

www.giesel.<strong>de</strong>


BDI-Studie zum Klimaschutz<br />

CO 2 -Reduzierungspotenzial in NE-Branche nur<br />

zu Lasten <strong>de</strong>r Wettbewerbsfähigkeit möglich<br />

Vor <strong>de</strong>m Hintergrund <strong>de</strong>r Klimapolitik<br />

<strong>de</strong>r Bun<strong>de</strong>sregierung hat<br />

<strong>de</strong>r Bun<strong>de</strong>sverband <strong>de</strong>r Deutschen<br />

Industrie (BDI) e. V. McKinsey<br />

& Company beauftragt, Kosten<br />

und Potenziale zur Reduzierung<br />

von Treibhausgasemissionen zu<br />

untersuchen. An <strong>de</strong>r Erarbeitung<br />

<strong>de</strong>r gleich lauten<strong>de</strong>n Studie haben<br />

mehr als 70 Unternehmen und<br />

Verbän<strong>de</strong> in Deutschland mitgewirkt.<br />

Die Studie i<strong>de</strong>ntifiziert<br />

technologische Ansätze zur Vermeidung<br />

von Treibhausgasen und<br />

<strong>de</strong>ren Kosten aus Entschei<strong>de</strong>rsicht<br />

in <strong>de</strong>n Sektoren Energie, Industrie,<br />

Gebäu<strong>de</strong>, Abfall- sowie Landwirtschaft<br />

und Transport.<br />

Die WVM Wirtschaftsvereinigung<br />

Metalle e. V. hat innerhalb <strong>de</strong>s Sektors<br />

Industrie in einer speziellen Arbeitsgruppe<br />

„NE-Metalle“ gemeinsam mit<br />

Mitgliedsunternehmen und McKinsey<br />

Vermeidungshebel und die damit<br />

verbun<strong>de</strong>nen Kosten für die gesamte<br />

NE-Metallbranche i<strong>de</strong>ntifiziert und<br />

bewertet. Ergebnis <strong>de</strong>r Arbeitsgruppe:<br />

Bis 2020 können durch Effizienzverbesserung<br />

bei <strong>de</strong>r Wärmebehandlung<br />

und gradueller Optimierung in<br />

<strong>de</strong>r Elektrolyse etwa 1,3 Mio. Tonnen<br />

CO 2-Äquivalente gegenüber 2004 reduziert<br />

wer<strong>de</strong>n. Bis zum Jahr 2030<br />

sei sogar eine Reduktion um 1,6 Mio.<br />

Tonnen möglich. Davon entfallen<br />

rund 1 Mio. Tonnen auf die Wärmebehandlung<br />

und 0,5 Mio. Tonnen auf<br />

die Elektrolyse. Effizienzverbesserungen<br />

durch <strong>de</strong>n Einsatz energiesparen<strong>de</strong>r<br />

Querschnittstechnologien wie<br />

lastgeregelte elektrische Antriebe und<br />

Motorsysteme sowie Raumheizung<br />

und -beleuchtung spielen nur eine<br />

untergeordnete Rolle.<br />

Bei steigen<strong>de</strong>r Produktion kann<br />

durch die Maßnahmen das Emissionsniveau<br />

von 15 Mio. Tonnen CO 2-<br />

Äquivalente bis 2030 in etwa konstant<br />

gehalten wer<strong>de</strong>n. Die Maßnahmen<br />

beruhen auf <strong>de</strong>r Abschätzung, welche<br />

Durchdringungsrate heute bekannte<br />

Energieeffizienztechnik 2020<br />

ALUMINIUM · 1-2/2008<br />

bzw. 2030 haben wird. Bei <strong>de</strong>r Wärmebehandlung<br />

ist eine vollständige<br />

Durchdringung bei Schmelz- und<br />

Homogenisierungsöfen bereits 2020<br />

wahrscheinlich. Insgesamt können<br />

damit rund 15 Prozent <strong>de</strong>s für diese<br />

Produktionsprozesse heute benötigten<br />

Energiebedarfs eingespart wer<strong>de</strong>n.<br />

In <strong>de</strong>r Elektrolyse ist erst 2030<br />

mit einer vollständigen Umsetzung<br />

<strong>de</strong>r Maßnahmen zu rechnen, wodurch<br />

etwa fünf Prozent <strong>de</strong>s heutigen<br />

Stromverbrauchs eingespart wer<strong>de</strong>n<br />

können.<br />

Allerdings entstehen bis 2020 für<br />

Maßnahmen bei <strong>de</strong>r Wärmebehandlung<br />

und Elektrolyse Vermeidungskosten<br />

von mehr als 20 bzw. 50 Euro<br />

je Tonne CO 2, so dass die Maßnah-<br />

„Bis 2020 können durch Effizienzverbesserung<br />

bei <strong>de</strong>r Wärmebehandlung und<br />

gradueller Optimierung in <strong>de</strong>r Elektrolyse<br />

etwa 1,3 Mio. Tonnen CO 2 -Äquivalente gegenüber<br />

2004 reduziert wer<strong>de</strong>n“<br />

men aus Entschei<strong>de</strong>rsicht unwirtschaftlich<br />

sind und die internationale<br />

Wettbewerbsfähigkeit beeinträchtigen<br />

wür<strong>de</strong>n. Auf <strong>de</strong>n längeren Zeitraum<br />

bis 2030 berechnet fallen nur<br />

die Kosten für Maßnahmen in <strong>de</strong>r<br />

Wärmebehandlung auf unter 20 Euro<br />

je Tonne CO 2. Noch mehr als diese<br />

direkten Kosten wird die internationale<br />

Wettbewerbsfähigkeit <strong>de</strong>r<br />

NE-Metallindustrie durch steigen<strong>de</strong><br />

UMWELT UND ÖKOLOGIE<br />

Strompreise gefähr<strong>de</strong>t. Denn allein<br />

solche Maßnahmen in <strong>de</strong>r Energiewirtschaft,<br />

die für einen Preis von bis<br />

zu 20 Euro je Tonne CO 2 verwirklicht<br />

wer<strong>de</strong>n, erhöhen <strong>de</strong>n Strompreis um<br />

Anzeige<br />

www.inotherm-gmbh.<strong>de</strong><br />

weitere acht Euro je Megawattstun<strong>de</strong>.<br />

Die WVM betont daher, dass bei <strong>de</strong>n<br />

Maßnahmen beson<strong>de</strong>res Augenmerk<br />

auf die Erhaltung <strong>de</strong>r Wettbewerbsfähigkeit<br />

<strong>de</strong>utscher Unternehmen,<br />

vor allem bei energieintensiven Industrien,<br />

gelegt wer<strong>de</strong>n muss. Die<br />

Produktion am Standort Deutschland<br />

kann nur gesichert wer<strong>de</strong>n, wenn die<br />

Kosteneffizienz das entschei<strong>de</strong>n<strong>de</strong><br />

Kriterium für die Auswahl und <strong>de</strong>n<br />

Zuschnitt <strong>de</strong>r Klimaschutzmaßnahmen<br />

ist. Hier sind nicht zuletzt sektorübergreifen<strong>de</strong><br />

Rückwirkungen zu beachten,<br />

z. B. steigen<strong>de</strong> Strompreise.<br />

Die Akzeptanz <strong>de</strong>r Klimaschutzpolitik<br />

wird davon abhängen, welche<br />

Belastungen <strong>de</strong>r Verbraucher zu tragen<br />

hat. Hierzu bietet die BDI-Studie<br />

vielfältige Ansatzpunkte. Politisch<br />

kommt es bei <strong>de</strong>r Umsetzung <strong>de</strong>r<br />

europäischen und <strong>de</strong>utschen Klima-<br />

und Energiebeschlüsse vom Frühjahr<br />

bzw. Sommer 2007 darauf an, die<br />

Min<strong>de</strong>rungslasten fairer als bisher zu<br />

verteilen und am Kriterium <strong>de</strong>r Kosteneffizienz<br />

auszurichten. So sollten<br />

erneuerbare Energien dort ausgebaut<br />

wer<strong>de</strong>n, wo die Potenziale noch weitgehend<br />

unausgeschöpft sind und <strong>de</strong>r<br />

Ausbau mit beson<strong>de</strong>rs geringen Kosten<br />

verbun<strong>de</strong>n ist. Vor diesem Hintergrund<br />

liefert die vorgelegte Studie im<br />

Sinne einer „Preisliste“ (Kosten aus<br />

Entschei<strong>de</strong>rsicht) hierfür fundierte<br />

Orientierungshilfen.<br />

WVM-Kontakt:<br />

Tel: +49 (0)30 726 207 198<br />

info@wvmetalle.<strong>de</strong><br />

82


Photo: Rio Tinto Alcan<br />

<strong>Alu</strong>minium smelting industry<br />

MMC, Chalco and Binladin<br />

firm up Saudi smelter plan<br />

MMC Corp., <strong>Alu</strong>minium Corp. of China<br />

(Chalco) and Saudi Binladin Group<br />

(SBG) have firmed up plans to build<br />

ALUMINIUM · 1-2/2008<br />

a 1m tpy aluminium smelter in Saudi<br />

Arabia. The three companies signed<br />

an agreement to build the US$3bn<br />

smelter in Jazan Economic City (JEC).<br />

The companies will form joint venture<br />

company Sino-Saudi Jazan <strong>Alu</strong>-<br />

UC Rusal completes five-year casthouse revamp<br />

In November UC Rusal completed its<br />

casthouse mo<strong>de</strong>rnisation programme<br />

at four smelters, increasing the share of<br />

value-ad<strong>de</strong>d products to 50% of total<br />

production volume. The projects began<br />

in 2002 and cost about US$130m. This<br />

was aimed at increasing the diversity of<br />

casthouse products, which now inclu<strong>de</strong><br />

rolling slabs, extrusion billets, silicon alloys<br />

for automotive uses, highly pure alloys<br />

for the electrical engineering industry<br />

and rolled wire. The four smelters<br />

involved are: Sayanogorsk, Krasnoyarsk,<br />

Bratsk and Novokuznetsk. The mo<strong>de</strong>rnisation<br />

programme enables them to<br />

produce more than 250 new alloys, to<br />

enter new markets and to significantly<br />

increase their customer base.<br />

Feasibility study on<br />

metals complex in Kyrgyzstan<br />

After its failure to accomplish a similar<br />

project in neighbouring Tajikistan, UC<br />

Rusal has resumed exploring opportunities<br />

for building an energy and metals<br />

complex in Kyrgyzstan. In Kyrgyzstan,<br />

which has vast hydropower potential,<br />

Rusal hopes to create an industrial cluster<br />

comprising electricity and aluminium<br />

production facilities. With a new feasi-<br />

bility study, Rusal is effectively revisiting<br />

a plan dating back to 2004 when the<br />

then Kyrgyzstan presi<strong>de</strong>nt gave the<br />

green light for the construction of an<br />

aluminium smelter and electricity plants.<br />

That scheme had envisaged building<br />

two hydroelectric power stations (Kambarata<br />

1 and 2) on the Naryn river and<br />

using locally available nepheline instead<br />

of bauxite ore as raw material for aluminium<br />

production. Project costs were<br />

roughly estimated at US$2bn.<br />

Point fee<strong>de</strong>r<br />

installation at KrAZ completed<br />

In November, UC Rusal’s Krasnoyarsk<br />

<strong>Alu</strong>minium Smelter completed the<br />

installation of automatic alumina pointfee<strong>de</strong>rs.<br />

KrAZ is the first aluminium<br />

smelter in Russia based on slotted ano<strong>de</strong><br />

technology equipped with automatic<br />

point fee<strong>de</strong>rs. The project started in<br />

2004 and cost over US$38m as part of<br />

the strategic programme of ecological<br />

mo<strong>de</strong>rnization of KrAZ. Today, all its<br />

1954 electrolytic cells based on So<strong>de</strong>rberg<br />

technology are equipped with automatic<br />

alumina point fee<strong>de</strong>rs which has<br />

reduced fluori<strong>de</strong> emissions by 10%, tarry<br />

substances by 3% and dust by 30%.<br />

COMPANY NEWS WORLDWIDE<br />

minium Ltd to un<strong>de</strong>rtake the project,<br />

with Chalco and a Saudi consortium,<br />

including SBG, each taking a 40%<br />

stake in the new company. MMC will<br />

hold the remaining 20%. The group<br />

also intends to build a 1,860 MW<br />

power plant at US$2bn to power the<br />

smelter. The shares held by MMC, by<br />

the Saudi consortium including SBG<br />

and by Chalco will be in proportions<br />

of 50:30:20 percent. Construction of<br />

the smelter and power plant is scheduled<br />

to begin during the second half<br />

of 2008 and be completed in 2012.<br />

Chalco and its affiliate China <strong>Alu</strong>minium<br />

International Engineering<br />

Co. will provi<strong>de</strong> alumina technology<br />

for the smelter.<br />

Indian aluminium industry to receive<br />

huge investment by 2012<br />

In November Indian aluminium industry<br />

announced it expected to invest<br />

Rs1,000bn (US$25bn) over the<br />

next five years. Installed capacity will<br />

go up from the existing 1.1m tpy to<br />

4m tpy. Consumption of aluminium<br />

in India is growing at 18% per year<br />

compared with the global 4.4%. By<br />

2015, Indian aluminium use will grow<br />

to 2.75m tpy.<br />

CVRD gets new name<br />

The Brazilian Companhia Vale do Rio<br />

Doce (CVRD) has launched a change<br />

to its short name. Previously known<br />

by its initials, CVRD, the miner will<br />

now go by Vale.<br />

New Indian smelter<br />

expected online by end of March<br />

Vedanta’s new 500,000 tpy smelter in<br />

the eastern Indian state of Orissa is<br />

expected to produce its first aluminium<br />

by the end of March 2008. The<br />

first 250,000 tpy stage of the smelter<br />

should be mechanically complete in<br />

February, with the first production in<br />

the following month. The smelter will<br />

be fed with alumina from a new 1.4m<br />

tpy refinery, also in Orissa. The alumina<br />

refinery has started production,<br />

although Vedanta has encoun- �<br />

83


COMPANY NEWS WORLDWIDE<br />

tered problems getting government<br />

approval for mining bauxite in the<br />

Niyamgiri hills.<br />

Dubal-Mubadala joint venture<br />

to build smelter in Algeria<br />

A pre-feasibility study on a major aluminium<br />

smelter in Algeria initiated by<br />

Emirates <strong>Alu</strong>minium is progressing<br />

well, as the company has showcased<br />

the proposed mo<strong>de</strong>l of the project.<br />

The smelter will be built in partnership<br />

with Algerian state-owned oil<br />

and gas company Sonatrach in the<br />

new industrial and port zone of Béni-<br />

Saf in north-western Algeria. The proposed<br />

smelter will have an initial capacity<br />

of 700,000 tpy with the option<br />

of doubling to 1.4m tpy in time. The<br />

smelter comprises two potlines, an<br />

ano<strong>de</strong> carbon plant, a casthouse, a sea<br />

port for major raw material imports<br />

and finished product export, bulk<br />

raw material unloading, storage and<br />

handling facilities, a storage yard for<br />

finished aluminium products, a power<br />

plant of 2,000 MW (combined cycle,<br />

gas-fired) linked to a water <strong>de</strong>salination<br />

plant and auxiliary infrastructure.<br />

The Béni-Saf aluminium smelter will<br />

be built using highly-efficient, environment-friendly<br />

technologies, and<br />

the smelter will use Dubal’s advanced<br />

DX reduction cell technology. The<br />

production of primary aluminum has<br />

the potential to initiate a downstream<br />

transformation industry with the capacity<br />

for many small- and medium<br />

sized businesses in Algeria to evolve<br />

into sustainable operations.<br />

Gulf investment company<br />

eyes greenfield project in India<br />

Ras-Al-Khaima Investment Authority<br />

(Rakia), a provincial investment company<br />

of the United Arab Emirates, is<br />

planning to invest US$2bn in a Greenfield<br />

integrated aluminium complex in<br />

the India state of Andhra Pra<strong>de</strong>sh. Rakia<br />

has signed an agreement with the<br />

Andhra Pra<strong>de</strong>sh Mineral Development<br />

Authority for bauxite reserves to feed a<br />

planned facility in Visakhapatnam. Rakia<br />

is consi<strong>de</strong>ring a 1.5m tpy alumina<br />

refinery and a 350,000 tpy smelter.<br />

ENRC opens Kazakh smelter<br />

Eurasian Natural Resources Corp.<br />

(ENRC) has inaugurated its aluminium<br />

smelter in Pavlodar, Kazakhstan,<br />

with initial capacity of 62,500 tpy,<br />

planned to increase to 125,000 tpy<br />

in 2008 and 250,000 tpy by 2011.<br />

The project was completed ahead of<br />

schedule. The smelter comprises two<br />

potlines, a casthouse and ano<strong>de</strong> production.<br />

Power is supplied through a<br />

sub-division of ENRC’s energy division.<br />

Nalco moves ahead with<br />

big Indonesian smelter project<br />

India’s state-owned National <strong>Alu</strong>minium<br />

Corporation (Nalco) agreed<br />

to invest US$3bn in a 500,000 tpy<br />

aluminium smelter in the Indonesian<br />

province of Sumatra. After signing an<br />

MoU due in January, Nalco will conduct<br />

a feasibility study on the project.<br />

Nalco will build a 250,000 tpy smelter<br />

in the initial phase and ramp up to<br />

the full 500,000 tpy later. The exact<br />

timeline for the plant has not been<br />

released. <strong>Alu</strong>mina and other raw materials<br />

nee<strong>de</strong>d for the smelter will be<br />

shipped from India. The project inclu<strong>de</strong>s<br />

the construction of a coal-fired<br />

power plant, to produce 3,250 MW of<br />

electricity in the first phase, increasing<br />

to 5,250 MW eventually. The power<br />

plant will need 4.5m tpy of coal.<br />

Alcoa and Yangquan Coal<br />

team up for aluminium and<br />

electricity project<br />

Alcoa has entered into a strategic partnership<br />

agreement with Shanxi-based<br />

Yangquan Coal Industry (Group) Co.<br />

to <strong>de</strong>velop an aluminium and electricity<br />

project in Shanxi Province. The<br />

partnership was inked in Taiyuan City<br />

in November, and the two companies<br />

discussed financing, management and<br />

both upstream and downstream <strong>de</strong>velopment<br />

for a future project. Yangquan<br />

Coal is a key coal producer in Shanxi<br />

Province that has long adopted meas-<br />

Rio looking at Emirates smelter with Adbic<br />

Rio Tinto <strong>Alu</strong>minium has formed an alliance<br />

with Abu Dhabi Basic Industries<br />

Group (Adbic) to <strong>de</strong>velop a world-class<br />

aluminium smelter project in Ruwais, Abu<br />

Dhabi. The project has no cost or timetable<br />

yet and remains in the planning phase,<br />

with only pre-feasibility studies by Bechtel<br />

Corp. completed to date. Local reports<br />

suggest a 550,000 tpy smelter at an initial<br />

cost of about US$5bn. Construction could<br />

start in 2008, with production in 2011. The<br />

smelter is the second planned for the largest<br />

of the United Arab Emirates.<br />

Rio eyes greenfield<br />

smelter in Cameroon<br />

Besi<strong>de</strong>s, Rio Tinto Alcan has signed an<br />

amen<strong>de</strong>d agreement with the government<br />

of Cameroon on water resources for<br />

a new 1,000 MW hydro power system in<br />

the West African country. This paves the<br />

way for studies on a potential 400,000 tpy<br />

greenfield smelter. Technical studies are<br />

complete and an energy contract is at the<br />

negotiation stage. A go-ahead <strong>de</strong>cision on<br />

the smelter project is expected by the end<br />

of 2009. The greenfield project is separate<br />

from a previously-agreed brownfield<br />

expansion of the existing E<strong>de</strong>a smelter, a<br />

joint venture between the government<br />

and Rio. The E<strong>de</strong>a brownfield project, lifting<br />

capacity from 90,000 tpy to 300,000<br />

tpy, continues to make progress.<br />

US$8m AP50 fund launched<br />

Rio Tinto Alcan has launched an US$8m<br />

fund in a move to promote competitiveness<br />

among suppliers and contractors<br />

<strong>de</strong>veloping of its AP50 smelting technology<br />

in Quebec’s Saguenay-Lac-Saint-Jean<br />

region. The fund, to be managed by the<br />

Fonds <strong>de</strong> Solidarité <strong>de</strong>s Travailleurs du<br />

Quebec (FSTQ), meets one of Alcan’s commitments<br />

to the government of Quebec in<br />

December 2006 to invest US$2.1bn in the<br />

Saguenay-Lac-Saint-Jean region over ten<br />

years. Rio is proceeding with the construction<br />

of a 60,000 tpy US$550m pilot plant<br />

known as Complexe Jonquière to <strong>de</strong>velop<br />

new smelting technology.<br />

84 ALUMINIUM · 1-2/2008


Photo: AOS<br />

ures to promote its non-coal operations,<br />

and is also backed by abundant<br />

bauxite and energy resources in the<br />

province. Alcoa has also expressed<br />

its confi<strong>de</strong>nce that the Alcoa-Yangquan<br />

Coal tie represents a win-win<br />

situation for both companies, with<br />

Alcoa’s advanced technology and<br />

ALUMINIUM · 1-2/2008<br />

management expertise complementing<br />

its partner’s abundant resource<br />

reserves. Shanxi Province contains<br />

approximately 42.11% of China’s total<br />

bauxite reserves, much of which is<br />

due to be prospected and <strong>de</strong>veloped<br />

in the near future.<br />

�<br />

Bauxite and alumina activities<br />

Dubai investment group<br />

buys German <strong>special</strong>ity<br />

alumina producer<br />

Dubai International Capital (DIC),<br />

which is the private equity arm of<br />

Dubai Holding, acquired the German<br />

<strong>special</strong>ity alumina producer Almatis.<br />

The company is headquartered in<br />

Frankfurt and has eight manufacturing<br />

sites in Germany, the Netherlands,<br />

the USA, Japan, China and India. DIC<br />

paid more than US$1bn for this <strong>de</strong>al. It<br />

has plans to increase capacity by 20%<br />

to around 750,000 tpy by 2010 and is<br />

targeting an aggressive expansion into<br />

<strong>de</strong>veloping markets such as the Gulf<br />

region, India and Brazil. The company’s<br />

growth prospects are robust, as<br />

the majority of future growth in the<br />

alumina refractory market is driven by<br />

global steel volumes produced. DIC is<br />

acquiring Almatis from funds controlled<br />

by Rhone Capital and Teachers’<br />

Private Capital, the investment arm of<br />

the Ontario Teachers’ Pension Plan.<br />

Vietnam to build seven alumina<br />

processing plants by 2015<br />

Vietnam will build seven alumina<br />

refineries and a bauxite-aluminium<br />

processing complex, which will have<br />

a total capacity of 8.4m tpy of alumina<br />

and 0.65m tpy of aluminium hydroxi<strong>de</strong>,<br />

by 2015. The <strong>de</strong>cision to build<br />

these plants follows a government<br />

plan to exploit and process bauxite in<br />

the Central Highlands through 2025.<br />

The plants will cost US$11.8bn-<br />

15.6bn. At least US$47.5m would be<br />

spent on completing the geological<br />

survey, US$9.9-13.7bn for building,<br />

exploiting and processing plants and<br />

US$1.9bn for building infrastructure.<br />

The company <strong>de</strong>veloping the project<br />

will be equitised, with the Vietnamese<br />

government responsible for management.<br />

A <strong>de</strong>dicated port that can load<br />

vessels with 50,000 tonnes of product<br />

will be built in central Binh Thuan<br />

Province to <strong>de</strong>velop the industry in<br />

the Central Highlands and Southern<br />

Central regions. Environmentally<br />

friendly technology will be used to<br />

exploit 5.5bn tonnes of bauxite in the<br />

Central Highlands provinces.<br />

Guangxi Huayin to start<br />

trial production<br />

Guangxi Huayin <strong>Alu</strong>minium Co,<br />

whose backers of the 1.6m tpy alumina<br />

refinery inclu<strong>de</strong> Chalco and China<br />

Minmetals Corp., announced trial<br />

production to start in December 2007.<br />

COMPANY NEWS WORLDWIDE<br />

MRL will purchase the 33% stake China<br />

Minmetals has in Guangxi Huayin<br />

at 855m yuan (US$115m) from parent<br />

company China Minmetals. Minmetals<br />

and Chalco each have a 33% stake<br />

in the project, and Guangxi Investment<br />

Group Corp. owns the remaining<br />

34%. The stake purchase forms<br />

part of Minmetal’s plan to transfer its<br />

alumina and aluminium assets to subsidiary<br />

MRL. Construction of Guangxi<br />

Huayin started in 2005.<br />

Australian bauxite<br />

exploration agreement signed<br />

Hydro is entering into a joint venture<br />

with the Australian mining company<br />

United Minerals Corporation (UMC)<br />

with the intention of recovering bauxite<br />

and producing alumina in Kimberley,<br />

Western Australia. The agreement<br />

gives Hydro a 75% share in the partnership,<br />

which must first finish the<br />

ongoing investigations by the end of<br />

2009 within a total cost framework of<br />

NOK40m (US$7.4m). If the investigation<br />

confirms commercially recoverable<br />

<strong>de</strong>posits the partners will consi<strong>de</strong>r<br />

setting up a mining company and an<br />

alumina company, which may then<br />

result in an investment <strong>de</strong>cision. A<br />

possible bauxite and alumina project<br />

in Australia is in line with Hydro’s<br />

strategy to increase the company’s<br />

primary aluminium production and<br />

step up its production of alumina.<br />

MRN reaches full<br />

bauxite mining capacity<br />

Brazilian bauxite miner Mineração<br />

Rio do Norte (MRN) has reached its<br />

full capacity production of 17.8m tpy.<br />

MRN now expects to stay at this level<br />

for the next 30 to 40 years. The company<br />

in Para state, north Brazil, has<br />

gradually increased its capacity from<br />

16.3m tpy three years ago due to process<br />

improvements. MRN is majorityowned<br />

by CVRD, followed by Alcan,<br />

Alcoa, Norsk Hydro, CBA and BHP<br />

Billiton. MRN may start mining at a<br />

new mine site in or<strong>de</strong>r to ensure continuity<br />

of its current production levels.<br />

The new mine site could involve<br />

a US$100m investment. �<br />

85


COMPANY NEWS WORLDWIDE<br />

Glencore may supply Century<br />

with 2.3m tonnes of alumina<br />

Century <strong>Alu</strong>minum Co., Monterrey,<br />

California, and Glencore International<br />

AG, Zug, Switzerland, have tentatively<br />

agreed on a five-year <strong>de</strong>al for the<br />

supply of 2.3m tonnes of alumina for<br />

Century’s smelters. A final purchase<br />

agreement is pending, according to a<br />

filing ma<strong>de</strong> by Century with the U.S.<br />

Securities and Exchange Commission.<br />

Un<strong>de</strong>r the proposed <strong>de</strong>al, Glencore<br />

would supply Century with 290,000<br />

tonnes of alumina in 2010, 365,000<br />

tonnes in 2011, 450,000 tonnes in<br />

2012 and 2013 and 730,000 tonnes in<br />

2014. The price of the alumina will<br />

be in<strong>de</strong>xed to the price of aluminium<br />

as quoted on the LME. Glencore is<br />

Century’s largest sharehol<strong>de</strong>r, owning<br />

approx. 28.6% of the company’s outstanding<br />

shares. In addition to being<br />

a supplier, the big Swiss tra<strong>de</strong>r is also<br />

a Century customer and a counterpart<br />

to its hedges.<br />

Chinese refineries<br />

to pay more for Bintan bauxite<br />

Chinese alumina refineries will pay<br />

more for bauxite from Bintan, Indonesia,<br />

in 2008, but the increase will pale<br />

in comparison to the rise of freight<br />

costs. Chandong Chiping Xinfa Huayu<br />

<strong>Alu</strong>mina Co. will face an increase of<br />

around US$5-6 per tonne for its 2008<br />

contracts with Bintan miners, This will<br />

take prices next year to around US$20<br />

per tonne fob Bintan for Chiping.<br />

Bauxite prices for Shandong Weigiao<br />

<strong>Alu</strong>minium Co. will not change much<br />

at US$18-22 per tonne fob Bintan next<br />

year. Refineries in China’s eastern<br />

Shandong province are highly <strong>de</strong>pen<strong>de</strong>nt<br />

on imported bauxites, particularly<br />

those from Indonesia. Production cost<br />

increases for refineries are mostly due<br />

to surging freight costs.<br />

Freight costs have risen US$10-<br />

15 per tonne from around mid-year.<br />

Indian bauxite annual contracts are<br />

offered at US$70-90 per tonne cif<br />

Shandong, compared to US$40-50<br />

per tonne cif Shandong in 2006. Bauxite<br />

buyers and sellers typically settle<br />

calendar-year contracts near the end<br />

of the year.<br />

Vietnam licences<br />

US$490m bauxite project<br />

The Vietnam National Coal and Mineral<br />

Industries Group has been awar<strong>de</strong>d<br />

a government licence to <strong>de</strong>velop a<br />

US$490m bauxite mining project in<br />

Lam Dong province in the country’s<br />

central highlands region. The company<br />

is aiming to produce about 600,000<br />

tpy of bauxite with a start-up date in<br />

2010. The Tan Rai bauxite mine in Bao<br />

Lam district is estimated to have a reserve<br />

of over 176m tonnes.<br />

JSW near to winning<br />

approval for alumina refinery<br />

In December JSW <strong>Alu</strong>minium was<br />

close to receiving environmental approval<br />

for its 1.6m tpy alumina refinery<br />

at Visakhapatnamin in the southern<br />

Indian state of Andhra Pra<strong>de</strong>sh.<br />

JSW will use Alcan technology at the<br />

Rs40bn (US$1bn) project. It plans to<br />

set up a refinery in the first phase<br />

along with a 90 MW power plant.<br />

The company will set up a 250,000<br />

tpy aluminium smelter in the second<br />

phase at a cost of Rs60bn (US$1.5bn).<br />

The bauxite mining project that will<br />

feed the alumina refinery is also believed<br />

to have received approval from<br />

the Forest Advisory Committee. JSW<br />

expected to complete a <strong>de</strong>tailed engineering<br />

study for the refinery project<br />

by mid-January and physical work to<br />

start by March or April 2008.<br />

Investors plan US$750m<br />

in African alumina refinery<br />

Investors are in talks with uni<strong>de</strong>ntified<br />

aluminium producers to <strong>de</strong>velop<br />

a US$750m alumina refinery in Sierra<br />

Leone. The plant may be fed with material<br />

from Port Loko, the country’s<br />

largest bauxite <strong>de</strong>posit co-owned by<br />

Boulle and Toronto-based Moydow<br />

Mines International Inc. and Titanium<br />

Resources Ltd.’s nearby Mokanji <strong>de</strong>posit.<br />

The refinery would be built near<br />

the <strong>de</strong>posits northwest of Freetown,<br />

and may yield as much as 1.5m tpy. A<br />

feasibility study could take as much as<br />

18 months. The Port Loko <strong>de</strong>posit contains<br />

about 100m tonnes of bauxite.<br />

�<br />

Recycling and secondary smelting<br />

Alcoa sells autocastings<br />

unit to private equity fund<br />

Alcoa Inc. has sold its automotive<br />

castings business to Compass Automotive<br />

Group LLC, a company owned<br />

by private equity fund Monomoy Capital<br />

Partners LP, New York. Financial<br />

terms were not disclosed. The business<br />

employs about 530 people and<br />

has two main operating locations: the<br />

Michigan Casting Centre in Fruitport,<br />

Michigan, and the Scandinavian Casting<br />

Centre in Farsund, Norway.<br />

Cohen Alloys faces closure<br />

Glasgow-based secondary aluminium<br />

ingot producer Cohen Alloys will close<br />

unless management can raise enough<br />

money to buy the company. The plant<br />

86 ALUMINIUM · 1-2/2008<br />

Photo: Hydro


is located on the Craigton industrial<br />

estate in Glasgow, and the owner of<br />

the estate is believed to be selling the<br />

land. The plant, which is owned by<br />

MacGregor & Moir, produces around<br />

140 tpw of ingot: mainly LM 6 and<br />

LM 25. This closure would reduce the<br />

amount of ingot produced in the UK<br />

by around 5,000 to 6,000 tpy. Cohen<br />

Alloys has assured customers that it is<br />

in business as usual, amid speculation<br />

over the company’s future.<br />

Rio sells Slovenian<br />

castings businesses<br />

In November 2007 Rio Tinto Alcan<br />

sold two automotive casting businesses<br />

in Slovenia to Hidria Rotomatika<br />

d.o.o. Terms of the sale were not<br />

disclosed. The company’s casting<br />

operations in Slovenia employ some<br />

170 people and had 2006 revenue of<br />

US$20m. The two units sold were Alcan<br />

Koper d.o.o., a wholly owned subsidiary<br />

that distributes aluminium die<br />

castings to European automakers, and<br />

Alcan Tomos d.o.o., in which Rio Tinto<br />

Alcan held a 67% stake and which<br />

produces aluminium die castings distributed<br />

through Alcan Koper. The<br />

businesses were no longer a strategic<br />

fit with Rio Tinto Alcan’s Engineered<br />

Products unit. Hidria, based in Spodnja<br />

Idrija in western Slovenia, is using<br />

the acquisition to expand its reach in<br />

the European automotive sector.<br />

Befasa buys Alcasa to form<br />

Europe’s third largest<br />

secondary aluminium producer<br />

Befasa is to buy <strong>Alu</strong>minio Catalan<br />

(Alcasa) to form Europe’s third largest<br />

aluminium waste recycling operation<br />

with capacity to produce<br />

150,000 tpy of secondary aluminium.<br />

The combined company estimates<br />

annual sales at €350m (US$512m)<br />

based on 2006 figures. The company<br />

will be 60% owned by Befasa and 37%<br />

by Qualitas Equity Partners, which<br />

recently bought Alcasa, with the remaining<br />

3% being held by the senior<br />

management. Befasa’s aluminium<br />

division booked sale of €228.4m in<br />

2006 and has 95,000 tpy of aluminium<br />

ALUMINIUM · 1-2/2008<br />

alloy production capacity with sites in<br />

Valladolid and Biscay in Spain, as well<br />

as two salt slag recycling operations in<br />

Spain and the UK with overall treatment<br />

of 20,000 tpy. Alcasa has 55,000<br />

tpy of capacity with sales of €117m<br />

in 2006, with an alloy treatment plant<br />

in Barcelona, and also owns Trinacria,<br />

which has a plant in Krakow, Poland,<br />

and is expected to achieve 20,000 tpy<br />

treatment capacity by 2008.<br />

Chalco expanding<br />

secondary aluminium capacity<br />

In November <strong>Alu</strong>minium Corp. of<br />

China (Chalco) is increasing its secondary<br />

aluminium alloy capacity as<br />

it gets ready to commission and then<br />

expand its Qingdao plant and then<br />

to build another plant in Guangdong<br />

province. Chalco will commission its<br />

100,000 tpy plant in Qingdao in eastern<br />

China’s Shandong province by the<br />

end of 2007. It expects to commission<br />

a second phase of 200,000 tpy – which<br />

will take the capacity of the Qingdao<br />

plant to 300,000 tpy – by 2009. Chalco<br />

is also building another secondary<br />

aluminium alloy plant in Foshan in<br />

southern China’s Guangdong province.<br />

The first phase of 110,000 tpy<br />

is slated for commissioning by the<br />

end of 2008. Capacity of the Foshan<br />

project will ultimately be 300,000 tpy,<br />

but its schedule will <strong>de</strong>pend on the<br />

progress of the first phase.<br />

UK products site to close<br />

Another UK aluminium manufactured<br />

products site at Dolgarrog in Wales<br />

looks set to close after the Welsh regional<br />

government <strong>de</strong>clined to support<br />

a management rescue plan. Dolgarrog<br />

<strong>Alu</strong>minium, which is 100 years<br />

old in 2007, is being wound down by<br />

administrators, although a search for<br />

a potential acquirer continues. The<br />

plant, an integrated casting and rolling<br />

mill, was originally part of Alcoa<br />

but was bought out by its management<br />

around five years ago. Management<br />

wanted to take full control of the<br />

plant but nee<strong>de</strong>d financial assistance<br />

from the regional government, which<br />

<strong>de</strong>clined.<br />

COMPANY NEWS WORLDWIDE<br />

Anglo Blackwells to close<br />

Anglo Blackwells is to close its<br />

Widnes UK facility, after the master<br />

alloys producer filed for administration<br />

in October 2007. The move is part<br />

of a restructuring programme implemented<br />

by its US parent company KB<br />

Alloys. Anglo Blackwells, which was<br />

established as Blackwells Metallurgical<br />

in 1869, was acquired by KB Alloys<br />

in 1995. In 2005, the company<br />

moved most of its business to China,<br />

leaving only a handful of staff at the<br />

Widnes plant in Cheshire.<br />

New Canadian secondary aluminium<br />

plant nears completion<br />

Molten <strong>Alu</strong>minium Producer Canada<br />

(MAPCAN) is nearing completion of<br />

its new secondary aluminium plant<br />

in Allison, Ontario. Mapcan is a joint<br />

venture between Honda Trading<br />

Group and Asahi Seiren Co, and will<br />

supply molten metal to the adjacent<br />

automotive engine plant. Construction<br />

of the new facility was expected<br />

to be mechanically complete by the<br />

end of last year with full production<br />

seen early spring 2008.<br />

Alcoa expands recycling capacity<br />

Alcoa has broken ground on a new<br />

US$22m project at its Can Reclamation<br />

facility at its Tennessee operations.<br />

Improvements inclu<strong>de</strong> a new<br />

crusher, new <strong>de</strong>laquering furnace,<br />

with supporting building enclosures,<br />

utilities and environmental systems.<br />

Implementation of this project will increase<br />

UBC (used beverage can) molten<br />

output capacity by nearly 50%.<br />

Alcoa projects it will recycle nearly<br />

14bn aluminium cans in 2007. The<br />

Can Reclamation project is expected<br />

to be completed over the next 12 to<br />

18 months.<br />

Rio opens new<br />

can recycling plant in France<br />

Rio Tinto Alcan has inaugurated its<br />

US$7m remelting furnace for recycling<br />

used beverage cans (UBC) �<br />

87


COMPANY NEWS WORLDWIDE<br />

and a new US$15m trimming and<br />

slitting machine for beverage can<br />

body stock at its Neuf-Brisach site in<br />

France. Alcan Speciality Sheet operations<br />

inclu<strong>de</strong> rolling and recycling operations<br />

in Neuf-Brisach and Singen<br />

in Germany as well as research and<br />

<strong>de</strong>velopment facilities in Voreppe,<br />

France, and Neuhausen, Switzerland.<br />

China’s output to reach<br />

2.8m tonnes of secondary<br />

aluminium in 2007<br />

China’s total secondary aluminium<br />

production is to reach 2.8m t in 2007,<br />

up from 2.4m tonnes in 2006. Of the<br />

projected amount, about 1.8m tonnes<br />

consist of die casting alloys. In 2008,<br />

output is expected to rise further<br />

to 2.98m tonnes, based on strong<br />

<strong>de</strong>mand and increasing scrap supply.<br />

Demand is expected to grow in<br />

the coming years, e<strong>special</strong>ly in the<br />

manufacturing sectors such as the<br />

automotive industry. Primary aluminium<br />

producers are also looking into<br />

secondary production now. By 2010,<br />

China’s secondary aluminium output<br />

may reach up to 3.6m tonnes.<br />

Alexin building aluminium<br />

billet plant in Indiana<br />

Alexin LLC, a start-up company in<br />

Bluffton, Indiana, has broken ground<br />

on a US$56m aluminium billet casting<br />

facility that is scheduled to be<br />

operational by November 2008. The<br />

plant is expected to produce more<br />

than 95,000 tpy of billet from scrap.<br />

Alexin will offer billet up to 406 mm in<br />

diameter with length up to 7360 mm.<br />

Construction has already begun in<br />

Bluffton, and all equipment has been<br />

or<strong>de</strong>red and will arrive in July 2008.<br />

Alexin will supply billet to soft alloy<br />

extru<strong>de</strong>rs.<br />

Leggett & Platt to sell<br />

aluminium business<br />

Leggett & Platt Inc., Carthage, Missouri,<br />

plans to divest its aluminum<br />

business as part of a broa<strong>de</strong>r strategy<br />

to re-focus the company’s operations.<br />

The new strategy will inclu<strong>de</strong> the divesture<br />

of six other business units as<br />

well. The company expects the sale of<br />

the aluminium business to <strong>de</strong>crease<br />

revenue by approx. US$900m, the<br />

largest chunk of the overall US$1.2bn<br />

Leggett plans to prune overall. Leggett<br />

<strong>de</strong>scribes itself as the leading in<strong>de</strong>-<br />

<strong>Alu</strong>minium semis<br />

North America<br />

Sapa Industrial Extrusions<br />

completes press upgra<strong>de</strong><br />

Sapa Industrial Extrusions has completed<br />

a US$7m rebuilding and upgra<strong>de</strong><br />

of press number nine at its<br />

Cressona, Pennsylvania plant. The<br />

project took almost a year to complete<br />

and inclu<strong>de</strong>d complete disassembly<br />

of the entire press and replacement<br />

of all wearable components. The<br />

equipment employs indirect extrusion<br />

technology with a 5,500 tonne capacity<br />

and 406 mm cylin<strong>de</strong>r size. The<br />

press and its peripheral systems are<br />

now rated to be in ‘as new’ condition.<br />

To improve reliability and control<br />

of temperature and operating speed,<br />

upgra<strong>de</strong>s inclu<strong>de</strong>d significant investment<br />

in a new furnace, press control<br />

valves and programmable logic controls.<br />

Sapa also installed new equipment<br />

for consistent stretch control<br />

and improved handling systems to<br />

protect product finish.<br />

Alcoa Defense awar<strong>de</strong>d contract<br />

for Naval Design Services<br />

Alcoa has been awar<strong>de</strong>d a contract<br />

pen<strong>de</strong>nt producer of non-automotive<br />

die castings in North America. Its aluminium<br />

group has 20 facilities in the<br />

United States and Mexico, including<br />

14 die casting plants, four tool-anddie<br />

shops and two finishing and painting<br />

facilities. Most of the sites are in<br />

the eastern half of the nation. �<br />

from the Naval Surface Warfare Center’s<br />

Car<strong>de</strong>rock Division for <strong>de</strong>sign and<br />

engineering services. These services<br />

will assist in the <strong>de</strong>velopment of selected<br />

assemblies and components<br />

of the Littoral Combat Ship (LCS)<br />

and other naval vessels, particularly<br />

high-speed craft that navigate shallow<br />

waters. The U.S. Congress fun<strong>de</strong>d the<br />

contract in recognition of the <strong>de</strong>sign<br />

and engineering services that Alcoa<br />

Defense has already provi<strong>de</strong>d to the<br />

Army and the Air Force un<strong>de</strong>r the<br />

Army Lightweight Structures Initiative<br />

and the Advance <strong>Alu</strong>minum Aerostructures<br />

Initiative.<br />

Novelis to supply sheet<br />

for GM and Chrysler vehicles<br />

Novelis Inc., Atlanta, will supply aluminium<br />

sheet to General Motors for<br />

the hoods and liftgates on the automaker’s<br />

Chevrolet Tahoe Hybrid<br />

and GMC Yukon hybrid sport utility<br />

vehicles. These two mo<strong>de</strong>ls are the<br />

world’s only full-sized hybrid SUVs.<br />

They weigh about 180 kg less than traditional<br />

mo<strong>de</strong>ls, in part because aluminium<br />

helps to reduce their weight.<br />

<strong>Alu</strong>minium is also used in the vehicles’<br />

hybrid gasoline-electric drive,<br />

88 ALUMINIUM · 1-2/2008<br />

Photo: Hydro


attery back and related equipment.<br />

The company will also supply aluminium<br />

sheet blanks for the hoods of<br />

Chrysler LLC’s 2008 Chrysler Town<br />

& Country and Dodge Caravan minivans.<br />

The contract represents the<br />

first use of aluminium for Chrysler<br />

minivan hoods. The sheet will come<br />

from Novelis’ Oswego/New York and<br />

Kingston/Ontario plants.<br />

Alcoa <strong>de</strong>dicates<br />

new production facility<br />

Alcoa Warrick operations <strong>de</strong>dicated<br />

a new lithographic cleaning line, celebrating<br />

the creation of 50 new jobs<br />

ALUMINIUM · 1-2/2008<br />

at the plant, an additional US$47m to<br />

the local tax base, and a diversification<br />

of products creating a bright future<br />

for the facility. Installation of the<br />

litho line started early in 2007. The<br />

line is <strong>de</strong>signed specifically to clean,<br />

level, and trim lithographic sheet that<br />

is used in the high end printing market<br />

for products including magazines, periodicals,<br />

brochures, and newspaper<br />

inserts.<br />

Rio Tinto Alcan sells majority<br />

of its European Service Centres<br />

Rio Tinto Alcan had received an irrevocable<br />

offer for a substantial ma-<br />

We are one of the world's leading companies in the field of high-temperature technologies and applications.<br />

With a comprehensive portfolio and innovative solutions we take an active part in our customers' future<br />

through a worldwi<strong>de</strong> sales network and service presence in Europe, North America and Asia.<br />

We are looking for internationally experienced candidates (female/male) for the following two functions<br />

High Level Sales Manager<br />

• Responsible for sales of lining products for the<br />

aluminium industry to a <strong>de</strong>fined region and selected<br />

multi-national key accounts<br />

• Negotiate long term supply contracts<br />

• Network with liaison offices and agents<br />

• Organize customers’ audits<br />

• Collaborate with Or<strong>de</strong>r Management, Supply Chain<br />

Management, and Technical Service functions<br />

• Manage contracts with engineering companies<br />

for green field and brown field aluminium smelting<br />

projects<br />

• International sales experience with the aluminum<br />

industry<br />

• Preferably knowledge about use of catho<strong>de</strong> lining<br />

products in primary aluminium smelting pots<br />

• Knowledge of market specific rules and requirements<br />

• Financial and legal un<strong>de</strong>rstanding<br />

• High level of negotiation and communication skills<br />

• Fluent in English and German<br />

Stellenanzeige / Job advertisment<br />

Technical Service Manager<br />

• Provi<strong>de</strong> worldwi<strong>de</strong> technical customer support<br />

and technical sales consulting for selected key<br />

accounts<br />

• Determine customer specific technical<br />

specifications<br />

• Advise, train and support the customers<br />

in product use<br />

• Solve application problems and manage<br />

technical claims<br />

• Collect and benchmark data on product<br />

performance<br />

• Initiate i<strong>de</strong>as for product innovation<br />

• Support sales in assessing the future <strong>de</strong>mand<br />

• Technical education, BS or MS in Engineering:<br />

Metallurgy, Ceramics, Electrical or Chemical<br />

• Professional experience in the primary aluminium<br />

smelting industry or in a related field providing<br />

technical support<br />

• Know-how in smelter <strong>de</strong>signs, technologies and<br />

operations<br />

• Team player with good presentation skills<br />

• Used to working in multicultural environments<br />

• Fluent in English and willing to travel<br />

If you are interested and wish to join a growing global player, please send your complete application, including<br />

resume, information about expected income and availability to the recruiting firm EL-Net Consulting AG.<br />

COMPANY NEWS WORLDWIDE<br />

jority of its European Service Centres<br />

distribution business from Amari Metals.<br />

Amari Metals is a private US-based<br />

company with a significant metal distribution<br />

business. Rio Tinto Alcan’s<br />

aerospace distribution business I is not<br />

inclu<strong>de</strong>d in the transaction. An operation<br />

in Spain is also exclu<strong>de</strong>d. Rio Tinto<br />

Alcan Engineered Products is concentrating<br />

its resources on businesses with<br />

good potential for growth where it can<br />

assume lea<strong>de</strong>rship positions through a<br />

differentiated product offering. Service<br />

Centres business no longer fits in<br />

this strategy. The transaction, which<br />

is subject to competitive review, is<br />

anticipated to close by the end of the<br />

first quarter of 2008. Excluding �<br />

TALENT MAKES CAPITAL DANCE<br />

www.el-netconsulting.com<br />

EL-Net Consulting AG • Schumannstrasse 2 • D-81679 München • Tel: +49 (0)89 45 55 46-0 • Fax: +49 (0)89 45 55 46-10 • mail@el-netconsulting.com<br />

89


COMPANY NEWS WORLDWIDE<br />

the aerospace distribution business<br />

and Spanish operation, Rio’s Service<br />

Centres employ approx. 800 people in<br />

32 sites and 10 countries across continental<br />

Europe. The business recor<strong>de</strong>d<br />

2006 revenues of €340m.<br />

South America<br />

<strong>Alu</strong>casa to boost output in 2008<br />

Venezuelan aluminium company<br />

<strong>Alu</strong>casa aims to reach installed capacity<br />

of 2,000 tpm in 2008 thanks<br />

to, investments in upgra<strong>de</strong>s it plans<br />

to carry out next year. <strong>Alu</strong>casa currently<br />

produces 1,700 to 1,800 tpm of<br />

thin rolled aluminium products. To<br />

reach the goal, <strong>Alu</strong>casa anticipates<br />

investments of roughly US$1.9 million<br />

in technological, environmental<br />

and social upgra<strong>de</strong>s.<br />

Europe<br />

UC Rusal to construct packaging<br />

foil plant in the Moscow region<br />

UC Rusal will construct a packaging<br />

foil plant near the city of Dmitrov in<br />

the Moscow region. The investment<br />

costs are estimated at US$20m. The<br />

plant will have an overall capacity of<br />

20,000 tpy of packaging foil and will increase<br />

UC Rusal’s share of the Russian<br />

foil packaging market by up to 66%.<br />

Construction will begin in 2008 with<br />

first production scheduled for the end<br />

of 2009. The foil for the plant will be<br />

shipped from Armenal, Sayanal, and<br />

Ural foil, UC Rusal’s major foil mills.<br />

The new plant will be equipped with<br />

technologically advance machinery<br />

from the world’s leading manufacturers<br />

of machines used for cutting,<br />

stamping, lamination, and gluing of<br />

foil products.<br />

Irish building claims<br />

two architectural awards<br />

The Source Arts Centre and Library<br />

in Southern Ireland has captured<br />

two major architectural awards. The<br />

new building incorporates a complex<br />

faça<strong>de</strong> <strong>de</strong>sign using Hydro’s Technal-<br />

brand curtain walling. The building<br />

has won an Architectural Association<br />

of Ireland (AAI) Award and the award<br />

for Best Public and Cultural Building,<br />

presented at the Irish Architecture<br />

Awards. Both awards aim to encourage<br />

the highest standards of <strong>de</strong>sign,<br />

while recognizing projects that have<br />

ma<strong>de</strong> a significant contribution to<br />

Irish architecture. The €10m riversi<strong>de</strong><br />

complex, <strong>de</strong>signed by McCullough<br />

Mulvin Architects, has provi<strong>de</strong>d the<br />

local community with a contemporary<br />

and multi-functional building.<br />

It integrates an exhibition space, a<br />

250-seat auditorium and stage, and a<br />

library and media zone.<br />

Alcoa receives<br />

NADCAP certification<br />

Alcoa has received the National Aerospace<br />

and Defence Contractors Accreditation<br />

Program’s (NADCAP) approval<br />

for ultrasonic inspection and<br />

heat-treated forged products at its<br />

Samara manufacturing facility in Russia.<br />

NADCAP is an industry-managed<br />

accreditation programme <strong>de</strong>signed to<br />

<strong>de</strong>velop a global aerospace industry<br />

supplier base with world-class quality<br />

control for <strong>special</strong> processes. The<br />

Samara plant became the second Russian<br />

production facility to acquire the<br />

right to enter the world aerospace<br />

market and work with such customers<br />

as Airbus and Boeing. Alcoa’s Belaya<br />

Kalitva heat-treated sheet and plate<br />

received NADCAP approval in summer<br />

2007.<br />

Russia’s KUMZ lands<br />

Boeing supply agreement<br />

In December JSC Kamensk Uralsk<br />

Metallurgical Works (KUMZ) of Russia<br />

and its U.S. sales agent, A.S. Mill<br />

Products Inc. (ASMP) signed a longterm<br />

supply agreement with Boeing<br />

Commercial Airplanes. KUMZ has<br />

invested more than US$100m over<br />

the past two years upgrading casting,<br />

rolling and heat-treat capabilities at<br />

its Chkalovsky plate facility. The new<br />

plant offers horizontal continuous<br />

heat treatment, electrical conductivity<br />

control, heavy gauge stretching, ultra-<br />

sonic inspection and other supporting<br />

equipment to produce high-quality<br />

aerospace plate products. KUMZ is<br />

the largest in<strong>de</strong>pen<strong>de</strong>nt producer of<br />

semi-finished aluminium products<br />

in Russia and has <strong>de</strong>veloped <strong>special</strong><br />

applications involving aluminiumlithium<br />

alloys. The plant can produce<br />

aluminium sheet up to 2,500 mm wi<strong>de</strong><br />

and 15 m long.<br />

Alcoa <strong>de</strong>livers lightweight<br />

truck bodies to Sip-Well<br />

A team from Alcoa’s Auto and Truck<br />

Structures business in Hungary <strong>de</strong>livered<br />

<strong>special</strong>ly ma<strong>de</strong> new lightweight<br />

aluminium truck bodies in three<br />

months that were <strong>de</strong>signed and built<br />

exactly to customer specifications.<br />

These new truck bodies ma<strong>de</strong> from<br />

aluminium extrusions, castings and<br />

plate from Alcoa Köfem, will save<br />

weight while increasing payload for<br />

Sip-Well of Belgium, a water cooler<br />

company which <strong>de</strong>livers water coolers<br />

and water to the home and office<br />

market segment.<br />

Asia<br />

China Zhongfu mulls<br />

US$740m aluminium plate plant<br />

China’s Zhongfu Industrial Co is consi<strong>de</strong>ring<br />

spending about 5.5bn yuan<br />

(US$740m) to expand and upgra<strong>de</strong><br />

an aluminium plate and strip plant in<br />

China’s central province of Henan. The<br />

mid-sized aluminium smelter controlled<br />

by Dutch-based Vimetco expects<br />

to complete the project in three years.<br />

The plant would have a capacity to<br />

produce 220,000 tpy of aluminium alloy<br />

sheet and strip as well as 80,000<br />

tpy of aluminium medium-thick plate.<br />

This project would replace a 170,000<br />

tpy low-gra<strong>de</strong> aluminium plate and<br />

strip plant, which had already been<br />

un<strong>de</strong>r construction.<br />

Timken supplying<br />

bearings for Chinalco rolling mill<br />

The Timken Co, Canton, Ohio, has<br />

been contracted by Siemens VAI<br />

90 ALUMINIUM · 1-2/2008


metals Technologies Ltd. to supply<br />

bearings for two aluminium rolling<br />

mills un<strong>de</strong>r construction in China<br />

for <strong>Alu</strong>minium Corp. of China (Chinalco).<br />

The terms of the contracts,<br />

which resulted in or<strong>de</strong>rs for Timken’s<br />

large bore cylindrical roller bearings,<br />

were not disclosed. Timken <strong>de</strong>signed<br />

bearings for the two Siemens mills,<br />

enabling the customer to install a<br />

successful recirculation oil system<br />

that improved thermal stability for the<br />

four-row cylindrical bearings.<br />

Sapa seeks to double<br />

capacity at Shanghai plant<br />

Heat exchanger strip maker Sapa is<br />

investing SK430m (US$68m) to double<br />

capacity to 80,000 tpy at its heat<br />

transfer plant in Shanghai, China.<br />

The investment inclu<strong>de</strong>s both property<br />

and machinery. Planning and<br />

procurement are taking place at once<br />

with consi<strong>de</strong>ration for future <strong>de</strong>mands<br />

for heat exchanger material. Another<br />

goal is to increase efficiency at the<br />

heat transfer plant in Shanghai.<br />

Ball to build<br />

beverage can plant in India<br />

Ball Corp., Broomfield, Colorado,<br />

plans to build a beverage can manufac-<br />

The Author<br />

The author, Dipl.-Ing. R. P. Pawlek is<br />

foun<strong>de</strong>r of TS+C, Technical Info Services<br />

and Consulting, Sierre (Switzerland), a<br />

new service for the primary aluminum<br />

industry. He is also the publisher of the<br />

standard works “<strong>Alu</strong>mina Refineries and<br />

Producers of the World” and “Primary<br />

<strong>Alu</strong>minium Smelters and Producers of<br />

the World”. These reference works are<br />

continually updated, and contain useful<br />

technical and economic information<br />

on all alumina refineries and primary<br />

aluminum smelters of the world. They<br />

are available as loose-leaf files and/or<br />

CD-roms from the <strong>Alu</strong>minium-Verlag,<br />

Marketing & Kommunikation GmbH in<br />

Düsseldorf as well as by online or<strong>de</strong>ring<br />

via www.alu<strong>web</strong>.<strong>de</strong> (<strong>Alu</strong>-Bookshop)<br />

from Giesel Verlag GmbH.<br />

ALUMINIUM · 1-2/2008<br />

turing plant in India near Aurangabad<br />

in the state of Maharashtra. The plant<br />

will begin operation by mid 2009 with<br />

one manufacturing line able to produce<br />

approx. 600m cans per year. The<br />

facility will be positioned strategically<br />

to supply two-piece beverage cans for<br />

the majority of existing and currently<br />

planned beverage can filling lines in<br />

India. The plant will be managed by<br />

the company’s wholly owned subsidiary<br />

Ball Packaging Europe.<br />

Chinese aluminium<br />

foil maker cancels IPO<br />

Xiashun Holdings Ltd, China’s largest<br />

maker of aluminium foil used for<br />

food and drink packages, cancelled<br />

a HK$2.1bn (US$270m) Hong Kong<br />

stock sale after the city’s key in<strong>de</strong>x<br />

had its worst month since March<br />

2004. Xiashun pulled the IPO because<br />

of <strong>de</strong>clining market conditions. The<br />

Fujian-based company became the<br />

first since June 2006 to cancel an IPO<br />

in Hong Kong because of <strong>de</strong>clining interest<br />

from buyers. Its <strong>de</strong>cision came<br />

after the Hang Seng In<strong>de</strong>x dropped<br />

Suppliers<br />

Hycast to supply casthouse<br />

equipment for Qatalum<br />

Hycast AS of Sunndalsøra has signed<br />

a letter of intent worth US$40m with<br />

Fata EPC of Italy for the supply of casting<br />

equipment for the new aluminium<br />

smelter to be built in Qatar. The agreement<br />

inclu<strong>de</strong>s <strong>de</strong>sign and supply of<br />

equipment for casting extrusion ingots<br />

and foundry alloys. Construction<br />

of the casthouse is scheduled to begin<br />

in April 2008 and equipment of Hycast<br />

is to arrive in Qatar in December<br />

2008, and will be installed over a period<br />

of one year.<br />

ABB <strong>de</strong>livers gas insulated<br />

substation to EMAL<br />

Power and automation technology<br />

group ABB has been awar<strong>de</strong>d a<br />

US$30 million contract from Emal for<br />

the supply of a gas insulated substa-<br />

COMPANY NEWS WORLDWIDE<br />

8.6% in November and as shares of six<br />

of the nine companies that completed<br />

IPOs in November tra<strong>de</strong> below their<br />

offer price.<br />

Asia <strong>Alu</strong>minium mulls<br />

extrusion facility in Middle East<br />

Asia’s largest aluminium extru<strong>de</strong>r<br />

Asia <strong>Alu</strong>minium Holdings (AAH) is<br />

mulling building an extrusion facility<br />

in the Middle East. Given AAH’s experience<br />

in the business, it could take 12<br />

to 15 months to set up a facility once<br />

a project is <strong>de</strong>ci<strong>de</strong>d. AAH has not settled<br />

on the capacity or location of the<br />

plant but the construction sector in<br />

Dubai is of good size and will continue<br />

to grow in the next five years. There<br />

is also potential in Abu Dhabi, Kuwait<br />

and Qatar. AAH has a total of 300,000<br />

to 350,000 tpy of extruding capacity<br />

in China and recently inaugurated its<br />

Zhaoqing works where it is building a<br />

400,000 tpy hot and cold rolling mill.<br />

The mill is scheduled for full commissioning<br />

by July 2008, after which<br />

it will further raise rolling capacity to<br />

700,000 tpy by 2010.<br />

�<br />

tion (GIS) for the aluminium smelter<br />

of Emirates <strong>Alu</strong>minium Co. (Emal)<br />

which is a joint venture between<br />

Abu Dhabi‘s Mubadala Development<br />

Company and Dubai <strong>Alu</strong>minium<br />

Company (Dubal). Emal’s greenfield<br />

aluminium smelter project has a total<br />

value of US$4.9bn. The smelter is being<br />

built at Al Taweelah, a site close<br />

to Abu Dhabi. Site works on the first<br />

phase of the smelter began early in<br />

2007. In 2010, when the first phase<br />

of the smelter will be completed, it<br />

will start to be operational with a capacity<br />

of approx. 700,000 tonnes per<br />

year. ABB’s contract with Emal within<br />

the first construction phase spans<br />

the supply of a GIS, the <strong>de</strong>livery of<br />

the control and protection system as<br />

well as a substation automation system<br />

(SAS). This smelter project represents<br />

Abu Dhabi‘s entry into the aluminium<br />

industry as it joins the ranks<br />

of major regional and international<br />

producers.<br />

�<br />

91


RESEARCH<br />

Multi-temperature measurement of thermoelectric<br />

power for characterisation of solute levels in<br />

multi-component industrial aluminium alloys<br />

O. Engler, M. Clark, Bonn; L. Löchte, Velbert; Z. Lok, Neuss<br />

The amount of solute elements in<br />

aluminium alloys can be assessed<br />

from measurements of the thermoelectric<br />

power (TEP). Un<strong>de</strong>r<br />

the assumption that the specific<br />

TEP signals of individual alloy<br />

elements in aluminium <strong>de</strong>pend on<br />

temperature in different ways, TEP<br />

values obtained at various temperatures<br />

can provi<strong>de</strong> a number<br />

of in<strong>de</strong>pen<strong>de</strong>nt measurements<br />

for the analysis of solute levels<br />

in multi-component alloys. This<br />

paper <strong>de</strong>scribes an advanced setup<br />

to characterise solute levels<br />

in commercial aluminium alloys<br />

by combining measurements of<br />

the electrical resistivity with TEP<br />

measurements at a number of<br />

sub-ambient temperatures.<br />

Introduction<br />

During industrial processing of aluminium<br />

alloys the level of solute<br />

atoms dissolved in the aluminium<br />

matrix is an important parameter. Elements<br />

in solid solution can increase<br />

the strength of the material, which<br />

is wi<strong>de</strong>ly used e. g. in the non-heat<br />

treatable 5xxx series Al-Mg alloys.<br />

In <strong>de</strong>formed materials, solute elements<br />

may affect softening processes<br />

(recovery and / or recrystallisation).<br />

Second-phase particles, which form<br />

from solid solution, are also known<br />

to exert strong influence on the materials<br />

behaviour during <strong>de</strong>formation<br />

and recrystallisation.<br />

However, although the solute level<br />

is an important microstructure feature<br />

by controlling several materials properties,<br />

its experimental characterisation<br />

is not that simple. The two most<br />

wi<strong>de</strong>ly used techniques inclu<strong>de</strong> measurements<br />

of the electrical resistivity<br />

and the thermoelectric power, TEP.<br />

However, both techniques only yield<br />

an integral value of solutes, but cannot<br />

distinguish between the contribu-<br />

tions of various solute elements. It was<br />

the purpose of the presented study<br />

to combine and advance these two<br />

methods, measurements of electrical<br />

resistivity and TEP measurements at<br />

various sub-ambient temperatures,<br />

into a state that industrial multi-component<br />

alloys can be characterised<br />

with regard to the solute level of up<br />

to eight elements.<br />

The measurement technique<br />

The electrical resistivity, ρ, of an alloy<br />

generally consists of two contributions,<br />

i. e. (i) a temperature-<strong>de</strong>pen<strong>de</strong>nt<br />

term ρ 0 which is in<strong>de</strong>pen<strong>de</strong>nt of<br />

the <strong>de</strong>fect <strong>de</strong>nsity, including solutes,<br />

and (ii) the temperature-in<strong>de</strong>pen<strong>de</strong>nt<br />

contribution of solute elements ρ d .<br />

This empirical observation, known as<br />

Matthiessen’s rule [1, 2], leads to the<br />

following expression of the electrical<br />

resistivity, ρ, of a dilute aluminium alloy<br />

containing several alloy elements i<br />

as a function of temperature, T:<br />

ρ (Τ,c i ss ) = ρ0 (Τ ) + Σα i c i ss + ρother<br />

i<br />

(1)<br />

ρ 0 is the resistivity of high-purity aluminium<br />

(2.65 μΩ·cm at 20°C [3, 4]);<br />

the quantities c i ss indicate the concentration<br />

of element i in solid solution.<br />

The element-specific resistivity<br />

coefficients α i can be found in the literature<br />

(e. g. [1, 4, 5]). The term ρ other<br />

summarises all other contributions<br />

from lattice <strong>de</strong>fects such as vacancies,<br />

dislocations, grain boundaries<br />

and second-phase particles. There<br />

are various means to take such effects<br />

into account (e. g. [4-7]), which,<br />

however, will not be discussed in this<br />

paper any further.<br />

The thermoelectric power, TEP, of<br />

a material is a measure of the magnitu<strong>de</strong><br />

of an induced thermoelectric<br />

voltage in response to a temperature<br />

difference across that material. When<br />

a metal is subjected to a temperature<br />

gradient, electrons at the hot end will<br />

have a higher energy than those at<br />

the cold end and will hence diffuse<br />

towards the cold end so as to lower<br />

the total energy of the system. This<br />

diffusion leads to a drop in electrical<br />

voltage, which counteracts the electron<br />

migration until finally a dynamic<br />

equilibrium is achieved. In case of a<br />

simple geometry as sketched in Fig. 1,<br />

the electrical voltage ΔV is proportional<br />

to the temperature gradient ΔT [8]:<br />

ΔV = SΔT<br />

(2)<br />

Here, S is a constant, which is also<br />

known as the Seebeck coefficient.<br />

This so-called Seebeck effect is most<br />

often used to measure temperatures<br />

by means of thermocouples, where<br />

the thermo-voltage for a given combination<br />

of materials is a measure for<br />

the applied temperature difference.<br />

For analysis of solute elements in<br />

aluminium alloys the inverse effect is<br />

utilised: Here, a constant temperature<br />

Fig. 1: Schematic representation of the<br />

experimental set-up for measuring the<br />

relative TEP ΔV for an aluminium alloy<br />

with respect to high purity aluminium<br />

electro<strong>de</strong>s after applying a temperature<br />

gradient ΔT<br />

92 ALUMINIUM · 1-2/2008<br />

Illustrations: Hydro


gradient of the or<strong>de</strong>r of 10 K is applied<br />

to the sample of interest. The resulting<br />

– rather small – thermo-voltage<br />

is a measure for the amount of lattice<br />

<strong>de</strong>fects and, most notably, alloy elements<br />

in solid solution.<br />

However, as known from thermocouple<br />

measurements, attaching a<br />

voltmeter to the material in or<strong>de</strong>r to<br />

measure the thermoelectric voltage as<br />

sketched in Fig. 1 involves junctions<br />

of different types of metal to another,<br />

so that the measured voltage is a contribution<br />

from the TEP of the material<br />

of interest and that of the electro<strong>de</strong>s.<br />

In the present case the goal is to <strong>de</strong>tect<br />

the amount of the solute alloying<br />

elements in aluminium alloys, so that<br />

the reference electro<strong>de</strong> material was<br />

chosen to be high purity aluminium.<br />

The measured relative TEP, ΔS, is<br />

then given by:<br />

ΔValloy ΔVAl ΔVmeasured ΔS = Salloy - SAl = ⎯⎯⎯ - ⎯⎯ = ⎯⎯⎯⎯<br />

ΔΤ ΔΤ ΔΤ<br />

(3)<br />

Analysis of the TEP signal of a dilute<br />

alloy in terms of the solute concentration<br />

is commonly achieved by applying<br />

the Nordheim-Gorter equation<br />

[8]:<br />

Σi ΔS i α i c i ss<br />

ΔS = ⎯⎯⎯⎯⎯ + ΔS other<br />

ρ (T, c i ss )<br />

(4)<br />

ρ is the electrical resistivity of the alloy<br />

(see Eq. 1); α i and c i ss <strong>de</strong>note the element-specific<br />

resistivity coefficients<br />

and the solute concentration of alloy<br />

element i, respectively. ΔS i are the element-specific<br />

TEP coefficients (see<br />

below), while ΔS other is a correction<br />

term for the influence of other lattice<br />

<strong>de</strong>fects, most notably dislocations.<br />

It has to be noted that both techniques<br />

– measurement of electrical<br />

resistivity and TEP – only yield an integral<br />

value of solutes, but cannot distinguish<br />

between the contributions of<br />

various solute elements. Hence, quantitative<br />

evaluations can only be ma<strong>de</strong><br />

un<strong>de</strong>r the assumption that solely one<br />

element contributes to the signal (e. g.<br />

[9-11]). Combination of the two techniques<br />

will then enable analysing the<br />

contribution of two in<strong>de</strong>pen<strong>de</strong>nt elements<br />

[12, 13]. Similarly, TEP measurements<br />

at two different temperatures<br />

has been shown to yield two in-<br />

ALUMINIUM · 1-2/2008<br />

<strong>de</strong>pen<strong>de</strong>nt signals which, in turn, also<br />

allows analysis on two different solute<br />

elements [13, 14].<br />

In the presented study these i<strong>de</strong>as<br />

were taken further by combining<br />

electrical resistivity measurements<br />

with measurements of TEP at several<br />

sub-ambient temperatures [15] into<br />

a state that industrial multi-component<br />

alloys can be characterised with<br />

regard to their solute level, for up to<br />

eight different alloying elements.<br />

Installation of a<br />

multi-temperature TEP <strong>de</strong>vice<br />

A literature survey has shown that for<br />

Al-Mg-Mn-Fe-Si the individual binary<br />

TEP signals vary significantly with<br />

both solute content and temperature<br />

(Fig. 2). It is important to note that the<br />

manner in which the TEP varies with<br />

T and c i is different for each alloying<br />

element. The mostly non-linear <strong>de</strong>pen<strong>de</strong>nce<br />

on T is seen to dominate at<br />

sub-ambient temperatures and tends<br />

to weaken when higher temperatures<br />

are reached, where the overall linear<br />

T-<strong>de</strong>pen<strong>de</strong>nce of the electrical resistivity<br />

part starts to prevail. Therefore,<br />

TEP values obtained at different subambient<br />

temperatures can in<strong>de</strong>ed<br />

provi<strong>de</strong> the required number of in<strong>de</strong>pen<strong>de</strong>nt<br />

measurements [15].<br />

Based on the above concept, a new<br />

<strong>de</strong>vice was <strong>de</strong>signed, constructed by<br />

Anatech BV, Sittard (the Netherlands)<br />

RESEARCH<br />

[16] and finally installed at the R&D<br />

Center of Hydro <strong>Alu</strong>minium in Bonn,<br />

Germany (Fig. 3). The set-up consists<br />

of two main components, (i) a <strong>de</strong>vice<br />

to establish the temperature and,<br />

most notably, the temperature gradient<br />

along the test specimen and (ii) a<br />

high-precision voltmeter to measure<br />

the resulting low voltage TEP signals<br />

with a resolution of below 0.5 nV.<br />

The Anatech TEP instrument uses<br />

two heat cells which can both be<br />

heated with an electric furnace and<br />

cooled with liquid nitrogen through<br />

a heat exchanger within the furnace<br />

block. Thus, the <strong>de</strong>vice allows measurements<br />

in a temperature range of<br />

–190°C to +400°C with a temperature<br />

stability of better than 0.01 K. The<br />

temperature difference between the<br />

two cells can be controlled between<br />

0 and 20 K, with a typical value of 10<br />

K. Samples with standard geometry<br />

used for resistivity measurements can<br />

be used for the TEP measurements as<br />

well. The samples are clamped with a<br />

small, constant mechanical pressure<br />

on the two high-purity (99.9995%)<br />

aluminium electro<strong>de</strong>s which are in intimate<br />

contact with the two heat cells<br />

(Fig. 4). The TEP signal is then gripped<br />

at these aluminium electro<strong>de</strong>s.<br />

During a typical measurement cycle<br />

a temperature difference of 10 K<br />

is applied to the two ends of the sample,<br />

i. e. to the two furnaces with the<br />

two electro<strong>de</strong>s. The cycle starts at low<br />

Fig. 2. Relative TEP ΔS for binary Al-Mg [8], Al-Mn, Al-Si and Al-Fe [13] as a function of<br />

solute level c i ss measured at various sub-ambient temperatures<br />

93


RESEARCH<br />

temperatures with the one furnace<br />

having a temperature of –175°C and<br />

the other –165°C. This configuration<br />

is kept for a couple of minutes until<br />

the measured TEP signal remains constant.<br />

Then the cells are heated up to<br />

the next measuring temperature, and<br />

this procedure is repeated for seven<br />

temperature combinations from the<br />

above-mentioned average temperature<br />

of –170°C up to room temperature<br />

(25°C). Thus, after one cycle seven<br />

TEP signals for seven temperatures<br />

are acquired.<br />

Unfortunately, only a limited<br />

number of the temperature-<strong>de</strong>pen<strong>de</strong>nt,<br />

element-specific TEP coefficients<br />

ΔS i (T) are available in the literature.<br />

Therefore, in the present study these<br />

parameters had to be measured before<br />

multi-component alloys could<br />

be analysed. For that purpose a set of<br />

binary alloys for the most important<br />

alloying elements, Si, Fe, Cu, Mn, Mg,<br />

Cr, Zn and Ti were produced, solutionised<br />

in or<strong>de</strong>r to generate a condition<br />

with the entire amount of alloying<br />

element in solid solution and finally<br />

water quenched. Then the TEP signals<br />

of the samples were <strong>de</strong>termined<br />

at seven temperatures ranging from<br />

–170°C up to 25°C, in exactly the<br />

same measuring cycle as <strong>de</strong>scribed<br />

above. Finally, for each of these temperatures<br />

and each binary alloy with<br />

a known concentration of solutes the<br />

resulting specific TEP coefficients ΔS i<br />

were calculated with the Nordheim-<br />

Gorter equation (Eq. (4)).<br />

When now an unknown multicomponent<br />

aluminium alloy is probed<br />

at seven temperatures T j , a system of<br />

seven in<strong>de</strong>pen<strong>de</strong>nt equations can be<br />

constructed:<br />

ΔS (T j ) = ΣΔS i T j (c i ss )<br />

t<br />

Fig. 4. Photograph of the specimen clamped on the high-purity aluminium<br />

electro<strong>de</strong>s and the heating / cooling cells ready for the TEP<br />

measurement<br />

Fig. 3. Photograph of the opened TEP <strong>de</strong>vice including the liquid nitrogen tank installed at<br />

Hydro’s R & D Center in Bonn, Germany.<br />

(5)<br />

An additional equation is provi<strong>de</strong>d by<br />

measurement of the electrical resistivity<br />

ρ (Eq. (1)). This set of eight equations<br />

is then solved with the help of a<br />

least-square minimisation algorithm<br />

so as to <strong>de</strong>rive the solute levels c i ss of<br />

up to eight different alloy elements.<br />

Application example<br />

In what follows the application to<br />

multi-component TEP measurements<br />

with the <strong>de</strong>scribed <strong>de</strong>vice will be illustrated<br />

for the<br />

AlFeSi alloy AA<br />

8011, which is<br />

a general-purpose<br />

alloy for<br />

many packagingapplications.<br />

Alloy AA<br />

8011 can be<br />

produced by the<br />

classical route<br />

of direct chill<br />

(DC) casting<br />

followed by hot<br />

and cold rolling<br />

or, alternatively,<br />

by twin roll<br />

casting (TRC)<br />

with subsequent cold rolling. In general,<br />

the TRC process is distinguished<br />

from conventional DC material by a<br />

much higher level of elements in supersaturated<br />

solid solution. Within the<br />

framework of the present study AA<br />

8011 sheet produced by TRC has been<br />

further processed along two routes<br />

differentiated by the amount of solute<br />

elements retained in solid solution: (i)<br />

material processed along route ‘A’ was<br />

cold rolled without inter-annealing,<br />

such that most alloy elements were<br />

retained in solid solution. In contrast,<br />

(ii) material of route ‘B’ was subjected<br />

to a high-temperature inter-annealing<br />

which was accompanied by precipitation<br />

of Si and Fe-bearing particles.<br />

Samples taken at final gauge (90 μm)<br />

were annealed so as to <strong>de</strong>termine the<br />

resistance of the two differently processed<br />

materials to softening. For that<br />

purpose, the samples were slowly heated<br />

up to various temperatures ranging<br />

from 200 to 450°C, kept at this temperature<br />

for 3 hours and finally cooled<br />

down slowly so as to mimic industrial<br />

coil annealing treatments. Fig. 5 shows<br />

the resulting mechanical properties in<br />

terms of yield strength, R p0.2 , and elongation<br />

at fracture, A 100mm , as a function<br />

of the peak metal temperature, MT.<br />

Obviously the two different processes<br />

applied largely influence the response<br />

of the material to annealing. Note that<br />

for back-annealed states (H2x) a flat<br />

softening curve is generally <strong>de</strong>sired<br />

for the sake of process stability.<br />

94 ALUMINIUM · 1-2/2008


For evaluation of the metallurgical<br />

reactions controlling the slope of the<br />

softening curve combined TEP and<br />

resistivity measurements were evaluated<br />

for the as-rolled (fully work<br />

har<strong>de</strong>ned) condition, the results are<br />

summarised in Table 1. It is evi<strong>de</strong>nt<br />

that the solute level of the most important<br />

alloy elements, Si and Fe, is<br />

significantly higher for route ‘A’ than<br />

for route ‘B’. Obviously the high-temperature<br />

inter-annealing performed<br />

in route ‘B’ leads to heavy precipitation<br />

of Si and, particularly, Fe-bearing<br />

phases, not unlike the processes<br />

occurring during homogenisation in<br />

conventional DC processing. With regard<br />

to the final gauge properties the<br />

high level of solute Si and Fe exerts a<br />

strong solute drag retarding the softening<br />

reactions, recovery and recrystallisation,<br />

in the non-inter annealed<br />

material of route ‘A’. Accordingly,<br />

back-annealing of non-inter annealed<br />

TRC sheet at a temperature of about<br />

270°C offers the possibility to attain<br />

material with a strength of about 100<br />

MPa combined with elongation values<br />

in excess of 20%.<br />

Summary and conclusions<br />

This paper <strong>de</strong>scribes an advanced<br />

set-up to characterise solute levels in<br />

aluminium alloys through measurements<br />

of the thermoelectric power<br />

(TEP) at several sub-ambient temperatures.<br />

Un<strong>de</strong>r the assumption that<br />

the specific TEP signals of individual<br />

alloy elements in aluminium display<br />

ALUMINIUM · 1-2/2008<br />

RESEARCH<br />

element Si Fe Cu Mn Mg Cr Zn Ti<br />

bulk composition 0.610 0.910 0.014 0.016 0.0013 0.013 0.005 0.022<br />

solute level, route ‘A’ 0.268 0.046 0.012 0.005 0.0008 0.009 0.004 0.004<br />

solute level, route ‘B’ 0.025 0.004 0.012 0.002 0.0008 0.002 0.004 0.019<br />

Tab. 1: Elements in solid solution for AA 8011, compared to the bulk chemical composition<br />

(in [wt%])<br />

different variation with temperature,<br />

TEP values obtained at various temperatures<br />

can provi<strong>de</strong> a number of<br />

in<strong>de</strong>pen<strong>de</strong>nt measurements for the<br />

analysis of solute levels. In the present<br />

study this i<strong>de</strong>a was implemented by<br />

<strong>de</strong>signing a set-up for automated TEP<br />

measurements in a temperature cycle<br />

from –170°C up to ambient temperature.<br />

In combination with measurements<br />

of the electrical resistivity, TEP<br />

measurements at seven temperatures<br />

allow differentiation of the solute<br />

level of up to eight alloying elements<br />

in commercial multi-component aluminium<br />

alloys.<br />

Acknowledgements<br />

This work was in part fun<strong>de</strong>d by the<br />

German Fe<strong>de</strong>ral Ministry for Education<br />

and Research (BMBF). The authors<br />

are grateful to W. D. Finkelnburg<br />

for helpful discussions.<br />

References<br />

[1] D. Altenpohl, <strong>Alu</strong>minium und <strong>Alu</strong>miniumlegierungen.<br />

Berlin: Springer-Verlag,<br />

1965.<br />

[2] P. Ólafsson, R. Sandström, Å. Karlsson,<br />

Mater. Sci. Forum 217-222 (1996) 981-986.<br />

Fig. 5. Softening diagram for AA 8011 at final foil gauge for two different processing<br />

routes (see text for <strong>de</strong>tails)<br />

[3] J. R. Cooper, Z. Vucic, E. Babic, J. Phys.<br />

F Metal. Phys. 4 (1974) 1489-1499.<br />

[4] F. Kutner, G. Lang, <strong>Alu</strong>minium 52<br />

(1976) 322-326.<br />

[5] J. E. Hatch (ed.), <strong>Alu</strong>minum: Properties<br />

and Physical Metallurgy. Metals Park, OH:<br />

ASM, 1984. 1988<br />

[6] H.-E. Ekström, Back annealing of laboratory<br />

cast AlFeSi and commercial 1200<br />

alloys: I Sample processing, tensile properties<br />

and solute content. Finspång, Swe<strong>de</strong>n:<br />

Sapa technical report D01/699, 2001.<br />

[7] G. Grimvall, Thermophysical Properties<br />

of Materials, p.268, North Holland 1986.<br />

[8] J. M. Pelletier, R. Borrely, Mater. Sci.<br />

Engng. 55 (1982) 191-202.<br />

[9] J. Hasenclever, Einfluß <strong>de</strong>r Fertigungsbedingungen<br />

dünner Bän<strong>de</strong>r auf<br />

Gefüge und mechanische Eigenschaften<br />

von AlMn-1%-Legierungen. Düsseldorf,<br />

Germany: VDI Verlag, 1990.<br />

[10] N. J. Luiggi, Mater. Trans. 28B (1997)<br />

125-133.<br />

[11] S. Tangen, K. Sjølstadt, E. Nes, T.<br />

Furu, K. Marthinsen, Mater. Sci. Forum<br />

396-402 (2002) 469-474.<br />

[12] Z. J. Lok, A. J. E. Flemming, R. G.<br />

Hamerton, S. van <strong>de</strong>r Zwaag, Mater. Sci.<br />

Forum 396-402 (2002) 457-462.<br />

[13] F. R. Boutin, S. Demarkar, B. Meyer,<br />

Proc. 7 th Int. Light Metals Congress,<br />

Leoben/Vienna. Düsseldorf: <strong>Alu</strong>minium-<br />

Verlag, 1987, p. 212-213.<br />

[14] Oscarsson, W. B. Hutchinson, H.-E.<br />

Ekström, D. P. E. Dickson, C. J. Simensen,<br />

G. M. Raynaud, Z. Metallkd. 79 (1988)<br />

600-604.<br />

[15] Z. J. Lok, Microchemistry in <strong>Alu</strong>minium<br />

Sheet Production. PhD-thesis,<br />

Delft University of Technology, Delft, The<br />

Netherlands, 2005.<br />

[16] http://www.anatech.nl/<br />

Authors<br />

Dr. Olaf Engler, senior scientist, and<br />

Michael Clark BSc, technician, are employed<br />

at the R & D Center Bonn of Hydro<br />

<strong>Alu</strong>minium Deutschland GmbH.<br />

Dr. Lothar Löchte, previous programme<br />

manager at Hydro RDB, is now with Erbslöh<br />

<strong>Alu</strong>minium GmbH, Velbert.<br />

Dr. Zacharias Lok, formerly at TU Delft,<br />

now works as a product engineer for can<br />

stock materials at <strong>Alu</strong>minium Norf GmbH,<br />

Neuss, Germany.<br />

95


RESEARCH<br />

Entstehung von CO2-Emissionen bei <strong>de</strong>r<br />

Herstellung von <strong>Alu</strong>minium-Walzprodukten vor <strong>de</strong>m<br />

Hintergrund <strong>de</strong>s nationalen Emissionshan<strong>de</strong>lssystems<br />

J. Neumeister, Neuwied<br />

Ein wesentliches Ziel <strong>de</strong>r <strong>de</strong>rzeitigen<br />

Klimapolitik ist die Reduzierung<br />

entstehen<strong>de</strong>r Treibhausgase.<br />

Mit ihr gingen in <strong>de</strong>r nahen Vergangenheit<br />

unterschiedliche Maßnahmen<br />

einher, um die durch das<br />

Kyoto-Protokoll gesteckten Ziele<br />

bis 2012 erfolgreich einhalten zu<br />

können. Das nationale Emissionshan<strong>de</strong>lssystem<br />

stellt eine dieser<br />

Maßnahmen dar. Hierüber wer<strong>de</strong>n<br />

verschie<strong>de</strong>ne Tätigkeiten <strong>de</strong>r Energiewirtschaft<br />

und <strong>de</strong>r Industrie<br />

bereits durch das Treibhausgas-<br />

Emissionshan<strong>de</strong>lsgesetz erfasst<br />

und unter einen gemeinsamen<br />

CO 2 -Cap gestellt. Um weitere Reduzierungspotenziale<br />

zu erschließen,<br />

beschäftigte sich ein durch die Aleris<br />

<strong>Alu</strong>minium Koblenz GmbH initiiertes<br />

Projekt mit einer Tätigkeit,<br />

die bisher nicht vom nationalen<br />

Emissionshan<strong>de</strong>l erfasst wur<strong>de</strong>,<br />

und zwar <strong>de</strong>r Tätigkeit zur Herstellung<br />

von <strong>Alu</strong>minium-Walzprodukten.<br />

Neben einer ausführlichen<br />

CO 2 -Prozessanalyse relevanter<br />

Herstellungsverfahren und <strong>de</strong>r integrativen<br />

Betrachtung ganzer Prozessketten<br />

wur<strong>de</strong>n Emissionswerte<br />

für unterschiedliche Produkte<br />

entwickelt (vgl. Neumeister 2007).<br />

Diese verhalfen dazu, entsprechen<strong>de</strong><br />

CO 2 -Emissionen, die bei<br />

<strong>de</strong>r Erzeugung von <strong>Alu</strong>minium-<br />

Walzprodukten anfallen, vor <strong>de</strong>m<br />

Hintergrund <strong>de</strong>s nationalen Emissionshan<strong>de</strong>ls<br />

zu beurteilen und zu<br />

bewerten.<br />

Die betrachteten Prozesse bzw. Prozessketten<br />

umfassten sämtliche relevanten<br />

Vorgänge zur Erzeugung von<br />

Bän<strong>de</strong>rn/ Blechen und Platten aus<br />

<strong>Alu</strong>minium. Im Wesentlichen waren<br />

dies Prozesse innerhalb <strong>de</strong>r Betriebsbereiche<br />

Gießerei, Warmwalzwerk,<br />

Kaltwalzwerk und Plattenfertigung.<br />

Zusätzlich wur<strong>de</strong>n noch die Bereitstellung<br />

von Druckluft, Wasser und<br />

<strong>de</strong>r energetische Bedarf von Flurför-<br />

<strong>de</strong>rzeugen analysiert. Die Grenze <strong>de</strong>r<br />

Bilanzierung stellte die Abgrenzung<br />

zur Herstellung von Bän<strong>de</strong>rn/Blechen<br />

und Platten aus <strong>Alu</strong>minium dar. Diese<br />

wur<strong>de</strong>n innerhalb <strong>de</strong>r Fertigungsbereiche<br />

so gewählt, dass Fehler durch<br />

Vernachlässigungen, Ausgrenzungen<br />

und Abschätzungen minimal waren.<br />

Die Grafik (Fig. 1) veranschaulicht<br />

bilanzierte Stoff- und Energieströme<br />

einzelner Prozesse.<br />

Die Betrachtung von Energieverbräuchen<br />

bezog sich im Rahmen <strong>de</strong>r Untersuchungen<br />

ausschließlich auf <strong>de</strong>n<br />

En<strong>de</strong>nergieeinsatz. Der energetische<br />

Einfluss folgen<strong>de</strong>r Punkte fand in<strong>de</strong>s<br />

keine Berücksichtigung:<br />

• benötigte Rohstoffe und entste-<br />

hen<strong>de</strong> Emissionen zur Erzeugung<br />

bzw. Bereitstellung von Erdgas,<br />

Diesel, Wasser und Strom durch<br />

entsprechen<strong>de</strong> Versorgungs-<br />

unternehmen<br />

• benötigte Rohstoffe und entste-<br />

hen<strong>de</strong> Emissionen zur Erzeugung<br />

bzw. Bereitstellung von Primär-<br />

aluminium und weiterer Legie-<br />

rungselemente bzw. von verwen-<br />

<strong>de</strong>tem recycelten <strong>Alu</strong>minium<br />

• menschliche Arbeit, z. B. Maschi-<br />

nenbeschickung von Hand<br />

• metabolische Arbeit, z.B. Nähr-<br />

wert von Lebensmitteln<br />

• Umweltenergie, z. B. natürliche<br />

Beleuchtung o<strong>de</strong>r Beheizung<br />

durch passive Solarenergie-<br />

nutzung.<br />

Die erfassten energetischen Daten<br />

entstan<strong>de</strong>n unter <strong>de</strong>r beson<strong>de</strong>ren<br />

Berücksichtigung eines ausgewählten<br />

Produktionsstandortes. Hierzu<br />

wur<strong>de</strong>n sowohl historische Daten im<br />

Zeitraum zwischen 2000 und 2005<br />

ausgewertet als auch unterschiedliche<br />

Messreihen zur Ermittlung<br />

energetischer Verbräuche herangezogen.<br />

Die hier gezeigten Ergebnisse<br />

basieren auf <strong>de</strong>n genannten Datenerhebungen,<br />

die rund 117 Anlagen<br />

Fig. 1: Darstellung <strong>de</strong>r berücksichtigten Stoff- und Energieströme zur Ableitung <strong>de</strong>r<br />

spezifischen En<strong>de</strong>nergieverbräuche bzw. <strong>de</strong>r entsprechen<strong>de</strong>n spezifischen CO 2 -Emissionen<br />

umfassten, zzgl. bereits existieren<strong>de</strong>r<br />

Studien (u.a. <strong>de</strong>r SFB 525).<br />

Die Bestimmung <strong>de</strong>r einzelnen<br />

CO 2 -Emissionen betrachteter Herstellungsverfahren<br />

erfolgte über die entsprechend<br />

ermittelten spezifischen<br />

En<strong>de</strong>nergieeinsätze. Unterteilt wur<strong>de</strong>n<br />

die entstehen<strong>de</strong>n CO 2 -Emissionen in<br />

prozessbedingte und energiebedingte<br />

Emissionen (vgl. ZUG 2007).<br />

Prozessbedingte Emissionen sind<br />

laut Definition „[...] alle Freisetzungen<br />

von Kohlendioxid in die Atmosphäre,<br />

bei <strong>de</strong>nen das Kohlendioxid als<br />

Produkt einer chemischen Reaktion<br />

entsteht, die keine Verbrennung ist“<br />

(§13 Absatz 2 ZUG 2007). Es konnte<br />

gezeigt wer<strong>de</strong>n, dass bei <strong>de</strong>n betrachteten<br />

Prozessen keinerlei prozessbedingte<br />

Emissionen entstehen.<br />

Energiebedingte Emissionen hingegen<br />

sind verbrennungsbedingte<br />

Emissionen. Die Berechnung dieser<br />

Emissionen erfolgt über eine Aktivitätsrate<br />

und über einen entsprechen<strong>de</strong>n<br />

Emissionsfaktor. Erfolgt die<br />

Bestimmung <strong>de</strong>r CO 2 -Emissionen<br />

96 ALUMINIUM · 1-2/2008


über einen entsprechen<strong>de</strong>n Emissionsfaktor,<br />

so wird weiterhin <strong>de</strong>r<br />

untere Heizwert in Ansatz gebracht.<br />

Wer<strong>de</strong>n die CO 2 -Emissionen über<br />

<strong>de</strong>n Kohlenstoffgehalt bestimmt, so<br />

ist ein Umsetzungsfaktor für CO 2 /C<br />

von 3,664 (EU 2004) anzusetzen. Innerhalb<br />

<strong>de</strong>r Kohlenstoffbilanz wird<br />

dabei zusätzlich zwischen biogenen<br />

und nicht-biogenen Kohlenstoffen<br />

unterschie<strong>de</strong>n. Im Rahmen dieser<br />

Arbeit wur<strong>de</strong> <strong>de</strong>r seitens <strong>de</strong>r Dehst<br />

empfohlene Faktor für Erdgas L mit<br />

0,0002015 t CO2 /kWh th zu Grun<strong>de</strong><br />

gelegt; für Diesel wur<strong>de</strong> ein Emissionfaktor<br />

von 0,000270 t CO2 /kWh th<br />

angewandt. Die hierüber ermittelten<br />

CO 2 -Frachten sind nicht biogen.<br />

Biogene Kohlendioxid-Emissionen<br />

stehen laut Definition für „Emissionen<br />

aus <strong>de</strong>r Oxidation von nicht<br />

fossilem und biologisch abbaubaren,<br />

organischen Kohlenstoff zu Kohlendioxid“<br />

(§2 Absatz 8 ZUV 2007). Mit<br />

an<strong>de</strong>ren Worten: Primärenergieträger<br />

wie Erdöl, Kohle und Erdgas bestehen<br />

aus sogenannten nicht-biogenen<br />

Kohlenstoff laut ZUV 2007 und damit<br />

nach Ansicht <strong>de</strong>r Deutschen Emissionshan<strong>de</strong>lsstelle.<br />

Anhand <strong>de</strong>s jeweiligen Emissionsfaktors<br />

erfolgt dann die Berechnung<br />

<strong>de</strong>r spezifischen CO 2 -Emissionen<br />

über die Anwendung <strong>de</strong>s unteren<br />

Heizwertes und <strong>de</strong>r entsprechen<strong>de</strong>n<br />

spezifischen Aktivitätsrate <strong>de</strong>r jeweiligen<br />

Anlagen.<br />

Als Ergebnis <strong>de</strong>r Prozessanalyse<br />

wur<strong>de</strong>n spezifische CO 2 -Emissionen<br />

unterschiedlicher Anlagen dargestellt<br />

und in verschie<strong>de</strong>nen Produktgruppen<br />

zusammengefasst. Für <strong>de</strong>n Fertigungsbereich<br />

Gießerei wur<strong>de</strong>n<br />

die Arbeitsabläufe <strong>de</strong>s Chargierens,<br />

Schmelzens, Haltens, Refinings, Gießens,<br />

Abschopfens, Fräsens und Plattierens<br />

berücksichtigt (Fig. 2). Anhand<br />

entsprechen<strong>de</strong>r Produktgruppen<br />

wur<strong>de</strong> ersichtlich, dass die entstehen<strong>de</strong>n<br />

CO 2 -Emissionen im Bereich<br />

von 0,017 bis 0,488 t CO2 /t Al liegen. Für<br />

<strong>de</strong>n Bereich <strong>de</strong>s Warmwalzwerkes<br />

wur<strong>de</strong>n die Vorgänge <strong>de</strong>s Erwärmens<br />

und Warmwalzen betrachtet. Das sich<br />

je nach Produktionsstruktur anschließen<strong>de</strong><br />

Kühlen konnte aufgrund unzulänglicher<br />

Daten nicht mit berücksichtigt<br />

wer<strong>de</strong>n. Basierend auf <strong>de</strong>r<br />

sich ergeben<strong>de</strong>n Prozesskette zeigten<br />

ALUMINIUM · 1-2/2008<br />

sich CO 2 -Emissionen von 0,023 bis<br />

0,086 t CO2 /t Al . Der im anschließen<strong>de</strong>n<br />

Schritt betrachtete Fertigungsbereich<br />

<strong>de</strong>s Kaltwalzwerkes beinhaltete die<br />

Prozesse <strong>de</strong>s Vor-, Zwischen- bzw.<br />

Fertigglühens, <strong>de</strong>s Kaltwalzens, <strong>de</strong>s<br />

Längs- und Querteilens, <strong>de</strong>s Reckens<br />

und schließlich <strong>de</strong>s Verpackens. Die<br />

CO 2 -Emissionen lagen hier im Bereich<br />

von 0,002 bis 0,305 t CO2 /t Al .<br />

Schließlich wur<strong>de</strong> noch <strong>de</strong>r Bereich<br />

<strong>de</strong>r Plattenfertigung bilanziert. Die<br />

hierbei untersuchten Prozesse erstrecken<br />

sich auf das Glühen, Kaltwalzen,<br />

Härten, Sägen, Recken und<br />

die Inspektion <strong>de</strong>r Platten. Das sich<br />

ergeben<strong>de</strong> Produktspektrum wur<strong>de</strong><br />

mit Hilfe eines allgemeinen Pro-<br />

RESEARCH<br />

duktansatzes <strong>de</strong>finiert und zeigte im<br />

Gesamten CO 2 -Emissionen von 0 bis<br />

0,409 t CO2 /t Al .<br />

Nach Abschluss <strong>de</strong>r Prozessanalyse<br />

wur<strong>de</strong> ein produktspezifischer<br />

Emissionswertebereich ermittelt.<br />

Dies erfolgte anhand <strong>de</strong>r aufgestellten<br />

spezifischen CO 2 -Emissionen unterschiedlicher<br />

Produktgruppen. Die<br />

gesamten spezifischen CO 2 -Emissionen<br />

<strong>de</strong>r Endprodukte <strong>Alu</strong>miniumband/-blech<br />

bzw. <strong>Alu</strong>miniumplatte<br />

ergaben sich über die unterschiedlichen<br />

Zusammenhänge <strong>de</strong>r einzelnen<br />

Produktgruppen. Der Übersicht<br />

halber wur<strong>de</strong>n diese in Fig. 3 dargestellt.<br />

Hierbei wur<strong>de</strong>n die maximalen<br />

Bereiche <strong>de</strong>r CO 2 -Emissionen be-<br />

Fig. 2: Ergebnis <strong>de</strong>r Prozesskettenanalyse im Fertigungsbereich <strong>de</strong>r Gießerei mit Darstellung<br />

entstehen<strong>de</strong>r CO 2 -Emissionen resultierend aus <strong>de</strong>m jeweiligen spezifischen En<strong>de</strong>nergiebedarf<br />

97


RESEARCH<br />

stimmt. Die ermittelten Bereiche an<br />

Emissionswerten ew Kaltwalzwerk und<br />

ew Plattenfertigung können die Endprodukte<br />

<strong>Alu</strong>miniumband/-blech und<br />

<strong>Alu</strong>miniumplatte repräsentieren.<br />

Hierzu gilt:<br />

ew Al-Band/Blech = (0,042 ÷ 0,879) t CO2 ⁄tAl<br />

ew Al-Platte = (0,04 ÷ 0,983) t CO2 ⁄tAl<br />

mit<br />

ew Al-Band/Blech = Produktspezifischer<br />

Emissionswert für <strong>Alu</strong>miniumbän<strong>de</strong>r/-bleche<br />

in t CO2 /t Al<br />

ew Al-Platte = Produktspezifischer Emissionswert<br />

für <strong>Alu</strong>miniumplatten in<br />

t CO2 /t Al<br />

Weiterhin sollen an dieser Stelle<br />

Einflussgrößen genannt wer<strong>de</strong>n, die<br />

mitunter maßgeblich <strong>de</strong>n zu wählen<strong>de</strong>n<br />

Emissionsbereich in unterschiedlichen<br />

Produktionsstätten beeinflussen.<br />

Diese wären im Einzelnen:<br />

(1) Technologien <strong>de</strong>r vorhan<strong>de</strong>nen<br />

Anlagen. Wesentlich beeinflusst wird<br />

<strong>de</strong>r Emissionswert hierbei durch unterschiedliche<br />

Schmelzanlagen wie<br />

regenerative, rekuperative, Kaltluft-<br />

Brenner und induktive Systeme, aber<br />

auch verwen<strong>de</strong>te Brennertypen an<br />

<strong>de</strong>n eingesetzten Glühöfen<br />

(2) Technischer Zustand <strong>de</strong>r verwen<strong>de</strong>ten<br />

Anlagen. Maßgeblich ist hier<br />

<strong>de</strong>r Zustand <strong>de</strong>r Wärmedämmung<br />

eingesetzter Ofenanlagen, aber auch<br />

<strong>de</strong>r Zustand verwen<strong>de</strong>ter Brenner<br />

(3) Schmelz- und Glühprogramme<br />

nehmen aufgrund unterschiedlicher<br />

Temperaturverläufe und festgelegter<br />

Zeiten Einfluss. Ausschlaggebend ist<br />

an <strong>de</strong>n Schmelzanlagen die vorhan<strong>de</strong>ne<br />

Fuchstemperatur und die gewählte<br />

Überführungstemperatur.<br />

Letztere nimmt wie<strong>de</strong>rum Einfluss<br />

auf <strong>de</strong>n jeweils nachgeschalteten<br />

Halteofen<br />

(4) Produktionsspezfische Einflussgrößen<br />

wie die Auslastung <strong>de</strong>r un-<br />

Fig. 3: Darstellung <strong>de</strong>r Herleitung möglicher Emissionswerte auf Basis <strong>de</strong>r aufgestellten<br />

Produktgruppen<br />

terschiedlichen Anlagen, vorhan<strong>de</strong>ne<br />

Wartezeiten voneinan<strong>de</strong>r abhängiger<br />

Anlagen, unterschiedliche Prozessketten<br />

(5) Legierungen nehmen Einfluss<br />

durch Vorgabe <strong>de</strong>r zu wählen<strong>de</strong>n<br />

Schmelz- und Glühprogramme sowie<br />

die Bestimmung <strong>de</strong>r notwendigen<br />

Walzparameter. Weiterhin sind in<br />

diesem Zusammenhang unterschiedliche<br />

physikalische Eigenschaften<br />

von Be<strong>de</strong>utung<br />

(6) Ausgangsmaterial hat Auswir-<br />

kungen aufgrund <strong>de</strong>r unterschiedlichen<br />

geometrischen Abmessungen<br />

und <strong>de</strong>r hierüber beeinflussten Wärmeübertragungsflächen<br />

innerhalb <strong>de</strong>r<br />

Öfen, aber auch innerhalb weiterer<br />

Prozesse wie <strong>de</strong>r Walzvorgänge, <strong>de</strong>s<br />

Sägens etc.<br />

Zu beachten ist, dass die hier abgebil<strong>de</strong>ten<br />

Emissionswerte <strong>de</strong>n maximal<br />

möglichen Bereich innerhalb <strong>de</strong>r<br />

Produktion von <strong>Alu</strong>minium-Walzprodukten<br />

angeben. Die oben genannten<br />

einschränken<strong>de</strong>n Kriterien sind folg-<br />

2000 2001 2002 2003 2004 2005<br />

tAl 1.420.067 1.431.031 1.544.069 1.596.788 1.632.388 1.693.858<br />

Band/Blech (0,2 – > 6mm)<br />

tCO2 Min.<br />

Max.<br />

59.643<br />

1.248.239<br />

60.103<br />

1.257.876<br />

64.851<br />

1.357.237<br />

67.065<br />

1.403.577<br />

68.560<br />

1.434.869<br />

71.142<br />

1.488.901<br />

tAl 54.146 54.240 64.589 71.350 77.659 77.544<br />

Platten (> 6mm)<br />

tCO2 Min.<br />

Max.<br />

2.166<br />

53.226<br />

2.170<br />

53.318<br />

2.584<br />

63.491<br />

2.854<br />

70.137<br />

3.106<br />

76.339<br />

3.102<br />

76.226<br />

Min. 61.809 62.273 67.434 69.919 71.667 74.244<br />

CO2-Emissionen in Summe tCO2 Max. 1.301.464 1.311.194 1.420.728 1.473.714 1.511.208 1.565.127<br />

Tab. 1: Zusammenstellung <strong>de</strong>r Ergebnisse <strong>de</strong>r Hochrechnung möglicher CO 2 -Emissionen produzierter <strong>Alu</strong>minium-Walzprodukte<br />

auf Basis <strong>de</strong>r Produktionsdaten von 2000 bis 2005 unter Anwendung <strong>de</strong>r aufgestellten Emissionswerte<br />

98 ALUMINIUM · 1-2/2008


lich bei <strong>de</strong>r Wahl <strong>de</strong>s Wertbereichs<br />

heranzuziehen.<br />

Zur Abschätzung <strong>de</strong>r Einflussnahme<br />

<strong>de</strong>r Erzeugung von <strong>Alu</strong>miniumbän<strong>de</strong>rn/-blechen<br />

und -platten auf<br />

die nationale Allokation erfolgte eine<br />

Hochrechnung in Anlehnung an die<br />

laut Gesamtverband <strong>de</strong>r <strong>de</strong>utschen<br />

<strong>Alu</strong>miniumindustrie (GDA) berichteten<br />

Produktionsdaten <strong>de</strong>r <strong>Alu</strong>miniumhalbzeuge.<br />

Die Tab. 1 fasst dies noch<br />

einmal zusammen. Analog zu <strong>de</strong>r Produktionsentwicklung<br />

erzeugter Bän<strong>de</strong>r/Bleche<br />

und Platten verzeichnet<br />

sich ein Anstieg <strong>de</strong>r CO 2 -Emissionen<br />

von 2000 mit maximal erwarteten<br />

1.301.464 t CO2 auf 2005 mit maximal<br />

1.565.127 t CO2 .<br />

Die Ergebnisse machen <strong>de</strong>utlich,<br />

dass es aufgrund <strong>de</strong>s erheblichen<br />

Spektrums an möglichen CO 2 -Emissionen<br />

<strong>de</strong>r unterschiedlichen Produkte<br />

schwer sein wird, diese mittels<br />

eines gemeinsamen Emissionswertes<br />

zusammenzufassen. Im Rahmen <strong>de</strong>s<br />

nationalen Emissionshan<strong>de</strong>ls ist es daher<br />

fraglich, ob eine Vereinheitlichung<br />

bei einer Verpflichtung <strong>de</strong>r <strong>Alu</strong>minium<br />

verarbeiten<strong>de</strong>n Industrie an <strong>de</strong>n<br />

CO 2 -Zertifikatshan<strong>de</strong>l über einen<br />

gemeinsamen Produkt-Emissionswert,<br />

sprich BVT-Produktbenchmark,<br />

erfassbar sein wird. Größere Abweichungen<br />

von einem gemeinsamen<br />

Emissionswert wür<strong>de</strong>n im Rahmen<br />

<strong>de</strong>r Zuteilung zu erheblichen Ungerechtigkeiten<br />

für einzelne Betreiber<br />

führen und somit zu einem wirtschaftlichen<br />

Ungleichgewicht beitragen. Die<br />

politische Ten<strong>de</strong>nz allerdings läuft<br />

<strong>de</strong>rzeit stark auf die Vereinheitlichung<br />

für unterschiedliche Produkte hin.<br />

Für <strong>de</strong>n <strong>Alu</strong>minium verarbeiten<strong>de</strong>n<br />

Prozess bleibt anzuraten, entwe<strong>de</strong>r<br />

auf Basis <strong>de</strong>r hier erzielten Ergebnisse<br />

und zukünftiger Analysen einen<br />

Benchmarkansatz zu entwickeln,<br />

<strong>de</strong>r mittels eines Ausgangswerts ein<br />

eingeschränkteres Spektrum als das<br />

hier ermittelte für eine Zuteilung<br />

von CO 2 -Zertifikaten vorsieht, o<strong>de</strong>r<br />

aber zu versuchen, eine Zuteilung<br />

über die Festlegung unterschiedlicher<br />

Produktgruppen zu erzielen.<br />

Auf Basis <strong>de</strong>r hier ermittelten<br />

CO 2 -Emissionen <strong>de</strong>r <strong>de</strong>utschen <strong>Alu</strong>minium-Walzwerke<br />

soll nun <strong>de</strong>r<br />

Einfluss auf die nationale Allokation<br />

kurz diskutiert wer<strong>de</strong>n. Die Anlagen<br />

ALUMINIUM · 1-2/2008<br />

<strong>de</strong>r <strong>Alu</strong>minium-Walzwerke wären in<br />

diesem Sinne als zusätzliche Neuanlagen<br />

anzusehen. Unter <strong>de</strong>r Annahme<br />

eines konstanten Mengengerüstes bei<br />

vorangegangener Einplanung dieser<br />

Anlagen von rund 11 Mio. t CO2 laut<br />

NAP II soll diese Menge für die weitere<br />

Beurteilung herangezogen wer<strong>de</strong>n.<br />

Ebenfalls wird bei <strong>de</strong>r Betrachtung<br />

sowohl von <strong>de</strong>n maximal als<br />

auch minimal möglichen CO 2 -Emissionen<br />

ausgegangen. Bezieht man diese<br />

für 2005 ermittelten CO 2 -Emissionen<br />

von 74.244 t CO2 bis 1.565.127 t CO2 auf<br />

<strong>de</strong>n laut ZUG 2012 vorgegebenen<br />

CAP für zusätzliche Anlagen, so ergibt<br />

sich ein Anteil von rund 0,67 bis<br />

14,2%. Dies wür<strong>de</strong> be<strong>de</strong>uten, dass bei<br />

<strong>de</strong>n jährlichen Zertifikatsmengen <strong>de</strong>r<br />

Jahre 2008 bis 2012 für die zusätzlichen<br />

Anlagen bis 14,2% <strong>de</strong>r Mengen<br />

auf die <strong>de</strong>utschen <strong>Alu</strong>minium-Walzwerke<br />

entfallen könnten.<br />

Legt man an dieser Stelle das ermittelte<br />

Maximum <strong>de</strong>r hochgerechneten<br />

CO 2 -Emissionen für eine Zuteilung<br />

ohne die Berücksichtigung etwaiger<br />

anteiliger Kürzungen zu Grun<strong>de</strong><br />

und stellt dieses <strong>de</strong>n übrigen Tätigkeiten<br />

nach TEHG 2004 für das Jahr<br />

2005 gegenüber (vgl. Tab. 2), so lässt<br />

sich erkennen, dass die angefallenen<br />

Mengen, zusammen mit <strong>de</strong>n aus <strong>de</strong>n<br />

keramischen Erzeugnissen und <strong>de</strong>r<br />

Zellstoffproduktion resultieren<strong>de</strong>n<br />

Emissionen, im unteren Bereich zu<br />

fin<strong>de</strong>n sind.<br />

Hierbei darf nicht außer Acht gelassen<br />

wer<strong>de</strong>n, dass Tätigkeiten wie<br />

die Erzeugung von Zellstoff mit rund<br />

305.828 t CO2 bereits am Han<strong>de</strong>lssystem<br />

teilnehmen und somit aktiv an<br />

<strong>de</strong>r Einhaltung <strong>de</strong>r getroffenen Min<strong>de</strong>rungspflichten<br />

mitwirken. Kuhn/<br />

RESEARCH<br />

Tätigkeit CO2- Emissionen [tCO2/a] Feuerungsanlagen 380.531.645<br />

Roheisen und Stahl 32.155.159<br />

Raffinerien 23.761.135<br />

Zementklinker 20.433.336<br />

Kalk 9.672.669<br />

Papier, Karton, Pappe 4.710.677<br />

Glas 3.928.428<br />

Keramische Erzeugnisse 1.883.097<br />

<strong>Alu</strong>minium Walzprodukte 1.565.127<br />

Zellstoff 305.828<br />

Tab. 2: Gegenüberstellung <strong>de</strong>r maximal erwarteten CO 2-Zertifikatsmengen für die Tätigkeit<br />

<strong>de</strong>r Erzeugung von <strong>Alu</strong>minium-Walzprodukten im Jahr 2005 zu <strong>de</strong>n weiteren Tätigkeiten<br />

im nationalen Emissionshan<strong>de</strong>l nach TEHG 2004.<br />

Thielen 2003 berufen sich in diesem<br />

Zusammenhang auf die Min<strong>de</strong>rung<br />

spezifischer CO 2 -Emissionen und<br />

die hierüber eingehaltene Selbstverpflichtung<br />

<strong>de</strong>r <strong>Alu</strong>miniumindustrie<br />

am Beispiel <strong>de</strong>r Firma <strong>Alu</strong>minium<br />

Norf GmbH in Neuss. Eine Min<strong>de</strong>rung<br />

<strong>de</strong>r CO 2 -Emissionen bezieht sich im<br />

Sinne <strong>de</strong>s nationalen Emissionshan<strong>de</strong>ls<br />

allerdings nicht auf spezifische<br />

CO 2 -Emissionen, son<strong>de</strong>rn stets auf<br />

absolute Mengen. Die Senkung <strong>de</strong>r<br />

spezifischen CO 2 -Emissionen ist somit<br />

stets <strong>de</strong>r Entwicklung <strong>de</strong>r Produktionsmengen<br />

gegenüberzustellen.<br />

Die durchgeführte Bilanzierung am<br />

Beispiel <strong>de</strong>s betrachteten <strong>Alu</strong>minium-Walzwerkes<br />

hingegen zeigte eine<br />

jährliche Zunahme <strong>de</strong>r gesamten<br />

CO 2 -Emissionen im Mittel <strong>de</strong>r Jahre<br />

2000 bis 2006 von rund 1,4%.<br />

Abschließend ist festzuhalten,<br />

dass eine mögliche Teilnahme <strong>de</strong>r<br />

Tätigkeiten zur Erzeugung von <strong>Alu</strong>minium-Walzprodukten<br />

keine gravieren<strong>de</strong><br />

Auswirkung auf die gesamte<br />

nationale Allokation haben wird. So<br />

könnte sich diese allerdings in <strong>de</strong>r Anpassung<br />

<strong>de</strong>s zugrun<strong>de</strong> gelegten Erfüllungsfaktors<br />

äußern. Die zusätzlichen<br />

Mengen wären mitunter auf die bisher<br />

teilhaben<strong>de</strong>n Unternehmen umzulegen.<br />

Inwiefern dies hin zu einer<br />

verstärkten Verkürzung <strong>de</strong>s Marktes<br />

führt, bleibt abzuwarten. Vermutlich<br />

wer<strong>de</strong>n zusätzlich über CDM- und<br />

JI-Maßnahmen generierte Zertifikate,<br />

die innerhalb <strong>de</strong>r zweiten Han<strong>de</strong>lsperio<strong>de</strong><br />

von 2008 bis 2012 bis zu einem<br />

Anteil von 22% (vgl. ZUG 2012 §18<br />

Satz 1) genutzt wer<strong>de</strong>n können um<br />

die Abgabepflicht zu erfüllen, diesen<br />

Verkürzungseffekt ausgleichen.<br />

Eine im Rahmen dieses Projektes<br />

99


NEW BOOKS<br />

entstan<strong>de</strong>ne Dissertation mit <strong>de</strong>m<br />

Thema „CO 2 -Prozessanalyse von<br />

<strong>Alu</strong>minium-Walzprodukten und Ansätze<br />

für eine CO 2 -arme Produktion“<br />

(Neumeister 2007) wird En<strong>de</strong> <strong>de</strong>s<br />

ersten Quartals 2008 veröffentlicht.<br />

Diese beschäftigt sich neben <strong>de</strong>r hier<br />

erwähnten Ableitung von Emissionswerten<br />

für <strong>Alu</strong>minium-Walzprodukte<br />

auch hinsichtlich <strong>de</strong>r Einhaltung <strong>de</strong>s<br />

nationalen Klimaschutzziels mit Möglichkeiten<br />

<strong>de</strong>r CO 2 -Min<strong>de</strong>rung innerhalb<br />

<strong>de</strong>r Produktionabläufe von <strong>Alu</strong>minium-Walzwerken<br />

und berücksichtigt<br />

dabei auch erstmals die Anwendung<br />

einer CO 2 -Abscheidung. Diese Thematik<br />

wird in <strong>de</strong>r nächsten Ausgabe<br />

dieser Zeitschrift aufgegriffen.<br />

Quellen<br />

(1) ZUG 2007: „Gesetz über <strong>de</strong>n nationalen<br />

Zuteilungsplan für Treibhausgas-Emissionsberechtigungen<br />

in <strong>de</strong>r Zuteilungsperio<strong>de</strong><br />

2005 bis 2007“, Bun<strong>de</strong>sgesetzblatt, Jg.<br />

2004, Teil I Nr. 45, Bonn 30.08.2004.<br />

(2) ZUG 2012: „Gesetz zur Än<strong>de</strong>rung <strong>de</strong>r<br />

Rechtsgrundlagen zum Emissionshan<strong>de</strong>l<br />

im Hinblick auf die Zuteilungsperio<strong>de</strong><br />

2008 bis 2012“, Bun<strong>de</strong>sgesetzblatt, Jg.<br />

2007, Teil I Nr. 38, Bonn 10.08.2007.<br />

(3) ZUV 2007: „Verordnung über die Zuteilung<br />

von Treibhausgas-Emissionsberechtigungen<br />

in <strong>de</strong>r Zuteilungsperio<strong>de</strong> 2005<br />

bis 2007“, Bun<strong>de</strong>sgesetzblatt, Jg. 2004, Teil<br />

I Nr. 46, Bonn 31.08.2004.<br />

(4) TEHG 2004: „Gesetz zur Umsetzung<br />

<strong>de</strong>r Richtlinie 2003/87/EG über ein System<br />

für <strong>de</strong>n Han<strong>de</strong>l mit Treibhausgasemissionszertifikaten<br />

in <strong>de</strong>r Gemeinschaft“,<br />

Bun<strong>de</strong>sgesetzblatt, Jg. 2004, Teil I<br />

Nr. 35, Bonn 14.07.2004.<br />

(5) Kuhn; Thielen 2003: „Fachberichte-<br />

Energieeinsparung und CO 2-Min<strong>de</strong>rung<br />

in einem integrierten <strong>Alu</strong>minium-Walzwerk“,<br />

P. Kuhn, St. Thielen, in: Gaswärme<br />

International, Bd. 52 Nr. 8, Gaswärme Institut,<br />

Essen 2003, S.508- 514.<br />

(6) EU 2004: „Entscheidung <strong>de</strong>r Komission<br />

vom 29/01/2004 zur Festlegung von Leitlinien<br />

für Überwachung und Berichterstattung<br />

betreffend Treibhausgasemissionen<br />

gemäß <strong>de</strong>r Richtlinie 2003/87/EG <strong>de</strong>s<br />

Europäischen Parlaments und <strong>de</strong>s Rates“,<br />

Komission <strong>de</strong>r Europäischen Union, Brüssel<br />

29.01.2004.<br />

(7) Neumeister 2007: „CO 2-Prozessanalyse<br />

von <strong>Alu</strong>minium-Walzprodukten und<br />

Ansätze für eine CO 2-arme Produktion“,<br />

J. Neumeister, Eingereichte Dissertation<br />

an <strong>de</strong>r Fakultät für Maschinenwesen <strong>de</strong>r<br />

Ruhr Universität Bochum, Bochum 2007.<br />

(8) Son<strong>de</strong>rforschungsbereich SFB 525,<br />

Ressourcenorientierte Gesamtbetrach tung<br />

von Stoffströmen metallischer Rohstoffe,<br />

RWTH Aachen, 1997-2002, Aachen.<br />

Autor<br />

Pre-painted <strong>Alu</strong>minium in Exterior Architecture<br />

This book is meant to be an introduction<br />

to a subject, which so<br />

far has not been covered in <strong>de</strong>tail<br />

in technical or architectural professional<br />

literature. The segment<br />

of surface-treated, semi-finished<br />

aluminium rolled products for<br />

high-tech, post-formable architectural<br />

applications since more than<br />

40 years has grown into a sizable<br />

business and has increased substantially<br />

in complexity.<br />

Conventional education on the engineering<br />

or architectural si<strong>de</strong> can<br />

hardly cope with the pace of new<br />

i<strong>de</strong>as and <strong>de</strong>velopments constantly<br />

coming up in this innovative industry.<br />

Therefore, the book is inten<strong>de</strong>d to<br />

provi<strong>de</strong> a not too scientific, up-to-date<br />

and systematic overview (as of 2007)<br />

of facts and data compiled from various<br />

sources. Also, mo<strong>de</strong>rn means of<br />

information have been integrated for<br />

further studies or research of the latest<br />

<strong>de</strong>velopments by means of electronic<br />

means (internet research / email addresses)<br />

via respective tra<strong>de</strong> names or<br />

relevant industry publications, which<br />

usually tend to be close to the latest<br />

<strong>de</strong>velopments.<br />

The book can be used as reference<br />

and study gui<strong>de</strong> by a wi<strong>de</strong> range of<br />

professionals. The focus is on architects,<br />

specifiers, planners, consultants,<br />

building owners, metal buil<strong>de</strong>rs or<br />

procurement personnel as well as on<br />

apprentices, trainees and newcomers<br />

to the subject. A general overview is<br />

given about the specific range of prepainted<br />

aluminium rolled products<br />

for exterior architecture from fabrication<br />

of the semi-finished product to<br />

installation of the finished products.<br />

Rea<strong>de</strong>rs will become familiar with the<br />

comprehensive technical terms used<br />

in this market segment, while <strong>de</strong>cision<br />

makers will be enabled to differentiate<br />

between the options between<br />

respective technologies and qualities<br />

Dipl.-Ing. Jens Neumeister studierte Maschinenbau<br />

an <strong>de</strong>r Fachhochschule Koblenz<br />

(Vertiefungsrichtung Energie- und<br />

Umwelttechnik), mit nachfolgen<strong>de</strong>m<br />

Er gänzungsstudium an <strong>de</strong>r Technischen<br />

Uni versität Clausthal. Sein Promotionsverfahren<br />

zum Dr.-Ing. wird in Kürze abgeschlossen<br />

sein. Seit 2006 betreibt er das<br />

Ingenieurbüro Neumeister in Neuwied<br />

mit <strong>de</strong>n Schwerpunkten energetische<br />

Beratung im industriellen Kraftwerksbereich/Papierindustrie<br />

sowie Unternehmensbetreuung<br />

im CO 2-Zertifikathan<strong>de</strong>l.<br />

In <strong>de</strong>r Zeit von 2006 bis zum Jahreswechsel<br />

2008 war Neumeister in <strong>de</strong>r Abteilung<br />

„Technische Dienste“ <strong>de</strong>r Aleris <strong>Alu</strong>minium<br />

Koblenz GmbH in Koblenz tätig, in <strong>de</strong>r<br />

er das hier vorgestellte Projekt leitete. In<br />

dieser Zeit schrieb er seine Dissertation,<br />

die vom Lehrstuhl für Energiesysteme und<br />

Energiewirtschaft <strong>de</strong>r Ruhr-Universität<br />

Bochum betreut wur<strong>de</strong>.<br />

resulting from that.<br />

An insight is being given into the<br />

versatility of pre-painted aluminium<br />

for roof and wall claddings. The variety<br />

of applications is shown to un<strong>de</strong>rstand<br />

the technical aspects, which<br />

should lead to economical construc-<br />

100 ALUMINIUM · 1-2/2008


tions with their specific advantages<br />

of pre-painted rolled products versus<br />

other options. There are differences<br />

in <strong>de</strong>signs, product philosophies and<br />

qualities leading to individual solutions<br />

and price levels of the end products<br />

installed.<br />

As pre-painted aluminium sheets<br />

are expected to have a larger share in<br />

architecture than before this book is<br />

inten<strong>de</strong>d to illustrate the advantages<br />

Handbuch zur Industriellen Bildverarbeitung<br />

Die Fraunhofer-Allianz Vision, Erlangen,<br />

hat anlässlich ihres 10-jährigen<br />

Jubiläums das „Handbuch<br />

zur Industriellen Bildverarbeitung<br />

– Qualitätssicherung in <strong>de</strong>r Praxis“<br />

herausgegeben. Das Buch<br />

gibt einen Überblick über die industrielle<br />

Qualitätssicherung mit<br />

automatischer Bildverarbeitung<br />

und ist sowohl zur Unterstützung<br />

von Entscheidungsträgern als auch<br />

von Anwen<strong>de</strong>rn gedacht. Neben<br />

Fachaufsätzen komplettieren eine<br />

Anbieterübersicht und ein Referenzteil<br />

zu Fachliteratur, Fachzeitschriften,<br />

Messen, Veranstaltungen<br />

usw. das Handbuch.<br />

Die Leitfa<strong>de</strong>n-Reihe zur Bildverarbeitung<br />

<strong>de</strong>r Fraunhofer-Allianz Vision<br />

hat sich in <strong>de</strong>n letzten Jahren fest<br />

etabliert. In <strong>de</strong>r Vergangenheit wur<strong>de</strong><br />

jährlich ein Leitfa<strong>de</strong>n herausgegeben,<br />

<strong>de</strong>r jeweils einen Aspekt neuer<br />

Entwicklungen in <strong>de</strong>r industriellen<br />

Bildverarbeitung in möglichst verständlicher<br />

Form unter Einbindung<br />

von Praxisbeispielen beleuchtet hat.<br />

Anlässlich <strong>de</strong>s 10-jährigen Jubiläums<br />

<strong>de</strong>r Allianz erscheint statt eines Leitfa<strong>de</strong>ns<br />

dieses komplette Buch, das<br />

das aktuelle Wissen <strong>de</strong>r industriellen<br />

Bildverarbeitung bün<strong>de</strong>lt. Beson<strong>de</strong>re<br />

Beachtung fin<strong>de</strong>n auch die zukunftsträchtigen<br />

und noch nicht so verbreiteten<br />

Techniken zur Inspektion unter<br />

<strong>de</strong>r Oberfläche und zur berührungslosen<br />

dreidimensionalen Vermessung<br />

von Werkstücken bis in <strong>de</strong>n Nanometerbereich<br />

<strong>de</strong>r Oberflächenstrukturen.<br />

Das Buch bietet eine anwendungsbezogene<br />

Mischung aus Theorie und<br />

ALUMINIUM · 1-2/2008<br />

of pre-painted aluminium rolled<br />

products, <strong>de</strong>signed for <strong>de</strong>corative<br />

purposes. Rea<strong>de</strong>rs will profit from<br />

this accumulated know-how and be<br />

encouraged to consi<strong>de</strong>r pre-painted<br />

aluminium sheets to be an interesting<br />

and advantageous option in their<br />

planning consi<strong>de</strong>rations for exterior<br />

roof and wall claddings.<br />

The author Fred-Ro<strong>de</strong>rich Pohl is<br />

an acknowledged expert whose busi-<br />

Praxis. Die Beiträge stammen von erfahrenen<br />

Wissenschaftlern und sind<br />

nicht nur für Anwen<strong>de</strong>r, son<strong>de</strong>rn<br />

auch für Ingenieure und Studieren<strong>de</strong><br />

interessant, bei <strong>de</strong>nen Überlegungen<br />

zum praktischen Einsatz <strong>de</strong>r Techniken<br />

in <strong>de</strong>r industriellen Umgebung<br />

im Vor<strong>de</strong>rgrund stehen.<br />

Im ersten Teil wer<strong>de</strong>n zunächst einige<br />

Grundlagen <strong>de</strong>r Bildverarbeitung<br />

vorgestellt. Der Bogen spannt sich von<br />

technischen Voraussetzungen über<br />

Wirtschaftlichkeitsbetrachtungen bis<br />

hin zu praktischen Tipps für <strong>de</strong>n Einsatz<br />

von Bildverarbeitungssystemen<br />

im Betrieb. Es folgen ein Überblick<br />

über momentan verfügbare Bild-Sensoren<br />

(Zeile, Matrix, CMOS, Röntgen,<br />

3-D, Infrarot usw.) sowie über Optiken<br />

und Beleuchtung. Abgeschlossen wird<br />

<strong>de</strong>r erste Teil mit Betrachtungen zum<br />

Thema Software.<br />

Die folgen<strong>de</strong>n Kapitel behan<strong>de</strong>ln<br />

anwendungsbezogene Themen. Die<br />

Einteilung orientiert sich an <strong>de</strong>r Fragestellung,<br />

was bzw. welcher Bereich<br />

von Werkstücken geprüft wer<strong>de</strong>n<br />

soll (also Oberflächen, Abmessungen<br />

usw.) und wie (also mit welcher Prüfmetho<strong>de</strong>)<br />

die Prüfung stattfin<strong>de</strong>n soll.<br />

Zunächst geht es um die äußerliche<br />

Prüfung von Werkstücken: Oberflächenprüfung<br />

und Charakterisierung<br />

von Mikrostrukturen auf Oberflächen.<br />

Danach wer<strong>de</strong>n Metho<strong>de</strong>n<br />

<strong>de</strong>r berührungslosen Messtechnik<br />

vorgestellt, mit <strong>de</strong>nen Werkstücke<br />

dreidimensional vermessen und auf<br />

Maßhaltigkeit geprüft wer<strong>de</strong>n können.<br />

Anschließend wer<strong>de</strong>n dann<br />

Metho<strong>de</strong>n beschrieben, mit <strong>de</strong>nen<br />

man Bereiche in Werkstücken, die<br />

äußerlich nicht sichtbar sind, unter-<br />

NEUE BÜCHER<br />

ness career has been closely connected<br />

with the promotion of pre-painted<br />

aluminium for architectural purposes<br />

for many <strong>de</strong>ca<strong>de</strong>s.<br />

F.-R. Pohl, Pre-Painted <strong>Alu</strong>minium<br />

in Exterior Architecture, ISBN 978-<br />

87017-288-6, 1. edition 2007, 160 p., €<br />

67,- plus shipping costs. This book can<br />

also be or<strong>de</strong>red via Giesel Verlag <strong>web</strong>site:<br />

www.alu<strong>web</strong>.<strong>de</strong> (<strong>Alu</strong>-Bookshop).<br />

suchen kann. Zum einen können mit<br />

Wärmefluss-Thermographie Fehler<br />

unterhalb <strong>de</strong>r Oberfläche <strong>de</strong>tektiert<br />

o<strong>de</strong>r auch Schichtdicken vermessen<br />

wer<strong>de</strong>n. Zum an<strong>de</strong>ren erlaubt die<br />

Röntgentechnik die Untersuchung<br />

und Vermessung <strong>de</strong>s Inneren von<br />

Werkstücken. Schließlich wird noch<br />

ein Blick in die Zukunft geworfen:<br />

Die Terahertz-Tomographie befin<strong>de</strong>t<br />

sich noch im Entwicklungsstadium,<br />

verspricht aber für die Zukunft interessante<br />

und insbeson<strong>de</strong>re die Röntgentechnik<br />

ergänzen<strong>de</strong> Perspektiven,<br />

<strong>de</strong>nn THz-Strahlung durchdringt Papier,<br />

Keramiken und Kunststoffe und<br />

wird von metallischen Leitern und<br />

Wasser absorbiert. Vorteilhaft gegenüber<br />

Röntgenstrahlung ist, dass diese<br />

Strahlung extrem energiearm und somit<br />

nichtionisierend ist.<br />

Im Anschluss an <strong>de</strong>n Textteil<br />

folgt das Kapitel „Anbieter-Porträts“.<br />

Maßgebliche Firmen, die Systeme<br />

und Lösungen zur Bildverarbeitung<br />

und optischen Messtechnik anbieten,<br />

wer<strong>de</strong>n hier in standardisierter<br />

Form porträtiert, so dass <strong>de</strong>r Leser<br />

bei Bedarf geeignete Kontaktdaten<br />

und Adressen zur Hand hat. Den<br />

Abschluss bil<strong>de</strong>t das Kapitel „Referenzen“<br />

mit einer Zusammenstellung<br />

wichtiger Quellen zur Bildverarbeitung<br />

wie Fachliteratur, Zeitschriften,<br />

Messen und Veranstaltungen.<br />

Handbuch zur Industriellen Bildverarbeitung<br />

– Qualitätssicherung in <strong>de</strong>r<br />

Praxis, Fraunhofer IRB Verlag, 513<br />

S., geb., 4-farbig, ISBN: 978-3-8167-<br />

7386-3, Preis € 52,00. Bezug: Büro <strong>de</strong>r<br />

Fraunhofer-Allianz Vision (vision@<br />

fraunhofer.<strong>de</strong>) o<strong>de</strong>r Buchhan<strong>de</strong>l.<br />

101


VERANSTALTUNGEN<br />

Review<br />

Incal 2007 – 3rd International Conference on <strong>Alu</strong>minium<br />

21 to 23 November 2007, Hy<strong>de</strong>rabad, India<br />

In his keynote address Presi<strong>de</strong>nt<br />

of <strong>Alu</strong>minium Association of India,<br />

Debu Bhattacharya (also Managing<br />

Director of Hindalco Industries<br />

Ltd., the aluminium major in<br />

India) spoke about India’s role in<br />

the aluminium world of tomorrow.<br />

He referred to India as a <strong>de</strong>sired<br />

<strong>de</strong>stination, the attractiveness of<br />

India as a manufacturing centre<br />

and the aluminium industry’s role<br />

in India. The attractiveness of the<br />

aluminium industry in India and<br />

its potential set the tone for the<br />

other lectures to follow.<br />

An exhibition with spread over 2,000<br />

m 2 of space and over 50 participating<br />

exhibitors and a conference with 12<br />

plenary lectures and 44 presentations<br />

in 2 parallel session threads were offered<br />

to the more than 700 <strong>de</strong>legates.<br />

The plenary talk of ‘Development<br />

of <strong>Alu</strong>minium in India: Science and<br />

Technology Roadmap’ by M. Goel of<br />

the governmental Department of Science<br />

and Technology gave some vital<br />

facts and figures: present annual<br />

production exceeds 1.2m tonnes, targeted<br />

production is 6m tonnes in the<br />

year 2020. The “need for <strong>de</strong>veloping<br />

an integrated technology roadmap for<br />

addressing energy efficiency concerns<br />

and promotion of environmentally<br />

friendly technologies” was highlighted.<br />

An in-<strong>de</strong>pth analysis of <strong>de</strong>mand<br />

and supply of various commodities<br />

and with particular focus on aluminium<br />

was presented by Paul Robinson<br />

of CRU UK. The challenges to the<br />

downstream industries in aluminium<br />

was brought out in <strong>de</strong>tail by Richard<br />

Brandtzaeg, Norsk Hydro. Conspicuous<br />

in other plenary sessions was the<br />

importance given to issues related to<br />

energy and environment; e<strong>special</strong>ly<br />

the carbon credit scheme presented<br />

by C. Cornier, a representative from<br />

the World Bank, on ‘Carbon finance<br />

business-Al sector in India’ attracted a<br />

lively discussion. Other plenary talks<br />

<strong>de</strong>alt with the current state of the art<br />

and trends in the aluminium industry.<br />

The exposition on automotive applications<br />

by K. H.von Zengen, EAA, was<br />

received with great interest.<br />

The papers presented in the parallel<br />

regular sessions covered the entire<br />

range of topics in the areas of production<br />

and recycling of aluminium,<br />

extrusion, dies, castings and forging.<br />

Over 60 percent of contributions by<br />

overseas speakers – notably those<br />

from the U. S. and Europe – in the<br />

sessions gave the conference a very<br />

international character.<br />

The organisers ma<strong>de</strong> an excellent<br />

job of the conference and fair by offering<br />

technical sessions and an exhibition<br />

of the highest standards and<br />

a forum for concerted interaction<br />

and personal networking to the participants.<br />

An extensive coverage by<br />

print and visual media ensured that<br />

a<strong>de</strong>quate attention was drawn to the<br />

programme not only within the participants,<br />

but the outsi<strong>de</strong> public in India<br />

as well. The forum was exten<strong>de</strong>d<br />

to the light cultural programmes and<br />

banquets. The facilities offered by the<br />

Hy<strong>de</strong>rabad International Convention<br />

Centre and the adjoining five star hotel<br />

ma<strong>de</strong> the conference memorable<br />

not only in terms of exchange of information<br />

and i<strong>de</strong>as concerning technical<br />

and economic issues but also in<br />

terms of convenience and comfort.<br />

As was mentioned in the closing<br />

session, those who missed Incal 2007<br />

will have to wait for the next Incal in<br />

2011. For <strong>de</strong>tails of Incal 2007 see<br />

http://www.aluminium-india.org/IN-<br />

CAL_07.pdf or contact aai@aluminium-india.org<br />

RWTH Update-Seminar<br />

Einführung in die Technologie <strong>de</strong>s <strong>Alu</strong>miniums<br />

11. bis 13. Februar 2008, Aachen<br />

Das aec – aluminium engineering<br />

center aachen, die RWTH International<br />

Aca<strong>de</strong>my GmbH und <strong>de</strong>r Gesamtverband<br />

<strong>de</strong>r <strong>Alu</strong>miniumindustrie e. V.<br />

(GDA) veranstalten gemeinsam ein<br />

weiteres Mal das Fortbildungsseminar<br />

„Einführung in die Technologie<br />

<strong>de</strong>s <strong>Alu</strong>miniums“ in verschie<strong>de</strong>nen<br />

Instituten <strong>de</strong>r RWTH.<br />

Auch diesmal referieren namhafte<br />

Professoren <strong>de</strong>r RWTH Aachen über<br />

die Metallurgie, Herstellung, Verar-<br />

beitung und Anwendung von <strong>Alu</strong>minium.<br />

Ergänzt wer<strong>de</strong>n die Vorträge<br />

durch praktische Versuche. Im Laufe<br />

<strong>de</strong>r Veranstaltung wird, ausgehend<br />

von metallkundlichen Grundlagen,<br />

die gesamte Prozesskette durchlaufen,<br />

angefangen von <strong>de</strong>r Erzeugung<br />

von Primäraluminium über Gießprozesse,<br />

<strong>de</strong>r Umformung von <strong>Alu</strong>miniumbän<strong>de</strong>rn<br />

bis hin zur Beschichtung<br />

und Prüfung fertiger Bauteile.<br />

Die Teilnehmer erhalten sowohl<br />

M. Pandit, Kaiserslautern<br />

auf theoretischer als auch auf praktischer<br />

Ebene einen umfassen<strong>de</strong>n<br />

Überblick über die einzelnen Glie<strong>de</strong>r<br />

in <strong>de</strong>r Prozesskette. Bei erfolgreicher<br />

Teilnahme stellen die Veranstalter<br />

eine Teilnahmeurkun<strong>de</strong> aus.<br />

Das Seminar richtet sich in erster<br />

Linie an Naturwissenschaftler, Ingenieure<br />

und Techniker aus <strong>de</strong>r <strong>Alu</strong>miniumindustrie<br />

und <strong>de</strong>r <strong>Alu</strong>minium<br />

verarbeiten<strong>de</strong>n Industrie ohne ausgeprägten<br />

werkstoffwissenschaftlichen<br />

102 ALUMINIUM · 1-2/2008


Hintergrund, eignet sich aber auch<br />

für Kaufleute z. B. aus Vertrieb und<br />

Einkauf, die sich einen technischen<br />

Überblick über <strong>de</strong>n Werkstoff <strong>Alu</strong>minium<br />

verschaffen wollen.<br />

Metals: Energy, Emissions and<br />

the Environment Conference<br />

11 to 12 February 2008, Brussels<br />

In the European metals industry, energy<br />

and climate change are high on<br />

the agenda. Both pose enormous challenges<br />

and threats, none more so than<br />

the risk of migration of European primary<br />

production. The conference will<br />

discuss key issues including: energy<br />

costs and impact on production and<br />

competitiveness, current and future<br />

regulation challenging the European<br />

metals industry, metals as innovative<br />

and sustainable materials, life-cycle<br />

<strong>de</strong>velopments, waste legislation and<br />

much more.<br />

Further information:<br />

Metal Bulletin Events<br />

Tel: +44 (0)20 7779 8989<br />

conferences@metalbulletin.com<br />

www.metalbulletin.com<br />

8. KBU – Kolloquium zu Wirtschaft<br />

und Umweltrecht<br />

28. bis 29. Februar 2008, Aachen<br />

Die gemeinsame Tagung <strong>de</strong>s Lehr- und<br />

Forschungsgebiets Berg- und Umweltrecht<br />

<strong>de</strong>r RWTH Aachen sowie <strong>de</strong>r<br />

GDMB Gesellschaft für Bergbau, Metallurgie,<br />

Rohstoff- und Umwelttechnik<br />

steht unter <strong>de</strong>r Thematik „10 Jahre<br />

Berg- und Umweltrecht: Habitatschutz<br />

– Mineralische Abfälle – Emissionshan<strong>de</strong>l“.<br />

Im Rahmen <strong>de</strong>r Entsorgung<br />

bergbaulicher Abfälle gilt es nach wie<br />

vor, die Richtlinie bergbauliche Abfälle<br />

umzusetzen. Der Emissionshan<strong>de</strong>l<br />

geht nunmehr in die zweite Run<strong>de</strong>,<br />

so dass sich die Auswirkungen auf die<br />

verschie<strong>de</strong>nen Branchen <strong>de</strong>utlicher<br />

zeigen. Hinzu kommt, dass scharfe<br />

Anfor<strong>de</strong>rungen aus <strong>de</strong>m Habitat- und<br />

Vogelschutz bergbaulichen Projekten<br />

Probleme bereiten o<strong>de</strong>r sie ganz blockieren.<br />

Hierzu wer<strong>de</strong>n auch Reformvorschläge<br />

präsentiert und bewertet.<br />

Weitere Infos:<br />

GDMB-Geschäftsstelle<br />

ALUMINIUM · 1-2/2008<br />

Weitere Informationen und Anmel<strong>de</strong>unterlagen:<br />

RWTH International Aca<strong>de</strong>my:<br />

Lydia Schnei<strong>de</strong>r<br />

Tel.: 0241 8020 708<br />

Tel: +49 (0)5323 9379 0<br />

eMail: gdmb@gdmb.<strong>de</strong><br />

www.gdmb.<strong>de</strong><br />

Ferrous & Non-ferrous Scrap Metal<br />

27 to 28 February 2008, Moscow<br />

The conference is <strong>de</strong>dicated to the<br />

issues of metal scrap recycling, price<br />

formation, and consumption in Russia<br />

and overseas. Direct networking<br />

and exchange of views will encourage<br />

the expansion of mutually beneficial<br />

cooperation between scrap metal recyclers<br />

and metallurgists. Participants<br />

are leading scrap metal collectors and<br />

recyclers, basic scrap metal consumers<br />

– steel works, tube plants, transport<br />

and logistics companies, scrap<br />

metal exporters of Russia, the CIS,<br />

and overseas. There will be arranged<br />

simultaneous translation into Russian<br />

and English.<br />

Further information:<br />

Rusmet.Ru Ltd.<br />

Tel: +7 495 980 0608<br />

lom@rusmet.ru<br />

www.lom.rusmet.ru<br />

14th Bauxite and <strong>Alu</strong>mina Seminar<br />

3 to 5 March 2008, Miami, USA<br />

Jointly organised by Industrial Minerals<br />

and Metal Bulletin, the 14th Bauxite<br />

and <strong>Alu</strong>mina seminar will provi<strong>de</strong> the<br />

forum in which to examine and <strong>de</strong>bate<br />

the key issues that will be influencing<br />

market dynamics for this important<br />

segment of the aluminium supply chain<br />

over the coming years. Key topics to be<br />

discussed are: alumina – latest global<br />

pressures and balances; bauxite – exploration<br />

and prospective; aluminium<br />

consolidation – impact and the implication<br />

for alumina supplies and tra<strong>de</strong><br />

flows; costs of alumina production –<br />

how to reduce the costs and maximize<br />

the production; logistics – problems<br />

and emerging trends; sustainability<br />

and environment issues – challenges<br />

ahead for the industry.<br />

EVENTS<br />

lydia.schnei<strong>de</strong>r@rwth-aca<strong>de</strong>my.com<br />

GDA:<br />

Wolfgang Heidrichw<br />

Telefon: 0211 4796 271<br />

wolfgang.heidrich@aluinfo.<strong>de</strong><br />

Further information:<br />

Metal Bulletin Events<br />

Tel: +44 (0)20 7779 8989<br />

conferences@metalbulletin.com<br />

www.metalbulletin.com<br />

LASYS – Messe für Systemlösungen<br />

in <strong>de</strong>r Laser-Materialbearbeitung<br />

4. bis 6. März 2008, Stuttgart<br />

Die weltweite Nachfrage nach Lasersystemen<br />

zur Materialbearbeitung<br />

steigt rapi<strong>de</strong> an und ist Ausdruck ständig<br />

erweiterter Einsatzbereiche <strong>de</strong>r<br />

Lasertechnik. Hier setzt die LASYS an:<br />

Sie zeigt Systeme und Verfahren für die<br />

ganze Palette <strong>de</strong>r Bearbeitungsformen<br />

– Schweißen, Schnei<strong>de</strong>n, Bohren, Löten,<br />

Beschriften u.v.m. – mit Laser.<br />

Damit ist sie Marktplatz und zugleich<br />

branchenübergreifen<strong>de</strong> Kommunikationsplattform.<br />

Die Messe wen<strong>de</strong>t<br />

sich an die Investitionsgüterindustrie,<br />

OEMs sowie Zulieferer. Einen Schwerpunkt<br />

<strong>de</strong>r Auftaktveranstaltung bil<strong>de</strong>n<br />

die Wirtschaftszweige, die <strong>de</strong>n Messestandort<br />

Stuttgart prominent prägen:<br />

Automobil- und -zulieferindustrie,<br />

Maschinen- und Anlagenbau, metallbearbeiten<strong>de</strong><br />

und -verarbeiten<strong>de</strong><br />

Industrie, Medizintechnik, Feinwerkund<br />

Präzisionstechnik.<br />

Weitere Infos:<br />

Lan<strong>de</strong>smesse Stuttgart GmbH<br />

Tel: +49 (0)711 2589 0<br />

info@messe-stuttgart.<strong>de</strong><br />

www.messe-stuttgart.<strong>de</strong><br />

TMS 2008<br />

9 to 13 March 2008, New Orleans, USA<br />

When materials scientists and engineers<br />

from 70 countries gather for the<br />

TMS 2008, the focus will be on sharing<br />

research and technology to find materials<br />

solutions to some of the world’s<br />

most pressing problems. More than<br />

2,000 papers will be presented by authors.<br />

Among the challenges they will<br />

address are: Resolving technology and<br />

techno-management issues for the pro-<br />

103


VERANSTALTUNGEN<br />

duction of aluminium, metal casting,<br />

steel, automotive and electronic materials;<br />

Stabilizing climate change and<br />

reducing greenhouse gas emissions;<br />

Optimizing energy utilization; Developing<br />

materials for high-performance<br />

applications; Achieving process improvement<br />

for a variety of materials<br />

un<strong>de</strong>r a variety of conditions; Preparing<br />

future materials scientists and engineers.<br />

These issues and others will<br />

be presented in 56 symposia covering<br />

the four major themes of light metals;<br />

extraction, processing, structure and<br />

properties; emerging materials; and<br />

materials and society.<br />

Further information:<br />

TMS Meetings Services<br />

724 776 9000<br />

mtgserv@tms.org<br />

www.tms.org<br />

3rd International Conference on<br />

High Speed Forming<br />

11 to 13 March 2008, Dortmund, GER<br />

Objectives and topics of the ICHSF<br />

2008 conference are: process technologies<br />

(electromagnetic, explosive<br />

and shock wave forming, combined<br />

processes), tools and equipment (tool<br />

<strong>de</strong>sign and manufacturing, machine<br />

<strong>de</strong>sign, pulsed power equipment), energy<br />

(process efficiency, emissions, life<br />

cycle analysis), materials and measurement<br />

techniques (material characteristics<br />

and behaviour, high speed testing<br />

methods, process monitoring, quality<br />

assurance), mo<strong>de</strong>lling and simulation<br />

(finite and boundary element method,<br />

physical mo<strong>de</strong>lling, analytical techniques,<br />

contact and impact mo<strong>de</strong>lling),<br />

industrial applications (e. g. automotive,<br />

aerospace, electrical industry,<br />

chemical industry).<br />

Further information:<br />

ICHSF 08<br />

Tel: +49 (0)231 755 - 6917, - 5238<br />

ichsf@iul.uni-dortmund.<strong>de</strong><br />

www.ichsf.iul.uni-dortmund.<strong>de</strong><br />

Euroguss und Internationaler<br />

Deutscher Druckgusstag<br />

11. bis 13. März 2008, Nürnberg<br />

Euroguss, die internationale Fachmesse<br />

für Druckgießtechnik ist auf Erfolgskurs.<br />

Sie hat nicht nur bei Fläche und<br />

Neuausstellern im Vergleich zur Veranstaltung<br />

2006 zugelegt, auch das Interesse<br />

<strong>de</strong>r internationalen Aussteller<br />

ist groß. Parallel zur Fachausstellung<br />

fin<strong>de</strong>t <strong>de</strong>r 8. Internationale Deutsche<br />

Druckgusstag statt, auf <strong>de</strong>m drei Tage<br />

lang hochkarätige Vorträge gehalten<br />

wer<strong>de</strong>n. Der Druckgusstag wird nun<br />

auch in <strong>de</strong>n Euroguss-freien Jahren<br />

in Nürnberg stattfin<strong>de</strong>n. Veranstalter<br />

ist <strong>de</strong>r i<strong>de</strong>elle Träger <strong>de</strong>r Messe, <strong>de</strong>r<br />

Fortbildung<br />

REACH – Das neue EU-Chemikalienrecht, 15. Februar 2008, Köln<br />

TÜV Nord Aka<strong>de</strong>mie, Tel: +49 (0)221 945352 0, akd-k@tuev-nord.<strong>de</strong>,<br />

www.tuevnordaka<strong>de</strong>mie.<strong>de</strong><br />

Schutztextilien, 19. Februar 2008, Altdorf<br />

Technische Aka<strong>de</strong>mie Wuppertal, Tel: +49 (0)202 7495 0, taw@taw.<strong>de</strong>,<br />

www.taw.<strong>de</strong><br />

Woche <strong>de</strong>r Oberflächentechnik an <strong>de</strong>r FH Hannover: Vorbehan<strong>de</strong>ln<br />

zur Verbesserung <strong>de</strong>r Haftung, 19. bis 20. Februar 2008, Hannover<br />

Weiterbildung und Technologietransfer, Tel: +49 (0)511 9296 1020,<br />

weiterbildung@fh-hannover.<strong>de</strong>, www.fh-hannover.<strong>de</strong><br />

Woche <strong>de</strong>r Oberflächentechnik an <strong>de</strong>r FH Hannover: Adhäsions-<br />

und Haftungsprüfung, 21. Februar 2008, Hannover<br />

Weiterbildung und Technologietransfer, Tel: +49 (0)511 9296 1020,<br />

weiterbildung@fh-hannover.<strong>de</strong>, www.fh-hannover.<strong>de</strong><br />

Produkthaftung – Risiken in Deutschland, Europa und USA,<br />

27. bis 28. Februar 2008, Regensburg<br />

OTTI Ostbayer. Technologie-Transfer-Institut, Tel: +49 (0)941 29688 26,<br />

hannelore.skobjin@otti.<strong>de</strong>, www.otti.<strong>de</strong><br />

Einführung in die Metallkun<strong>de</strong> für Ingenieure und Techniker,<br />

4. bis 7. März 2008, Darmstadt<br />

DGM Deutsche Gesellschaft für Materialkun<strong>de</strong> e.V., Tel: +49 (0)69 75306 757,<br />

np@dgm.<strong>de</strong>, www.dgm.<strong>de</strong><br />

Hightech-Klebstoffe und ihre Anwendungen, 10. bis 11. März 2008,<br />

Wuppertal<br />

Technische Aka<strong>de</strong>mie Wuppertal, Tel: +49 (0)202 7495 0, taw@taw.<strong>de</strong>,<br />

www.taw.<strong>de</strong><br />

Wirtschaftliche und technologische Aspekte endkonturnaher<br />

Fertigungsverfahren, 11. bis 12. März 2008, Düsseldorf<br />

VDI-Wissensforum GmbH, Tel: +49 (0)211 6214 201, wissensforum@vdi.<strong>de</strong>,<br />

www.vdi-wissensforum.<strong>de</strong><br />

Vom Mitarbeiter zur Führungskraft – Kompetenz und Souveränität<br />

von Anfang an, 11. bis 12. März 2008, Berlin<br />

TÜV Nord Aka<strong>de</strong>mie, Tel: +49 (0)30 201774 47, akd-b@tuev-nord.<strong>de</strong>,<br />

www.tuevnordaka<strong>de</strong>mie.<strong>de</strong><br />

Schweißgerechtes Konstruieren, 13. bis 14. März 2008, Köln<br />

VDI-Wissensforum GmbH, Tel: +49 (0)211 6214 201, wissensforum@vdi.<strong>de</strong>,<br />

www.vdi-wissensforum.<strong>de</strong><br />

Verband Deutscher Druckgießereien<br />

(VDD) in Kooperation mit <strong>de</strong>m Verein<br />

Deutscher Gießereifachleute (VDG).<br />

Weitere Infos:<br />

Nürnberg Messe GmbH<br />

Tel +49 (0)911 8606 0<br />

euroguss@nuernbergmesse.<strong>de</strong><br />

www.euroguss.<strong>de</strong><br />

104 ALUMINIUM · 1-2/2008


Lin, Q.; Peng, D.; Li, Y.; Lin, G.<br />

A study on the hot <strong>de</strong>formability of 2519 aluminum<br />

alloy at elevated temperatures<br />

Light Metal Age, Oktober 2007, S. 46-49<br />

The hot <strong>de</strong>formability of 2519 aluminum alloy un<strong>de</strong>r elevated<br />

temperatures was studied by the analysis of true stress-strain<br />

curves and observation of the <strong>de</strong>formed microstructures<br />

with an optical microscope (OM) and a transmission electron<br />

microscope (TEM). Compression tests were performed on a<br />

Gleeble-1500 thermal simulator at the <strong>de</strong>formation temperature<br />

range from 300°C to 500°C and at a strain rate range of<br />

0.05s -1 to 25s -1 . The experimental results showed that the flow<br />

stress of 2519 aluminum alloy increases with increasing strain<br />

and tends to be constant after a peak value at lower strain<br />

rates of ε


LITERATURSERVICE<br />

einen Bruchteil <strong>de</strong>r bei <strong>de</strong>r Primärgewinnung benötigten<br />

Energie aus. Beim Recycling haben jedoch Magnesiumlegierungen<br />

<strong>de</strong>n Nachteil, dass es bisher keine <strong>de</strong>finierten Sekundärlegierungen<br />

wie bei <strong>de</strong>n <strong>Alu</strong>miniumlegierungen gibt.<br />

Die Untersuchungen <strong>de</strong>s Gießverhaltens, <strong>de</strong>r mechanischen<br />

Eigenschaften und <strong>de</strong>r Korrosionseigenschaften <strong>de</strong>r neuen Sekundärlegierung<br />

AZC1231 zeigen, dass die bisher bestehen<strong>de</strong><br />

Lücke im Recycling von Magnesiumlegierungen mit dieser Legierung<br />

geschlossen wer<strong>de</strong>n konnte. Es ist nunmehr möglich,<br />

sowohl Altschrott als auch durch Kupfer und Nickel verunreinigte<br />

Magnesiumlieferungen durch einfaches Umschmelzen<br />

zu recyceln. Nachteilig wirkt sich die <strong>de</strong>utlich geringere<br />

Duktilität im Vergleich zu AZ91 aus. 16 Bild., 7 Tab., 10 Qu.<br />

ALUMINIUM 1/2 (2008) Recycling<br />

Karaaslan, A.; Lus, M.<br />

Rissvermeidung bei <strong>de</strong>r schmelzmetallurgischen Herstellung<br />

einer SiC-partikelverstärkten <strong>Alu</strong>miniumlegierung<br />

A6063<br />

MP Materials Testing 49 (2007) 11-12, S. 603-605<br />

Leichtmetall-Verbundwerkstoffe gewinnen aufgrund ihrer<br />

mechanisch-technologisch verbesserten Eigenschaften gegenüber<br />

<strong>de</strong>n unverstärkten Matrixwerkstoffen zunehmend<br />

an Be<strong>de</strong>utung. Die vorliegen<strong>de</strong> Arbeit befasst sich mit <strong>de</strong>r<br />

pulvermetallurgischen Herstellung eines mit Siliziumkarbid<br />

verstärkten <strong>Alu</strong>miniumpulvers. Ein beson<strong>de</strong>rs gutes Ergebnis<br />

wur<strong>de</strong> durch <strong>de</strong>n Zusatz von 12 Volumenprozent Siliziumkarbid<br />

beobachtet. Im Rahmen <strong>de</strong>r Untersuchungen wur<strong>de</strong>n<br />

neben <strong>de</strong>m Volumenanteil <strong>de</strong>r SiC-Teilchen auch die Gieß-<br />

und Formtemperatur variiert, um bei <strong>de</strong>r Herstellung von Verbundwerkstoffen<br />

die Verteilung <strong>de</strong>s SiC in <strong>de</strong>r Metallmatrix<br />

zu optimieren. 4 Bild., 2 Tab., 7 Qu.<br />

ALUMINIUM 1/2 (2008) Pulver<br />

Ji, J.; Jasnau, U.; Seyffarth, P.<br />

Gefügeverbesserung im Schweißgut beim Nd:<br />

YAG-Laserstrahl-MSG-Hybridschweißen von<br />

<strong>Alu</strong>miniumlegierungen<br />

Schweißen und Schnei<strong>de</strong>n 59 (2007) Heft 11, S. 608-612<br />

In <strong>de</strong>n bisherigen vier Teilen <strong>de</strong>r Veröffentlichungsreihe<br />

stan<strong>de</strong>n bei <strong>de</strong>r Qualitätssicherung von Nd:YAG-Laserstrahl-<br />

MSG-Hybridschweißverbindungen an <strong>Alu</strong>miniumlegierungen<br />

die Nahtformparameter, die Porenfreiheit und die Gewährleistung<br />

<strong>de</strong>r gefor<strong>de</strong>rten Einbrandtiefe im Zentrum. Da<br />

das Hybridschweißen eine verän<strong>de</strong>rte Wärmeeinbringung<br />

gegenüber <strong>de</strong>m reinen Laserschweißen mit sich bringt, ist die<br />

Frage <strong>de</strong>r Gefügebeeinflussung ebenfalls von Interesse für die<br />

Optimierung <strong>de</strong>r Nahteigenschaften. Insbeson<strong>de</strong>re ist zu untersuchen,<br />

inwieweit beim Laserstrahlhybridschweißen eine<br />

unzulässige Kornvergröberung auftritt. 7 Bild., 10 Qu.<br />

ALUMINIUM 1/2 (2008) Verbin<strong>de</strong>n<br />

Dragulin, D.; Franke, R.; Hoffmann, O.; Fischer, D.; Dragulin, M.<br />

<strong>Alu</strong>minium-Druckgusslegierung: Praktische Aspekte <strong>de</strong>s<br />

thermomechanischen Verhaltens <strong>de</strong>r AlSi10MnMg<br />

Druckgusspraxis 7/2007, S. 274-278<br />

Die Legierung AlSi10MnMg weist ausgesprochen gute mechanische<br />

Eigenschaften, insbeson<strong>de</strong>re Dehnung, im T7-Zustand<br />

auf und ist dadurch eine optimale Lösung für viele Strukturteile,<br />

die durch <strong>de</strong>n Druckgussprozess hergestellt wer<strong>de</strong>n<br />

können. Zu dieser Klasse gehört die Legierung Silafont-36 von<br />

<strong>Alu</strong>minium Rheinfel<strong>de</strong>n, die höhere Werte als eine Standard-<br />

AlSi10MnMg erreicht.<br />

Particular physical properties and certain thermo-physical<br />

processes have been examined for the predominantly utilised<br />

pressure die-casting alloy – AlSi10MnMg, as used in<br />

the car industry. As a result, an in-<strong>de</strong>pth study was carried out,<br />

which chiefly concentrated upon the thermo-elastic effect of<br />

this alloy, and upon its thermal effect in its zone of plasticity,<br />

as well as the elastic energy generated during <strong>de</strong>formation<br />

within this elasticity band. The study also entailed in-<strong>de</strong>pth<br />

analysis of its modulus with respect to tough show that the<br />

alloy – AlSi10MnMg – features an outstanding array of physical<br />

properties (e<strong>special</strong>ly with elongation in the T7 state) and<br />

therefore provi<strong>de</strong>s an optimum solution for many structural<br />

components, which can be produced by way of the pressure<br />

die-casting process. The alloy – Silafont-36 – produced by<br />

<strong>Alu</strong>minium Rheinfel<strong>de</strong>n, which attains even greater values<br />

than those provi<strong>de</strong>d by using standard AlSi10MnMg, belongs<br />

to this calssification. 8 Bild., 2 Tab., 2 Qu.<br />

ALUMINIUM 1/2 (2008) Werkstoffe, Metallkun<strong>de</strong><br />

Modulares Druckgusskonzept für leichte <strong>Alu</strong>minium-<br />

Zylin<strong>de</strong>rkurbelgehäuse<br />

Automotive Materials, 6/2007, S. 24-26<br />

Für die kostengünstige Herstellung von Zylin<strong>de</strong>rkurbelgehäusen<br />

aus <strong>Alu</strong>minium bietet sich <strong>de</strong>r Druckguss an. Das Verfahren<br />

beschränkt sich bisher auf die Open-Deck-Bauweise<br />

einschließlich <strong>de</strong>r damit bauartbedingt gegebenen geringeren<br />

Steifigkeit. Einen interessanten Lösungsansatz für „Downsizing“-Motoren<br />

präsentiert die KS <strong>Alu</strong>minium-Technologie AG<br />

mit ihrem hoch flexiblen, serienfähigen „modularen Druckgusskonzept“.<br />

Hierbei kompensieren einzelne Konzeptbausteine<br />

prinzipbedingte Nachteile <strong>de</strong>s herkömmlichen Druckgusses.<br />

Das Konzept ist generell geeignet, sehr große Mengen<br />

hochwertiger Al-Zylin<strong>de</strong>rkurbelgehäuse darzustellen.<br />

ALUMINIUM 1/2 (2008) Druckguss<br />

Zak, O.; Zak, H.; Tonn, B.<br />

Einsatz von rasch erstarrten Vorlegierungen zur Feinung<br />

<strong>de</strong>s Primärsiliziums übereutektischer AlSi17Cu4Mg-<br />

Legierung<br />

Druckgusspraxis 7/2007, S. 303-308<br />

Die im Rahmen dieser Arbeit gewonnenen neuen Erkenntnisse<br />

zeigen, dass <strong>de</strong>finierte Zusätze an Zirkonium ein<br />

enormes Potenzial für die Weiterentwicklung von AlSi-Standardlegierungen<br />

besitzen. In Versuchen mit <strong>de</strong>r technischen<br />

Legierung AlSi17Cu4Mg konnte die Größe <strong>de</strong>r Primärsiliziumkristalle<br />

von 40-50 μm (Stand <strong>de</strong>r Technik) auf 18 μm<br />

reduziert wer<strong>de</strong>n. Dieser Effekt wur<strong>de</strong> erreicht, in<strong>de</strong>m die<br />

feinen<strong>de</strong> Wirkung <strong>de</strong>s Phosphors durch gezielte Zugabe <strong>de</strong>s<br />

Zirkoniums, welches in Form einer schnell erstarrten Vorlegierung<br />

AlZr1,3 zum Einsatz kam, unterstützt wur<strong>de</strong>. Die Vorlegierung<br />

AlZr1,3 wur<strong>de</strong> an einer vertikalen Stranggießanlage<br />

mit einer Abkühlungsgeschwindigkeit von etwa 500 bis 600<br />

K/s hergestellt und erfor<strong>de</strong>rt dank feiner Gefügeausbildung<br />

und hohen Anteilen an in <strong>Alu</strong>minium-Matrix gelöstem Zirkonium<br />

beim Einsatz keine Überhitzung <strong>de</strong>r Schmelze und keine<br />

längere Haltezeiten. Durch kombinierte Zirkonium-und Phosphorzugabe<br />

konnte bei einem Phosphorgehalt von 100 ppm<br />

zusätzlich zur Feinung <strong>de</strong>s Primärsiliziums ein lamellares<br />

AlSi-Eutektikum und damit eine <strong>de</strong>utliche Verbesserung <strong>de</strong>r<br />

Festigkeitseigenschaften im Gusszustand um 35 Prozent erzielt<br />

wer<strong>de</strong>n, die bei <strong>de</strong>r Standardlegierung AlSi17Cu4Mg erst<br />

nach <strong>de</strong>r Wärmebehandlung T6 erreicht wer<strong>de</strong>n können.<br />

New possibilities in influencing the micro-structure of hypereutectic<br />

AlSi17Cu4Mg, used for pistons and engine blocks,<br />

are presented in this report, so that this material can meet the<br />

increased <strong>de</strong>mands imposed by the automobile industry. The<br />

basic concept for the examinations, which were conducted<br />

for this purpose, focused upon the fact that the smelts are to<br />

be treated by means of rapidly solidifying AISi14- and AlZr1<br />

har<strong>de</strong>ning alloys, and that the effect of these har<strong>de</strong>ning alloys<br />

upon the primary silicon phase nee<strong>de</strong>d to be examined<br />

individually as well as jointly in conjunction with phospho-<br />

106 ALUMINIUM · 1-2/2008


us. It shows that the har<strong>de</strong>ning alloys that were utilised, the<br />

microstructures of which <strong>de</strong>viate consi<strong>de</strong>rably from those of<br />

the bulk alloy materials, effect a notable refinement of the<br />

primary silicon in the AlSi17Cu4Mg alloy. It was discovered<br />

that upon adding the rapidly solidifying AlZr1,3 alloy, together<br />

with phosphorus, a particularly marked effect was able to be<br />

accomplished upon the primary silicon, and as a consequence<br />

of this, has proven to have had an effect upon the physical<br />

properties of the AlSi17Cu4Mg alloy, even in the state when it<br />

is cast. The same comparable level of physical properties can<br />

only be attained for “standard” alloy after T6 heat treatment<br />

has been carried out. 7 ill., 3 tables., 19 sources.<br />

ALUMINIUM 1/2 (2008) Werkstoffe<br />

Blauel, J. G.; Pfeiffer, W.; Varfolomeyev, I.; Veneziano, C.<br />

Bruchmechanische Bewertung von rissbehafteten<br />

Schweißkonstruktionen mit Eigenspannungen<br />

MP Materials Testing 49 (2007) 11-12, S. 577-587<br />

Die Anwendung bruchmechanischer Konzepte bei <strong>de</strong>r<br />

Festigkeitsbewertung von Schweißkonstruktionen erlaubt<br />

prinzipiell neben <strong>de</strong>n werkstoffspezifischen Effekten auch<br />

die Wirkung von Eigenspannungen auf vorhan<strong>de</strong>ne Imperfektionen<br />

quantitativ zu erfassen. Mögliche Vorgehensweisen<br />

bei <strong>de</strong>n dafür durchzuführen<strong>de</strong>n Einzelschritten – Eigenspannungsermittlung,<br />

Beanspruchungsanalyse, Kennwertermittlung<br />

und Versagensbewertung – wer<strong>de</strong>n beschrieben und<br />

anhand von Beispielen <strong>de</strong>monstriert. 22 Bild., 23 Qu.<br />

ALUMINIUM 1/2 (2008) Verbin<strong>de</strong>n<br />

Sölter, J.; Reucher, G.<br />

Werkstoffeinfluss auf die Spanbildung bei hohen<br />

Schnittgeschwindigkeiten<br />

MM Maschinenmarkt 43/2007, S. 46-51<br />

Die Spanbildung und die Abhängigkeit <strong>de</strong>r Prozesskräfte von<br />

<strong>de</strong>r Schnittgeschwindigkeit wer<strong>de</strong>n stark durch <strong>de</strong>n Werkstoff<br />

und <strong>de</strong>n Wärmebehandlungszustand <strong>de</strong>s Werkstücks<br />

beeinflusst. Außer thermischen und mechanischen Werkstoffeigenschaften<br />

entschei<strong>de</strong>n die Mikrostruktur und die<br />

chemische Zusammensetzung <strong>de</strong>s Werkstoffs, ob eine Spansegmentierung<br />

bei hohen Schnittgeschwindigkeiten einsetzt.<br />

5 Bild, 7 Qu.<br />

ALUMINIUM 1/2 (2008) Umformen<br />

E<strong>de</strong>r, Chr.<br />

Thixocasting für komplexe Geometrien – Lösungen aus<br />

einem Guss<br />

Automotive Materials, 6/2007, S. 36-37<br />

Aufgrund <strong>de</strong>s steigen<strong>de</strong>n Kostendrucks streben Automobil-<br />

und Nutzfahrzeughersteller Lösungen an, bei <strong>de</strong>nen sich komplexe<br />

Geometrien in Net-Shape-Qualität ohne nachfolgen<strong>de</strong><br />

mechanische Bearbeitung realisieren lassen. Hierbei bietet<br />

sich das Thixocasting <strong>de</strong>r österreichischen SAG Thixalloy<br />

Components an. Kriterien für Thixocasting-Anwendungen<br />

sind: keine Teile mit geringen Qualitätsanfor<strong>de</strong>rungen, große<br />

Unterschie<strong>de</strong> in <strong>de</strong>n Wanddicken realisierbar, hohe Komplexität<br />

<strong>de</strong>r Konstruktion und Integration von Funktionen,<br />

ALUMINIUM · 1-2/2008<br />

LITERATURE SERVICE<br />

Druckdichtigkeit durch porenarme Qualität, thermische<br />

Behandlungen – hohe Schweißeignung, Wärmebehandlung,<br />

hohe Anfor<strong>de</strong>rungen an die Oberfläche, Thixocasting kann<br />

beson<strong>de</strong>rs Prozesse wie mechanische Bearbeitung, Schmie<strong>de</strong>n,<br />

Feinguss, Kokillenguss, Vakuum-Druckguss substituieren,<br />

Ersatz von gefügten Blech- und Strangpressteilen durch<br />

Integration.<br />

ALUMINIUM 1/2 (2008) Formguss<br />

Schleich, R.; Papaioanu, A.; Liewald, M.<br />

Karosserieblech sicher biegen<br />

Blech, Rohre, Profile 11/2007, S. 22-23<br />

Mechanische Werkstoffkennwerte sind in <strong>de</strong>r Umformtechnik<br />

ein etabliertes Mittel zur Qualitätssicherung. Für biegedominierte<br />

Verfahren scheinen die konventionellen Kennwerte<br />

unzureichend. Am Institut für Umformtechnik (IFU )<br />

in Stuttgart wird <strong>de</strong>shalb ein Prüfverfahren entwickelt, das<br />

mit einer falzprozessnahen Kinematik und <strong>de</strong>n relevanten<br />

Spannungszustän<strong>de</strong>n operiert. 4 Bild.<br />

ALUMINIUM 1/2 (2008) Umformen<br />

<strong>Alu</strong>minium Oxid Sta<strong>de</strong> – Auch nach 35 Jahren<br />

eine <strong>de</strong>r effizientesten Oxidfabriken in <strong>de</strong>r Welt<br />

<strong>Alu</strong>minium 83 (2007) 12, S. 26-31<br />

Seit 1973 verarbeitet die <strong>Alu</strong>minium Oxid Sta<strong>de</strong> GmbH Bauxit<br />

zu <strong>Alu</strong>miniumoxid. Ursprünglich auf die Produktion von Oxid<br />

für die <strong>Alu</strong>miniumelektrolyse ausgelegt, hat sich AOS längst<br />

auf die Herstellung von chemischem Oxid und von Hydroxidprodukten<br />

fokussiert. Noch immer zählt AOS zu <strong>de</strong>n technisch<br />

und energetisch effizientesten Oxidfabriken in <strong>de</strong>r Welt. 2007<br />

wird erstmals die Produktion von 1 Mio. Tonnen erreicht. Von<br />

<strong>de</strong>n sechs in Europa produzieren<strong>de</strong>n Oxidfabriken ist AOS bei<br />

chemischen Produkten die Nummer 1. Der Beitrag geht auf die<br />

anlagentechnischen Beson<strong>de</strong>rheiten ein, mit <strong>de</strong>nen sich AOS<br />

vom Wettbewerb abhebt. Artikel dt./engl. 4 Fotos.<br />

ALUMINIUM 1/2 (2008) Gewinnung<br />

Trommer, G.<br />

Mo<strong>de</strong>rne Verfahren zum Schweißen von <strong>Alu</strong>minium -<br />

Viele Wege führen zum Ziel<br />

<strong>Alu</strong>minium 83 (2007) 12, S. 34-39<br />

Das Fügeverfahren Schweißen spielt für <strong>de</strong>n Konstruktionswerkstoff<br />

<strong>Alu</strong>minium eine dominieren<strong>de</strong> Rolle. Von beson<strong>de</strong>rer<br />

Be<strong>de</strong>utung sind Anwendungen <strong>de</strong>s Maschinen- und<br />

Apparatebaus, im Verkehrswesen sowie im Bauwesen. Beim<br />

Schweißen von <strong>Alu</strong>minium sind, im Vergleich zu Stahl, jedoch<br />

einige Beson<strong>de</strong>rheiten zu beachten. Sie hängen primär mit<br />

<strong>de</strong>n Werkstoffeigenschaften <strong>de</strong>s Leichtmetalls zusammen. Der<br />

Beitrag zeigt Zusammenhänge und Lösungen für Schweißverbindungen<br />

auf. Die Spannbreite <strong>de</strong>r Ausführungen reicht vom<br />

Elektro<strong>de</strong>n-Handschweißen über das WIG-, Orbital-, Plasma-,<br />

MIG-, CMT-, Laser-MSG-Lichtbogen-Schweißen bis hin zum<br />

Wi<strong>de</strong>rstands-Punktschweißen „DeltaSpot“. 6 Fotos.<br />

ALUMINIUM 1/2 (2008) Schweißen<br />

Für Schrifttum zum Thema „<strong>Alu</strong>minium“ ist <strong>de</strong>r Gesamtverband <strong>de</strong>r <strong>Alu</strong>miniumindustrie e.V. (GDA)<br />

<strong>de</strong>r kompetente Ansprechpartner. Die hier referierten Beiträge repräsentieren lediglich einen Ausschnitt<br />

aus <strong>de</strong>m umfassen<strong>de</strong>n aktuellen Bestand <strong>de</strong>r GDA-Bibliothek.<br />

Die von <strong>de</strong>r <strong>Alu</strong>minium-Zentrale seit <strong>de</strong>n dreißiger Jahren kontinuierlich aufgebaute Fach-Bibliothek<br />

wird duch <strong>de</strong>n GDA weitergeführt, ausgebaut und auf die neuen Medien umgestellt. Sie steht allen<br />

Interessenten offen.<br />

Ansprechpartner ist Dr. Karsten Hein, E-Mail: karsten.hein@aluinfo.<strong>de</strong><br />

107


PATENTE<br />

Patentblatt November 2007<br />

Al-Si-Lotlegierungen und Ihre Verwendung<br />

für das Hartlöten von <strong>Alu</strong>minium<br />

und <strong>Alu</strong>minium/Stahl-Fügungen.<br />

Umicore AG & Co. KG, 63457 Hanau,<br />

DE. (B23K 35/28, EPA 1842619, EP-AT:<br />

10.04.2007)<br />

Neue Al-Cu-Li-Mg-Ag-Mn-Zr-Legierung<br />

für Bauanwendungen, die hohe Festigkeit<br />

und hohe Bruchzähigkeit erfor<strong>de</strong>rn.<br />

Alcan Rolled Products Ravenswood LLC,<br />

Ravenswood, W.Va., US. (C22C 21/12,<br />

EPA 1641953, EP-AT: 26.05.2004)<br />

Dünne Bän<strong>de</strong>r o<strong>de</strong>r Bleche aus einer Al-<br />

Fe-Si-Legierung. Novelis,Inc., Toronto,<br />

Ontario, CA. (C22C 1/00, PS 60 2004 005<br />

045, EP 1644545, EP-AT: 19.07.2004)<br />

Verfahren zum Tiefziehen von Teilen<br />

aus Al-Mg-Legierungen. Alcan Rhenalu,<br />

Paris, FR. (B21D 22/20, EP 1601478, EP-<br />

AT: 24.02.2004)<br />

Grobblech o<strong>de</strong>r stranggepresstes Teil<br />

aus <strong>Alu</strong>minium-Magnesium-Legierung.<br />

Aleris <strong>Alu</strong>minium Koblenz GmbH, 56070<br />

Koblenz, DE. (C22C 21/06, PS 697 03 441,<br />

EP 0892858, EP-AT: 27.03.1997)<br />

Kohlenwasserstoffumwandlungsverfahren<br />

unter Verwendung einer <strong>Alu</strong>minium<br />

und ein zweiwertiges Metall enthalten<strong>de</strong>n<br />

Katalysatorzusammensetzung.<br />

Albemarle Netherlands B.V., Amersfoort,<br />

NL. (B01J 21/16, ) EPA 1838436, EP-AT:<br />

19.11.2005)<br />

Verfahren zum Auswechseln einer Ano<strong>de</strong><br />

in einer Zelle zur elektrolytischen<br />

Herstellung von <strong>Alu</strong>minium mit Einstellung<br />

<strong>de</strong>r Position <strong>de</strong>r Ano<strong>de</strong> und Wartungsvorrichtung<br />

dafür. E.C.L., Ronchin,<br />

FR. (C25C 3/06, EPA 1838901, EP-AT:<br />

12.10.2005)<br />

Verfahren und Vorrichtung zum Vorbereiten<br />

eines Bauteils aus oberflächlich<br />

oxidieren<strong>de</strong>m Metall, insbeson<strong>de</strong>re aus<br />

<strong>Alu</strong>minium, zum Schweißen o<strong>de</strong>r Kleben.<br />

SLE Electronic GmbH, 94481 Grafenau,<br />

DE. (B08B 3/00, PS 10 2006 009<br />

993, AT: 03.03.2006)<br />

Vorrichtung und Verfahren zur Sicherung<br />

von als Paket gelagerten <strong>Alu</strong>minium-Stranggussprodukten,<br />

so genannten<br />

Masseln, zu Transportzwecken. Signo<strong>de</strong><br />

System GmbH, 46535 Dinslaken,<br />

DE. (B65D 85/62, PS 10 2006 038 996,<br />

AT: 21.08.2006)<br />

Gummibauteil mit Metallkomponente<br />

auf Basis von <strong>Alu</strong>minium und Verfahren<br />

zum Herstellen <strong>de</strong>sselben. Tokai<br />

Rubber Industries, Ltd., Komaki, Aichi,<br />

JP. (C23C 30/00, OS 10 2007 020 030,<br />

AT: 27.04.2007)<br />

<strong>Alu</strong>minium-Gusslegierung. EADS<br />

Deutschland GmbH, 85521 Ottobrunn,<br />

DE; <strong>Alu</strong>minium Rheinfel<strong>de</strong>n GmbH,<br />

79618 Rheinfel<strong>de</strong>n, DE. (C22C 21/06, PS<br />

103 52 932, AT: 11.11.2003)<br />

In einem <strong>Alu</strong>minium-Gussteil einzugießen<strong>de</strong>r<br />

Grauguss-Rohling und entsprechen<strong>de</strong>s<br />

Gussverfahren. Audi AG, 85057<br />

Ingolstadt, DE. (F02F 1/00, OS 198 36<br />

706, AT: 13.08.1998)<br />

Behan<strong>de</strong>ln von Abstandhaltern in gestapelten<br />

<strong>Alu</strong>minium-Blöcken. Alcoa Inc.,<br />

Pittsburgh, Pa., US. (C21D 1/70, PS 601<br />

23 737, EP 1215289, EP-AT: 11.12.2001)<br />

Verfahren zum Hartlöten einer <strong>Alu</strong>minium-Magnesium-Legierung<br />

mit einem<br />

Kalium-Fluorozinkat enthalten<strong>de</strong>n<br />

Flussmittel. Denso Corp., Kariya, Aichi,<br />

JP; Sumitomo Light Metal Industries,<br />

Ltd., Tokio/Tokyo, JP. (B23K 1/00, PS<br />

60 2004 004 428, EP 1466691, EP-AT:<br />

31.03.2004)<br />

Randspannungsentlastung von Grobblech<br />

aus <strong>Alu</strong>minium. Alcan Rhenalu,<br />

Paris, FR. (C22F 1/00, PS 603 12 373, EP<br />

1567685, EP-AT: 04.12.2003)<br />

Wärmebehandlungsverfahren für Blech<br />

aus <strong>Alu</strong>minium-Legierung. Novelis, Inc.,<br />

Toronto, Ontario, CA. (C22F 1/05, PS 695<br />

20 007, EP 0805879, EP-AT: 05.09.1995)<br />

Hochfestes Blech aus Al-Zn-Cu-Mg-Legierung<br />

mit geringen inneren Spannungen.<br />

Alcan Rhenalu, Paris, FR. (C22F 1/053,<br />

EPA 1838891, EP-AT: 09.12.2005)<br />

Endloskapillarrohr in <strong>Alu</strong>miniumlegierung,<br />

Drosselventil mit diesem Endloskapillarrohr<br />

in <strong>Alu</strong>miniumlegierung und<br />

<strong>Alu</strong>miniumlegierung. Aro Tubi Trafilerie<br />

S.p.A., Milano, IT; C.R. S.r.l., Moniga Del<br />

Garda, IT. (F25B 41/06, EPA 1840487,<br />

EP-AT: 31.03.2006)<br />

6xxx-<strong>Alu</strong>miniumlegierung. Comalco<br />

<strong>Alu</strong>minium Ltd., Melbourne, Victoria,<br />

AU. (C22C 21/02, EPA 1840234, EP-AT:<br />

04.07.1997)<br />

Platte aus einer <strong>Alu</strong>miniumlegierung<br />

und Herstellungsverfahren dafür. Kabushiki<br />

Kaisha Kobe Seiko Sho, Kobe,<br />

Hyogo, JP. (C22C 21/06, EPA 1842935,<br />

EP-AT: 13.01.2006)<br />

Lötmaterial für <strong>Alu</strong>miniumlegierung.<br />

Aleris <strong>Alu</strong>minum Koblenz GmbH, 56070<br />

Koblenz, DE. (B23K 35/28, EPA 1843872,<br />

EP-AT: 10.01.2006)<br />

Abschreckunempfindliche <strong>Alu</strong>miniumlegierung<br />

sowie Verfahren zum Herstellen<br />

eines Halbzeuges aus dieser Legierung.<br />

Otto Fuchs KG, 58540 Meinerzhagen,<br />

DE. (C22C 21/10, EP 1 683 882, EP-AT:<br />

21.11.2005)<br />

Wärmebehandlung von Druckgussstücken<br />

aus <strong>Alu</strong>miniumlegierung. Commonwealth<br />

Scientific and Industrial Research<br />

Organisation, Campbell, AU. (C22F 1/04,<br />

EPA 1844174, EP-AT: 19.12.2005)<br />

<strong>Alu</strong>miniumlegierung für Gussteil. Dr.Ing.<br />

h.c. F. Porsche AG, 70435 Stuttgart, DE.<br />

(C22C 21/02, EPA 1840233, EP-AT:<br />

12.12.2006)<br />

Anodisieren<strong>de</strong> <strong>Alu</strong>miniumlegierung.<br />

Short Brothers PLC, Belfast, Nordirland,<br />

GB. (C25D 11/12, EPA 1836331, EP-AT:<br />

10.01.2006)<br />

Partikelverstärkte Magnesium- o<strong>de</strong>r<br />

<strong>Alu</strong>miniumlegierung. Bayerische Motoren<br />

Werke AG, 80809 München, DE.<br />

(C22C 49/04, OS 10 2006 023 041, AT:<br />

17.05.2006)<br />

<strong>Alu</strong>miniumlegierung, Verbindungs- und<br />

Halteeinrichtung für Glaskonstruktionsvorhaben.<br />

Ting, Jen-Chieh, Kaohsiung<br />

City, TW. (E04B 1/38, GM 20 2007 009<br />

426, AT: 05.07.2007)<br />

Warmfeste <strong>Alu</strong>miniumlegierung. <strong>Alu</strong>minium<br />

Rheinfel<strong>de</strong>n GmbH, 79618 Rheinfel<strong>de</strong>n,<br />

DE. (C22C 21/08, EP 1 757 709,<br />

EP-AT: 28.02.2006)<br />

Druckgusserzeugnis aus <strong>Alu</strong>miniumlegierung.<br />

Corus <strong>Alu</strong>minium Voer<strong>de</strong><br />

GmbH, 46562 Voer<strong>de</strong>, DE; Corus <strong>Alu</strong>minium<br />

Walzprodukte GmbH, 56070 Koblenz,<br />

DE. (C22C 21/06, PS 601 26 529,<br />

EP 1138794, EP-AT: 15.03.2001)<br />

<strong>Alu</strong>miniumlegierung geeignet für Bleche<br />

und ein Verfahren zu <strong>de</strong>ren Herstellung.<br />

Furukawa-Sky <strong>Alu</strong>minum Corp., Tokio/<br />

Tokyo, JP; Honda Giken Kogyo K.K., Tokyo,<br />

JP. (C22C 21/00, PS 602 15 579, EP<br />

1260600, EP-AT: 15.05.2002)<br />

Wärmetauscher. Showa Denko K.K., Minato-ku,<br />

Tokyo, JP. (F28F 9/02, WO 2006<br />

059783, WO-AT: 30.11.2005)<br />

Vorrichtung zur Fertigung von aus<br />

Leichtmetall gefertigten Holmen eines<br />

Rahmens und/o<strong>de</strong>r eines Flügels eines<br />

Fensters. Aug. Winkhaus GmbH & Co.<br />

KG, 48291 Telgte, DE. (B21D 53/74, EPA<br />

1839770, EP-AT: 22.12.2006)<br />

Kühlkokille zum Vergießen von Leichtmetall-Gusswerkstoffen<br />

und Verwendung<br />

einer solchen Kokille sowie eines<br />

Gusseisenwerkstoffs. Hydro <strong>Alu</strong>minium<br />

Deutschland GmbH, 51149 Köln,<br />

DE. (B22C 9706, EPA 1841554, EP-AT:<br />

27.01.2006)<br />

Verfahren zum Gießen von Bauteilen aus<br />

Leichtmetall nach <strong>de</strong>m Kippgießprinzip.<br />

Rautenbach-Guß Wernigero<strong>de</strong> GmbH,<br />

38855 Wernigero<strong>de</strong>, DE. (B22D 23/00,<br />

EP 1 742 752, EP-AT: 30.03.2005)<br />

108 ALUMINIUM · 1-2/2008


Verbundmaterial aus Leichtmetall und<br />

mit Kohlenstofffasern verstärktem<br />

Kunststoff. Toray Industries, Inc., Tokio/<br />

Tokyo, JP. (B32B 15/08, PS 698 36 259,<br />

EP 0938969, EP-AT: 20.08.1998)<br />

Anordnung zur Bildung einer Kreuzverbindung<br />

zwischen einem Längspfosten<br />

und einem Querpfosten bei einem Fenster<br />

o<strong>de</strong>r einer Türe aus Kunststoff o<strong>de</strong>r<br />

Leichtmetall. PHI Technik für Fenster<br />

und Türen GmbH, 91459 Markt Erlbach,<br />

DE. (E06B 3/964, GM 299 14 966, AT:<br />

26.08.1999)<br />

Magnesiumlegierungen für die Wasserstoffspeicherung.<br />

The University of<br />

Queensland, Santa Lucia, Queensland,<br />

AU. (C22C 23/00, EPA EP 1838887, EP-<br />

AT: 02.12.2005)<br />

Hochfeste Legierung auf <strong>Alu</strong>miniumbasis<br />

und ein daraus hergestelltes Produkt.<br />

Fe<strong>de</strong>ralnoe Gosudarstvatelsky Institut<br />

Unitarnoe Predpriyatie “Vserossiisky<br />

Nauchno-Issledovatelsky Institut Aviatsionnykh<br />

Materialov”, Moskau/Moscow,<br />

RU; Otkrytoe Aktsionernoe Obschestvo<br />

“Samarsky Metallurgichesky Zavod”, Samara,<br />

RU. (C22C 21/10, PS 601 20 987,<br />

EP 1306455, EP-AT: 25.07.2001)<br />

Aus min<strong>de</strong>stens zwei vorgegossenen<br />

Abschnitten zusammengesetztes Bauteil<br />

und Verfahren zu seiner Herstellung.<br />

Hydro <strong>Alu</strong>minium Mandl&Berger GmbH,<br />

Linz, AT. (B22D 19/04, OS 10 2005 059<br />

309, AT: 09.12.2005)<br />

Verbundprofil mit einem Tragkörper aus<br />

Leichtmetallwerkstoff sowie einem Profilband<br />

und Verfahren zum Herstellen<br />

<strong>de</strong>s Verbundprofils. Alcan Technology &<br />

Management Ltd., Neuhausen am Rheinfall,<br />

CH. (B60M 1/30 und B21K 9/00, OS<br />

10 2005 063 436 und PS 10 2005 004 547<br />

und EPA 1843866, AT: 31.01.2005 und<br />

EP-AT: 20.12.2005)<br />

Wärmetauscher. Showa Denko K.K., Tokio/Tokyo,<br />

JP. (F28D 1/053, WO 2006<br />

070923, WO-AT: 27.12.2005)<br />

Verpackungsbeutel mit Umverpackung.<br />

Alcan Technology & Management<br />

Ltd., Neuhausen am Rheinfall,<br />

CH. (B65D 33/02, EPA 1714892, EP-AT:<br />

24.11.2005)<br />

Profilelement zum Befestigen einer<br />

Stoßstange an Längsträgern eines Fahrzeuges<br />

sowie Verfahren dazu. Alcan<br />

Technology & Management AG, Neuhausen<br />

am Rheinfall, CH. (B60R 19/34, OS 10<br />

2006 019 654, AT: 25.04.2006<br />

Schlauchförmiges Glied mit einem aus<br />

mehreren Metalldrähten o<strong>de</strong>r -Röhren<br />

bestehen<strong>de</strong>n Umfang. Norsk Hydro<br />

ASA, Oslo, NO. (F16L 11/14, EP 1 563<br />

215, EP-AT: 27.10.2003)<br />

ALUMINIUM · 1-2/2008<br />

Profil aus einem Leichtmetallwerkstoff<br />

mit an diesem verlaufen<strong>de</strong>n Rohrelementen.<br />

Alcan Technology & Management<br />

AG, Neuhausen am Rheinfall,<br />

CH.(E04D 3/30, GM 20 2007 008 488,<br />

AT: 13.06.2007)<br />

Verfahren zur Herstellung von grobkörnigem<br />

<strong>Alu</strong>miniumhydroxyd. Alcan<br />

Technology & Management AG, Neuhausen<br />

am Rheinfall, CH. (C01F 7/14, PS 698<br />

36 962, EP 0997435, EP-AT: 28.10.1998)<br />

Inerte Cermet-Ano<strong>de</strong> zur Verwendung<br />

in <strong>de</strong>r elektrolytischen Herstellung von<br />

Metallen. Alcoa Inc., Pittsburgh, Pa., US.<br />

(C25C 3/12, PS 600 33 837, EP 1226287,<br />

EP-AT: 27.10.2000)<br />

Gießform, Vorrichtung und Verfahren<br />

zum Vergießen von Metallschmelze.<br />

Hydro <strong>Alu</strong>minium <strong>Alu</strong>cast GmbH, 66763<br />

Dillingen, DE. (B22C 9/08, PS 10 2005<br />

010 838, AT: 07.03.2005)<br />

Wärmetauscherprofil. Erbslöh <strong>Alu</strong>minium<br />

GmbH, 42553 Velbert, DE. (F28F<br />

1/02, EPA 1840494, EP-AT: 23.03.2007)<br />

Verfahren und Stellgliedvorrichtung.<br />

Norsk Hydro ASA, Oslo, NO. (E21B 43/32,<br />

EP 1 718 842, EP-AT: 11.02.2005)<br />

Funktionale Direktbeschichtung einer<br />

<strong>Alu</strong>miniumfolie. Hydro <strong>Alu</strong>minium<br />

Deutschland GmbH, 51149 Köln, DE.<br />

(B21C 47/26, EPA 1837091, EP-AT:<br />

09.03.2007)<br />

Wasserkühlsystem für eine Stranggießvorrichtung.<br />

Norsk Hydro ASA, Oslo/<br />

Osló, NO. (B22D 11/049, PS 601 24 031,<br />

EP 1157765, EP-AT: 14.05.2001)<br />

Flexibles Rohr o<strong>de</strong>r flexibler Schlauch.<br />

Alcan Deutschland GmbH, 37075 Göttingen,<br />

DE. (F16L 59/153, PS 502 08 527, EP<br />

1286102, EP-AT: 14.08.2002)<br />

<strong>Alu</strong>miniummaterial für eine Elektro<strong>de</strong><br />

eines elektrolytischen Kon<strong>de</strong>nsators,<br />

Verfahren zur Herstellung von Elektro<strong>de</strong>nmaterial<br />

für einen elektrolytischen<br />

Kon<strong>de</strong>nsator, Ano<strong>de</strong>nmaterial für einen<br />

elektrolytischen <strong>Alu</strong>miniumkon<strong>de</strong>nsator<br />

und elektrolytischer <strong>Alu</strong>miniumkon<strong>de</strong>nsator.<br />

Showa Denko K.K., Tokio/Tokyo,<br />

JP. (C22C 21/00, EPA 1841892, EP-AT:<br />

21.12.2005)<br />

Einrichtung und Verfahren zur Sammlung<br />

<strong>de</strong>r Abflüsse einer Elektrolysezelle.<br />

<strong>Alu</strong>minium Pechiney, Voreppe,<br />

FR. (C25C 3/22, EPA 1845175, EP-AT:<br />

11.04.2006)<br />

Schaltungsanordnung zum Steuern<br />

eines Krustenbrechers. VAW <strong>Alu</strong>minium-Technologie<br />

GmbH, 53117 Bonn,<br />

DE. (C25C 3/20, GM 299 10 803, AT:<br />

21.06.1999)<br />

PATENTE<br />

Verfahren zur Herstellung von <strong>Alu</strong>miniumverbundwerkstoff.<br />

<strong>Alu</strong>minium Core<br />

Technology Co., Ltd., Tokyo, JP; Nippon<br />

Light Metal Co. Ltd., Tokio/Tokyo,<br />

JP. (B22F 3/24, EPA 1837103, EP-AT:<br />

28.12.2005)<br />

Dachreling sowie Verfahren zur Herstellung<br />

einer solchen Dachreling. WKW<br />

Erbslöh Automotive GmbH, 42349 Wuppertal,<br />

DE. (B60R 9/04, OS 10 2006 025<br />

933, AT: 10.05.2006)<br />

Magnesiumlegierung und dazugehöriges<br />

Herstellungsverfahren. Biotronik VI<br />

Patent AG, Baar, CH. (C22C 23/04, EPA<br />

1840235, EP-AT: 22.03.2007)<br />

Verfahren zum Gießen eines Artikels.<br />

Mahle Powertrain Ltd., St. James, Northampton,<br />

GB. (B22C 9/02, EPA 1841553,<br />

EP-AT: 08.12.2005)<br />

Innere Rohrprüfvorrichtung und Verfahren.<br />

Norsk Elektro Optikk AS, Skarer,<br />

NO. (F16L 55/26, PS 603 11 977, EP<br />

1497585, EP-AT: 04.04.2003)<br />

<strong>Alu</strong>miniumlagerlegierungsteil. Daido<br />

Metal Co. Ltd., Nagoya, Aichi, JP. (C22C<br />

21/00, PS 101 35 895, AT: 24.07.2001)<br />

Patentblatt Dezember 2007<br />

Verfahren zum MIG Schweißen von Al-<br />

Legierungen mit Ar/He/O 2-Schutzgas.<br />

L‘Air Liqui<strong>de</strong> Société Anonyme pour<br />

l‘Etu<strong>de</strong> et l‘Exploitation <strong>de</strong>s Procédés<br />

Georges Clau<strong>de</strong>, Paris, Ce<strong>de</strong>x, FR. (B23K<br />

9/16, EP 1 166 940, EP-AT: 11.06.2001<br />

Druckgießen von <strong>Alu</strong>minium. Commonwealth<br />

Scientific and Industrial Research<br />

Organisation, Campbell, AU: (B22D<br />

17/20, PS 601 28 114, EP 1320434, EP-<br />

AT: 24.08.2001)<br />

Verfahren zum Aufbringen einer Beschichtung<br />

auf überlappten Oberflächen<br />

von Bauelementen aus <strong>Alu</strong>minium-Legierung<br />

sowie <strong>de</strong>rart beschichtete überlappte<br />

Oberflächen. McDonnell Douglas<br />

Corp., Seal Beach, Calif., US. (C22F 1/04,<br />

PS 699 35 480, EP 0985737, EP-AT:<br />

25.08.1999)<br />

<strong>Alu</strong>minium-Zink-Magnesium-Scandium-<br />

Legierungen und Herstellungsverfahren<br />

dafür. Langan, Timothy, Catonsville, Md.,<br />

US. (C22C 21/10, EPA 1848835, EP-AT:<br />

01.02.2006)<br />

Neue Fe-Al-Legierung und Herstellungsverfahren<br />

dafür. Okanda, Yoshihira, Nishinomiya,<br />

JP. (C21D 9/46, EPA 1847624,<br />

EP-AT: 10.02.2006)<br />

Verfahren unter Verwendung von ausgewählten<br />

Kohlen zur Reaktion �<br />

109


PATENTE<br />

mit Al 2 O- und Al-Dämpfen bei <strong>de</strong>r carbothermischen<br />

Produktion von <strong>Alu</strong>minium.<br />

Alcoa Inc., Pittsburgh, Pa., US; Elkem<br />

AS, Oslo, NO; Carnegie Mellon University,<br />

Pittsburgh, Pa., US. (C22B 21/02, EP<br />

1 689 895, EP-AT: 02.12.2004)<br />

Verfahren zum Diffusionsfügen von Magnesium/<strong>Alu</strong>minium-Bauteilen.<br />

General<br />

Motors Corp., Detroit, Mich., US. (B23K<br />

35/28, PS 602 16 369, EP 1273385, EP-<br />

AT: 08.05.2002)<br />

Verbindung von Profilen, insbeson<strong>de</strong>re<br />

<strong>Alu</strong>minium-Strangpressprofilen im Fahrzeugbau.<br />

Siemens AG, 80333 München,<br />

DE. (F16B 5/00, EPA 1688626, EP-AT:<br />

09.01.2006)<br />

Verfahren zum Versiegeln von mit Phosphorsäure<br />

anodisiertem <strong>Alu</strong>minium. The<br />

United States of America as represented<br />

by the Secretary of the Navy, Lilj Patuxent<br />

River, Md., US. (C23C 22/05, EPA<br />

1853750, EP-AT: 14.11.2005)<br />

Verbundblech aus <strong>Alu</strong>minium. Aleris<br />

<strong>Alu</strong>minium Duffel BVBA, Duffel, BE.<br />

(B32B 15/01, EPA 1852251, EP-AT:<br />

02.05.2006)<br />

Metallisierung integrierter Schaltungen<br />

unter Verwendung einer Titan-<strong>Alu</strong>minium-Legierung.<br />

Micron Technology, Inc.,<br />

Boise, Id., US. (H01L 23/532, OS 101 52<br />

913, AT: 26.10.2001)<br />

Verbundwerkstoff aus einer hochfesten<br />

<strong>Alu</strong>miniumlegierung. Visteon Global<br />

Technologies, Inc., Dearborn, Mich., US.<br />

(C22C 21/04, PS 10 2004 033 457, AT:<br />

05.07.2004)<br />

Titan-<strong>Alu</strong>minium-Mischoxidpulver. Evonik<br />

Degussa GmbH, 40474 Düsseldorf,<br />

DE. (C01G 25/02, OS 10 2004 061 702<br />

und OS 10 2004 061 703 und OS 10<br />

2004 062 104, AT: 22.12.2004 und AT:<br />

23.12.2004)<br />

Stabilisiertes <strong>Alu</strong>minium-Zirkon-Mischoxidpulver.<br />

Evonik Degussa GmbH,<br />

40474 Düsseldorf, DE. (C01G 1/02, OS<br />

10 2005 040 156, AT: 25.08.2005)<br />

Profilsystem, Halter und Verfahren zur<br />

Befestigung für und Austausch von SG-<br />

Verglasung (Structural Glazing) von <strong>de</strong>r<br />

Rauminnenseite für <strong>Alu</strong>minium-Glas-<br />

Fassa<strong>de</strong>n und an<strong>de</strong>re SG-Metall-Glas-<br />

Fassa<strong>de</strong>n. inotec Engineering GmbH,<br />

74532 Ilshofen, DE. (E04B 2/96, OS 10<br />

2006 026 283, AT: 02.06.2006)<br />

Durchsichtige <strong>Alu</strong>minium-Titanoxid-Beschichtung<br />

und / o<strong>de</strong>r <strong>Alu</strong>miniumoxid-<br />

Beschichtung mit einer Rutilstruktur.<br />

Philips Intellectual Property & Standards<br />

GmbH, 20099 Hamburg, DE. (C03C<br />

17/24, PS 60 2004 005 571, EP 1590305,<br />

EP-AT: 21.01.2004)<br />

Drehtrommelofen zum Umschmelzen<br />

von <strong>Alu</strong>minium. Metallhüttenwerke<br />

Bruch GmbH, 44145 Dortmund, DE.<br />

(F27B 7/20, GM 20 2004 004 478, AT:<br />

19.03.2004)<br />

<strong>Alu</strong>miniumhaltige Fällungskieselsäure<br />

mit einstellbarem BET/CTAB-Verhältnis.<br />

Evonik Degussa GmbH, 40474 Düsseldorf,<br />

DE. (C01B 33/193, PS 503 02 199,<br />

EP 1513768, EP-AT: 07.06.2003)<br />

Vorrichtung und Drehsicherung von<br />

Dosenen<strong>de</strong>n in einem Downstaker und<br />

entsprechen<strong>de</strong>s Verfahren. Alcoa Inc.,<br />

Pittsburgh, Pa., US. (B65D 1/00, PS 603<br />

13 345, EP 1545987, EP-AT: 05.08.2003)<br />

Vorrichtung zum Entwässern <strong>de</strong>r Rahmenstöße<br />

einer Vorhangfassa<strong>de</strong>. Norsk<br />

Hydro ASA, Oslo, NO. (E04B 2/88, EPA<br />

1849928, EP-AT: 13.02.2007)<br />

Oberflächenbehandlungsmittel und Verfahren<br />

zum Entfernen <strong>de</strong>r beim Ätzen<br />

von Druckgussteilen aus <strong>Alu</strong>minium<br />

anfallen<strong>de</strong>n Si-Komponente und reduzierten<br />

Metallsalze. Jeonyoung Co., Ltd.,<br />

Ansan, Kyounggi, KR. (C11D 7/18, PS 602<br />

16 291, EP 1421164, EP-AT: 25.07.2002)<br />

Verfahren zum Sintern von <strong>Alu</strong>minium-<br />

und <strong>Alu</strong>miniumlegierungsteilen. Ex One<br />

Corp., Irwin, Pa., US. (C22C 1/04, EP 1<br />

694 875, EP-AT: 01.12.2003)<br />

<strong>Alu</strong>minium-Elektrolytkon<strong>de</strong>nsator und<br />

Herstellungsverfahren. Matsushita Electric<br />

Industrial Co., Ltd., Kadoma, Osaka,<br />

JP. (H01G 9/008, PS 699 34 063, EP<br />

0986078, EP-AT: 03.09.1999)<br />

Verfahren zur Herstellung von anorganisch<br />

gebun<strong>de</strong>nen Formen und Kernen<br />

für Gießereizwecke, insbeson<strong>de</strong>re für<br />

das Leichtmetall-Gießen. Otto-von-Guericke-Universität<br />

Mag<strong>de</strong>burg, 39106<br />

Mag<strong>de</strong>burg, DE. (B22C 1/18, OS 10 2006<br />

026 796, AT: 07.06.2006)<br />

Verpackungsbeutel. Alcan Technology &<br />

Management Ltd., Neuhausen am Rheinfall,<br />

CH. (B65D 33/02, EPA 1854732, EP-<br />

AT: 12.05.2006)<br />

Verfahren zur Herstellung von Verpackungsbeuteln.<br />

Alcan Technology & Management<br />

Ltd., Neuhausen am Rheinfall,<br />

CH. (B65D 75/50, EP 1 547 935, EP-AT:<br />

23.12.2003)<br />

Verfahren zum Abtrennen von Abfallschichten<br />

von plattierten Bän<strong>de</strong>rn durch<br />

Walzplattieren. Alcan Rhenalu, Paris, FR.<br />

(B21B 47/04, PS 60 2004 003 371, EP<br />

1628786, EP-AT: 01.06.2004)<br />

Vorrichtung und Verfahren zum Aufbringen<br />

von Sprühpumpen und <strong>de</strong>rgleichen<br />

auf Behälter und zum Verschließen<br />

<strong>de</strong>rselben. Alcoa Deutschland GmbH,<br />

67547 Worms, DE. (B65B 7/28, EP 1 761<br />

434, EP-AT: 20.06.2005)<br />

Profilverbindung, insbeson<strong>de</strong>re für <strong>Alu</strong>minium-Leichtbau.<br />

Philippi, Gerd, 66793<br />

Saarwellingen, DE. (F16B 7/00, GM 20<br />

2004 013 726, AT: 03.09.2004)<br />

Vakuumhartlötverfahren für <strong>Alu</strong>minium.<br />

Denso Corp., Kariya, Aichi, JP. (F27B<br />

5/05, PS 4404263, AT:10.02.1994)<br />

Verfahren zum Biegen eines bahnförmigen<br />

Stehfalzprofilbleches und Einrichtung<br />

zur Durchführung dieses Verfahrens.<br />

Corus Bausysteme GmbH, 56070<br />

Koblenz, DE. (B21D 7/08, EP 1 631 399,<br />

EP-AT: 07.05.2004)<br />

Verfahren zur Herstellung eines halbfesten<br />

Thixogießmaterials. Honda Giken<br />

Kogyo K.K., Tokyo, JP. (C21D 1/32, PS 697<br />

37 048, EP 1460138, EP-AT: 02.09.1997)<br />

Verfahren zur Herstellung eines Behälters<br />

aus <strong>Alu</strong>miniumblechen. Hydro <strong>Alu</strong>minium<br />

Deutschland GmbH, 51149 Köln,<br />

DE. (B21D 51/18, OS 10 2006 026 828,<br />

AT: 07.06.2006)<br />

Verfahren und Vorrichtung zur Herstellung<br />

eines Sandwichpaneels und<br />

nach diesem Verfahren hergestelltes<br />

Sandwichpaneel. Corus Technology BV,<br />

IJmui<strong>de</strong>n, NL. (E04 2/292, EP 1 233 114,<br />

EP-AT: 08.02.2002)<br />

Vorrichtung zum Fügen von min<strong>de</strong>stens<br />

zwei Bauteilen aus artverschie<strong>de</strong>nen<br />

Werkstoffen mit einem mit min<strong>de</strong>stens<br />

einem als Schnei<strong>de</strong> ausgebil<strong>de</strong>ten Formelement<br />

aufweisen<strong>de</strong>n Stift. Hydro <strong>Alu</strong>minium<br />

Deutschland GmbH, 51149 Köln,<br />

DE. (B23K 20/12, EPA 1849552, EP-AT:<br />

27.04.2006)<br />

Fortsetzung <strong>de</strong>r Dezember-Auswertung in<br />

<strong>de</strong>r nächsten Ausgabe <strong>de</strong>r ALUMINIUM.<br />

ALUMINIUM veröffentlicht unter<br />

dieser Rubrik regelmäßig einen Überblick<br />

über wichtige, <strong>de</strong>n Werkstoff<br />

<strong>Alu</strong>minium betreffen<strong>de</strong> Patente. Die<br />

ausführlichen Patentblätter und auch<br />

weiterführen<strong>de</strong> Informationen dazu<br />

stehen <strong>de</strong>r Redaktion nicht zur Verfügung.<br />

Interessenten können diese<br />

beziehen o<strong>de</strong>r einsehen bei <strong>de</strong>r<br />

Mittel<strong>de</strong>utschen Informations-, Patent-,<br />

Online-Service GmbH (mipo),<br />

Julius-Ebeling-Str. 6,<br />

D-06112 Halle an <strong>de</strong>r Saale,<br />

Tel. 0345/29398-0<br />

Fax 0345/29398-40,<br />

www.mipo.<strong>de</strong><br />

Die Gesellschaft bietet darüber hinaus<br />

weitere „Patent“-Dienstleistungen an.<br />

110 ALUMINIUM · 1-2/2008


International Journal for Industry, Research and Application<br />

How do your products and services come to appear every month in the<br />

list of supply sources, on the internet – www.<strong>Alu</strong>-<strong>web</strong>.<strong>de</strong> – and in the<br />

annual list of supply sources published by ALUMINIUM ?<br />

� Please mark the main group relevant to you<br />

❑ Smelting technology ❑ Rolling technology<br />

❑ Extrusion ❑ Foundry<br />

� Indicate the sub-group and/or key word<br />

(if necessary, ask us for the list of key words)<br />

_______________________ _______________________<br />

_______________________ _______________________<br />

_______________________ _______________________<br />

� Enter your text, not forgetting your on-line address:<br />

Line 1: ............................................................................................................................................<br />

Line 2: ............................................................................................................................................<br />

Line 3: ............................................................................................................................................<br />

Line 4: ............................................................................................................................................<br />

Line 5: ............................................................................................................................................<br />

Line 6: ............................................................................................................................................<br />

(Maximum 35 characters per line, including spaces.<br />

Price per line for each issue EUR 5,00 + VAT – minimum or<strong>de</strong>r 10 issues = 1 year.<br />

Logos are calculated according to the lines they occupy: 1 line = 2 mm).<br />

_______________________________________________________________<br />

Place/Date Company stamp / Signature<br />

� … and send this form to us by fax or post:<br />

Fax number For information Giesel Verlag GmbH, ALUMINIUM<br />

+49-511/7304-157 Tel.: -142 Rehkamp 3, D-30916 Isernhagen<br />

We will gladly send you a quotation!


LIEFERVERZEICHNIS<br />

1<br />

Smelting technology<br />

Hüttentechnik<br />

1.1 Raw materials<br />

1.2 Storage facilities for smelting<br />

1.3 Ano<strong>de</strong> production<br />

1.4 Ano<strong>de</strong> rodding<br />

1.5 Casthouse (foundry)<br />

1.6 Casting machines<br />

1.7 Current supply<br />

1.8 Electrolysis cell (pot)<br />

1.9 Potroom<br />

1.10 Laboratory<br />

1.11 Emptying the catho<strong>de</strong> shell<br />

1.12 Catho<strong>de</strong> repair shop<br />

1.13 Second-hand plant<br />

1.14 <strong>Alu</strong>minium alloys<br />

1.15 Storage and transport<br />

1.1 Raw Materials<br />

Rohstoffe<br />

� Raw Materials<br />

Rohstoffe<br />

TRIMET ALUMINIUM AG<br />

Nie<strong>de</strong>rlassung Düsseldorf<br />

Heinrichstr. 155<br />

D-40239 Düsseldorf<br />

Tel.: +49 (0) 211 / 96180-0<br />

Fax: +49 (0) 211 / 96180-60<br />

Internet: www.trimet.<strong>de</strong><br />

1.2 Storage facilities for<br />

smelting<br />

Lagermöglichkeiten<br />

in <strong>de</strong>r Hütte<br />

Möller Materials Handling GmbH<br />

Ha<strong>de</strong>rslebener Straße 7<br />

D-25421 Pinneberg<br />

Telefon: 04101 788-0<br />

Telefax: 04101 788-115<br />

E-Mail: info@moeller-mh.com<br />

Internet: www.moeller-mh.com<br />

Kontakt: Herr Dipl.-Ing. Timo Letz<br />

Outotec GmbH<br />

Phone: +49 (0) 2203 / 9921-0<br />

www.outotec.com<br />

� Conveying systems bulk materials<br />

För<strong>de</strong>ranlagen für Schüttgüter<br />

(Hüttenaluminiumherstellung)<br />

Möller Materials Handling GmbH<br />

Internet: www.moeller-mh.com<br />

see Storage facilities for smelting 1.2<br />

1.1 Rohstoffe<br />

1.2 Lagermöglichkeiten in <strong>de</strong>r Hütte<br />

1.3 Ano<strong>de</strong>nherstellung<br />

1.4 Ano<strong>de</strong>nschlägerei<br />

1.5 Gießerei<br />

1.6 Gießmaschinen<br />

1.7 Stromversorgung<br />

1.8 Elektrolyseofen<br />

1.9 Elektrolysehalle<br />

1.10 Labor<br />

1.11 Ofenwannenentleeren<br />

1.12 Katho<strong>de</strong>nreparaturwerkstatt<br />

1.13 Gebrauchtanlagen<br />

1.14 <strong>Alu</strong>miniumlegierungen<br />

1.15 Lager und Transport<br />

� Unloading/Loading equipment<br />

Entla<strong>de</strong>-/Bela<strong>de</strong>einrichtungen<br />

Möller Materials Handling GmbH<br />

Internet: www.moeller-mh.com<br />

see Storage facilities for smelting 1.2<br />

1.3 Ano<strong>de</strong> production<br />

Ano<strong>de</strong>nherstellung<br />

Outotec GmbH<br />

see Storage facilities for smelting 1.2<br />

� Auto firing systems<br />

Automatische Feuerungssysteme<br />

RIEDHAMMER GmbH<br />

D-90332 Nürnberg<br />

E-Mail: goe<strong>de</strong>.frank@riedhammer.<strong>de</strong><br />

Internet: www.riedhammer.<strong>de</strong><br />

� Exhaust gas treatment<br />

Abgasbehandlung<br />

ALSTOM Norway AS<br />

Tel. +47 22 12 70 00<br />

Internet: www.environment.power.alstom.com<br />

� Hydraulic presses for prebaked<br />

ano<strong>de</strong>s / Hydraulische Pressen zur<br />

Herstellung von Ano<strong>de</strong>n<br />

LAEIS GmbH<br />

Am Scheerleck 7, L-6868 Wecker, Luxembourg<br />

Phone: +352 27612 0<br />

Fax: +352 27612 109<br />

E-Mail: info@laeis-gmbh.com<br />

Internet: www.laeis-gmbh.com<br />

Contact: Dr. Alfred Kaiser<br />

� Open top and closed<br />

type baking furnaces<br />

Offene und geschlossene Ringöfen<br />

RIEDHAMMER GmbH<br />

D-90332 Nürnberg<br />

E-Mail: goe<strong>de</strong>.frank@riedhammer.<strong>de</strong><br />

Internet: www.riedhammer.<strong>de</strong><br />

1.4 Ano<strong>de</strong> rodding<br />

Ano<strong>de</strong>nanschlägerei<br />

Outotec GmbH<br />

see Storage facilities for smelting 1.2<br />

� Removal of bath residues from<br />

the surface of spent ano<strong>de</strong>s<br />

Entfernen <strong>de</strong>r Badreste von <strong>de</strong>r Ober -<br />

fläche <strong>de</strong>r verbrauchten Ano<strong>de</strong>n<br />

GLAMA Maschinenbau GmbH<br />

Hornstraße 19<br />

D-45964 Gladbeck<br />

Telefon 02043 / 9738-0<br />

Telefax 02043 / 9738-50<br />

� Transport of finished ano<strong>de</strong><br />

elements to the pot room<br />

Transport <strong>de</strong>r fertigen Ano<strong>de</strong>nelemente<br />

in Elektrolysehalle<br />

Hovestr. 10 . D-48431 Rheine<br />

Telefon + 49 (0) 59 7158-0<br />

Fax + 49 (0) 59 7158-209<br />

E-Mail info@windhoff.<strong>de</strong><br />

Internet www.windhoff.<strong>de</strong><br />

112 ALUMINIUM · 1-2/2008


1.5 Casthouse (foundry)<br />

Gießerei<br />

HERTWICH ENGINEERING GmbH<br />

Maschinen und Industrieanlagen<br />

Weinbergerstraße 6, A-5280 Braunau am Inn<br />

Phone +437722/806-0<br />

Fax +437722/806-122<br />

E-Mail: info@hertwich.com<br />

Internet: www.hertwich.com<br />

INOTHERM INDUSTRIEOFEN-<br />

UND WÄRMETECHNIK GMBH<br />

Konstantinstraße 1a<br />

D 41238 Mönchengladbach<br />

Telefon +49 (02166) 987990<br />

Telefax +49 (02166) 987996<br />

E-Mail: info@inotherm-gmbh.<strong>de</strong><br />

Internet: www.inotherm-gmbh.<strong>de</strong><br />

OTTO JUNKER GmbH<br />

SIGNODE® SYSTEM GMBH<br />

Packaging Equipment<br />

Non-Ferrous Specialist Team DSWE<br />

Magnusstr. 18, 46535 Dinslaken/Germany<br />

Telefon: +49 (0) 2064 / 69-210<br />

Telefax: +49 (0) 2064 / 69-489<br />

E-Mail: g.laks@signo<strong>de</strong>-europe.com<br />

Internet: www.signo<strong>de</strong>.com<br />

Contact: Mr. Gerard Laks<br />

Stopinc AG<br />

Bösch 83 a<br />

CH-6331 Hünenberg<br />

Tel. +41/41-785 75 00<br />

Fax +41/41-785 75 01<br />

E-Mail: interstop@stopinc.ch<br />

Internet: www.stopinc.ch<br />

� Bone ash / Knochenasche<br />

IMPERIAL-OEL-IMPORT<br />

Bergstraße 11, D 20095 Hamburg<br />

Tel. 040/338533-0, Fax: 040/338533-85<br />

E-Mail: info@imperial-oel-import.<strong>de</strong><br />

� Clay / Toner<strong>de</strong><br />

TRIMET ALUMINIUM AG<br />

Nie<strong>de</strong>rlassung Düsseldorf<br />

Heinrichstr. 155<br />

D-40239 Düsseldorf<br />

Tel.: +49 (0) 211 / 96180-0<br />

Fax: +49 (0) 211 / 96180-60<br />

Internet: www.trimet.<strong>de</strong><br />

ALUMINIUM · 1-2/2008<br />

see Extrusion 2<br />

� Degassing, filtration and<br />

grain refinement<br />

Entgasung, Filtern, Kornfeinung<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

Drache Umwelttechnik<br />

GmbH<br />

Werner-v.-Siemens-Straße 9/24-26<br />

D 65582 Diez/Lahn<br />

Telefon 06432/607-0<br />

Telefax 06432/607-52<br />

Internet: www.drache-gmbh.<strong>de</strong><br />

� Dross skimming of liquid metal<br />

Abkrätzen <strong>de</strong>s Flüssigmetalls<br />

GLAMA Maschinenbau GmbH<br />

see Ano<strong>de</strong> rodding 1.4<br />

� Furnace charging with<br />

molten metal<br />

Ofenbeschickung mit Flüssigmetall<br />

GLAMA Maschinenbau GmbH<br />

see Ano<strong>de</strong> rodding 1.4<br />

� Melting/holding/casting furnaces<br />

Schmelz-/Halte- und Gießöfen<br />

HERTWICH ENGINEERING GmbH<br />

see Casthouse (foundry) 1.5<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

Sistem Teknik Ltd. Sti.<br />

DES San. Sit. 102 SOK No: 6/8<br />

Y.Dudullu, TR-34775 Istanbul/Turkey<br />

Tel.: +90 216 420 86 24<br />

Fax: +90 216 420 23 22<br />

E-Mail: info@sistemteknik.com<br />

Internet: www.sistemteknik.com<br />

� Metal treatment in the<br />

holding furnace<br />

Metallbehandlung in Halteöfen<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

� Transfer to the casting furnace<br />

Überführung in Gießofen<br />

GLAMA Maschinenbau GmbH<br />

see Ano<strong>de</strong> rodding 1.4<br />

Drache Umwelttechnik<br />

GmbH<br />

Werner-v.-Siemens-Straße 9/24-26<br />

D 65582 Diez/Lahn<br />

Telefon 06432/607-0<br />

Telefax 06432/607-52<br />

Internet: www.drache-gmbh.<strong>de</strong><br />

LIEFERVERZEICHNIS<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

Vollert Anlagenbau<br />

GmbH + Co. KG<br />

Stadtseestraße 12<br />

D-74189 Weinsberg<br />

Tel. +49 (0) 7134 / 52-220<br />

Fax +49 (0) 7134 / 52-222<br />

E-Mail intralogistik@vollert.<strong>de</strong><br />

Internet www.vollert.<strong>de</strong><br />

Windhoff Bahn- und<br />

Anlagentechnik GmbH<br />

see Ano<strong>de</strong> rodding 1.4<br />

� Transport of liquid metal<br />

to the casthouse<br />

Transport von Flüssigmetall<br />

in Gießereien<br />

GLAMA Maschinenbau GmbH<br />

see Ano<strong>de</strong> rodding 1.4<br />

MARX GmbH & Co. KG<br />

www.marx-gmbh.<strong>de</strong><br />

see Melt operations 4.13<br />

Vollert Anlagenbau<br />

GmbH + Co. KG<br />

see Transfer to the casting furnace 1.5<br />

Windhoff Bahn- und<br />

Anlagentechnik GmbH<br />

see Ano<strong>de</strong> rodding 1.4<br />

� Treatment of casthouse<br />

off gases<br />

Behandlung <strong>de</strong>r Gießereiabgase<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

1.6 Casting machines<br />

Gießmaschinen<br />

OTTO JUNKER GmbH<br />

� Pig casting machines<br />

(sow casters)<br />

Masselgießmaschine (Sowcaster)<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

see Equipment and accessories 2.11<br />

Outotec GmbH<br />

see Extrusion 2<br />

see Storage facilities for smelting 1.2<br />

113


LIEFERVERZEICHNIS<br />

� Rolling and extrusion ingot<br />

and T-bars<br />

Formatgießerei (Walzbarren o<strong>de</strong>r<br />

Pressbolzen o<strong>de</strong>r T-Barren)<br />

HERTWICH ENGINEERING GmbH<br />

see Casthouse (foundry) 1.5<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

� Vertical semi-continuous DC<br />

casting / Vertikales Stranggießen<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

see Equipment and accessories 2.11<br />

� Horizontal continuous casting<br />

Horizontales Stranggießen<br />

HERTWICH ENGINEERING GmbH<br />

see Casthouse (foundry) 1.5<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

� Scales / Waagen<br />

HERTWICH ENGINEERING GmbH<br />

see Casthouse (foundry) 1.5<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

� Sawing / Sägen<br />

HERTWICH ENGINEERING GmbH<br />

see Casthouse (foundry) 1.5<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

� Heat treatment of extrusion<br />

ingot (homogenisation)<br />

Formatebehandlung (homogenisieren)<br />

HERTWICH ENGINEERING GmbH<br />

see Casthouse (foundry) 1.5<br />

IUT Industriell Ugnsteknik AB<br />

see Extrusion 2<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

see Billet Heating Furnaces 1.5<br />

1.8 Electrolysis cell (pot)<br />

Elektrolyseofen<br />

� Insulating bricks / Isoliersteine<br />

Promat GmbH – Techn. Wärmedämmung<br />

Scheifenkamp 16, D-40878 Ratingen<br />

Tel. +49 (0) 2102 / 493-0, Fax -493 115<br />

verkauf3@promat.<strong>de</strong>, www.promat.<strong>de</strong><br />

� Pot feeding systems<br />

Beschickungseinrichtungen<br />

für Elektrolysezellen<br />

Möller Materials Handling GmbH<br />

Internet: www.moeller-mh.com<br />

see Storage facilities for smelting 1.2<br />

1.9 Potroom<br />

Elektrolysehalle<br />

T.T. Tomorrow Technology S.p.A.<br />

Via <strong>de</strong>ll’Artigianato 18<br />

Due Carrare, Padova 35020, Italy<br />

Telefon +39 049 912 8800<br />

Telefax +39 049 912 8888<br />

E-Mail: gmagarotto@tomorrowtechnology.it<br />

Contact: Giovanni Magarotto<br />

� Ano<strong>de</strong> changing machine<br />

Ano<strong>de</strong>nwechselmaschine<br />

GLAMA Maschinenbau GmbH<br />

see Ano<strong>de</strong> rodding 1.4<br />

� Tapping vehicles<br />

Schöpffahrzeuge<br />

GLAMA Maschinenbau GmbH<br />

see Ano<strong>de</strong> rodding 1.4<br />

� Crustbreakers / Krustenbrecher<br />

GLAMA Maschinenbau GmbH<br />

see Ano<strong>de</strong> rodding 1.4<br />

� Dry absorption units for<br />

electrolysis exhaust gases<br />

Trockenabsorptionsanlage für<br />

Elektrolyseofenabgase<br />

ALSTOM Norway AS<br />

Tel. +47 22 12 70 00<br />

Internet: www.environment.power.alstom.com<br />

� Ano<strong>de</strong> transport equipment<br />

Ano<strong>de</strong>n Transporteinrichtungen<br />

GLAMA Maschinenbau GmbH<br />

see Ano<strong>de</strong> rodding 1.4<br />

� HF Measurementtechnology<br />

HF Messtechnik<br />

OPSIS AB<br />

Box 244, S-24402 Furulund, Schwe<strong>de</strong>n<br />

Tel. +46 (0) 46-72 25 00, Fax -72 25 01<br />

E-Mail: info@opsis.se<br />

Internet: www.opsis.se<br />

1.15 Storage and transport<br />

Lager und Transport<br />

HUBTEX Maschinenbau GmbH & Co. KG<br />

Werner-von-Siemens-Str. 8<br />

D-36041 Fulda<br />

Tel. +49 (0) 661 / 83 82-0<br />

Fax +49 (0) 661 / 83 82-120<br />

E-Mail: info@hubtex.com<br />

Internet: www.hubtex.com<br />

114 ALUMINIUM · 1-2/2008


Extrusion<br />

2 Strangpressen<br />

2.1 Extrusion billet preparation<br />

2.2 Extrusion equipment<br />

2.3 Section handling<br />

2.4 Heat treatment<br />

2.5 Measurement and control equipment<br />

2.6 Die preparation and care<br />

2.7 Second-hand extrusion plant<br />

2.8 Consultancy, expert opinion<br />

2.9 Surface finishing of sections<br />

2.10 Machining of sections<br />

2.11 Equipment and accessories<br />

2.12 Services<br />

www.otto-junker-group.com<br />

Jägerhausstr. 22<br />

D – 52152 Simmerath<br />

Telefon: +49 2473 601 0<br />

Telefax: +49 2473 601 600<br />

E-Mail: info@otto-junker.<strong>de</strong><br />

Kontakt: Herr Teichert / Flat Equipment<br />

Herr Dr. Menzler / Extru<strong>de</strong>d Equipment<br />

Herr Donsbach / Foundry Equipment<br />

Kingsbury Road<br />

Curdworth<br />

UK - SUTTON COLDFIELD B76 9EE<br />

Telefon: +44 1675 470551<br />

Telefax: +44 1675 470645<br />

E-Mail: info@otto-junker.co.uk<br />

Kontakt: Mr. Beard<br />

IUT Industriell Ugnsteknik AB<br />

Industrivägen 2<br />

43892 Härryda, Swe<strong>de</strong>n<br />

Telefon: +46 (0) 301 31510<br />

Telefax: +46 (0) 301 30479<br />

E-Mail: office@iut.se<br />

Kontakt: Mr. Berge<br />

2.1 Extrusion billet<br />

preparation<br />

Pressbolzenbereitstellung<br />

SIGNODE® SYSTEM GMBH<br />

Packaging Equipment<br />

Non-Ferrous Specialist Team DSWE<br />

Magnusstr. 18, 46535 Dinslaken/Germany<br />

Telefon: +49 (0) 2064 / 69-210<br />

Telefax: +49 (0) 2064 / 69-489<br />

E-Mail: g.laks@signo<strong>de</strong>-europe.com<br />

Internet: www.signo<strong>de</strong>.com<br />

Contact: Mr. Gerard Laks<br />

ALUMINIUM · 1-2/2008<br />

2.1 Pressbolzenbereitstellung<br />

2.2 Strangpresseinrichtungen<br />

2.3 Profilhandling<br />

2.4 Wärmebehandlung<br />

2.5 Mess- und Regeleinrichtungen<br />

2.6 Werkzeugbereitstellung und -pflege<br />

2.7 Gebrauchte Strangpressanlagen<br />

2.8 Beratung, Gutachten<br />

2.9 Oberflächenveredlung von Profilen<br />

2.10 Profilbearbeitung<br />

2.11 Ausrüstungen und Hilfsmittel<br />

2.12 Dienstleistungen<br />

� Billet heating furnaces<br />

Öfen zur Bolzenerwärmung<br />

Am großen Teich 16+27<br />

D-58640 Iserlohn<br />

Tel. +49 (0) 2371 / 4346-0<br />

Fax +49 (0) 2371 / 4346-43<br />

E-Mail: verkauf@ias-gmbh.<strong>de</strong><br />

Internet: www.ias-gmbh.<strong>de</strong><br />

MARX GmbH & Co. KG<br />

www.marx-gmbh.<strong>de</strong><br />

see Melt operations 4.13<br />

Sistem Teknik Ltd. Sti.<br />

DES San. Sit. 102 SOK No: 6/8<br />

Y.Dudullu, TR-34775 Istanbul/Turkey<br />

Tel.: +90 216 420 86 24<br />

Fax: +90 216 420 23 22<br />

E-Mail: info@sistemteknik.com<br />

Internet: www.sistemteknik.com<br />

� Billet heating units<br />

Anlagen zur Bolzenerwärmung<br />

OTTO JUNKER GmbH<br />

� Billet transport and<br />

storage equipment<br />

Bolzen Transport- und<br />

Lagereinrichtungen<br />

OTTO JUNKER GmbH<br />

see Extrusion 2<br />

see Extrusion 2<br />

LIEFERVERZEICHNIS<br />

� Hot shears / Warmscheren<br />

OTTO JUNKER GmbH<br />

see Extrusion 2<br />

2.2 Extrusion equipment<br />

Strangpresseinrichtungen<br />

Oilgear Towler GmbH<br />

Im Gotthelf 8<br />

D 65795 Hattersheim<br />

Tel. +49 (0) 6145 3770<br />

Fax +49 (0) 6145 30770<br />

E-Mail: info@oilgear.<strong>de</strong><br />

Internet: www.oilgear.<strong>de</strong><br />

SMS Meer GmbH<br />

Schloemann Extrusion<br />

Ohlerkirchweg 66<br />

D-41069 Mönchengladbach<br />

Tel. +49 (0) 2161 / 3500<br />

Fax +49 (0) 2161 / 3501667<br />

E-Mail: info@sms-meer.com<br />

Internet: www.sms-meer.com<br />

� Containers / Rezipienten<br />

KIND & CO., EDELSTAHLWERK, KG<br />

Bielsteiner Straße 128-130<br />

D-51674 Wiehl<br />

Telefon: +49 (0) 2262 / 84 0<br />

Telefax: +49 (0) 2262 / 84 175<br />

E-Mail: info@kind-co.<strong>de</strong><br />

Internet: www.kind-co.<strong>de</strong><br />

SMS Meer GmbH<br />

see Extrusion equipment 2.2<br />

115


LIEFERVERZEICHNIS<br />

� Extrusion / Strangpressen<br />

OTTO JUNKER GmbH<br />

� Press control systems<br />

Pressensteuersysteme<br />

Oilgear Towler GmbH<br />

see Extrusion Equipment 2.2<br />

SMS Meer GmbH<br />

see Extrusion equipment 2.2<br />

� Temperature measurement<br />

Temperaturmessung<br />

SMS Meer GmbH<br />

see Extrusion equipment 2.2<br />

� Heating and control<br />

equipment for intelligent<br />

billet containers<br />

Heizungs- und Kontrollausrüstung<br />

für intelligente Blockaufnehmer<br />

MARX GmbH & Co. KG<br />

www.marx-gmbh.<strong>de</strong><br />

see Melt operations 4.13<br />

2.3 Section handling<br />

Profilhandling<br />

SIGNODE® SYSTEM GMBH<br />

Packaging Equipment<br />

Non-Ferrous Specialist Team DSWE<br />

Magnusstr. 18, 46535 Dinslaken/Germany<br />

Telefon: +49 (0) 2064 / 69-210<br />

Telefax: +49 (0) 2064 / 69-489<br />

E-Mail: g.laks@signo<strong>de</strong>-europe.com<br />

Internet: www.signo<strong>de</strong>.com<br />

Contact: Mr. Gerard Laks<br />

� Homogenising furnaces<br />

Homogenisieröfen<br />

see Extrusion 2 OTTO JUNKER GmbH<br />

IUT Industriell Ugnsteknik AB<br />

� Packaging equipment<br />

Verpackungseinrichtungen<br />

H+H HERRMANN + HIEBER GMBH<br />

För<strong>de</strong>rsysteme für Paletten<br />

und schwere Lasten<br />

Rechbergstraße 46<br />

D-73770 Denkendorf/Stuttgart<br />

Tel. +49 (0) 711 / 9 34 67-0<br />

Fax +49 (0) 711 / 3 46 0911<br />

E-Mail: info@herrmannhieber.<strong>de</strong><br />

Internet: www.herrmannhieber.<strong>de</strong><br />

Vollert Anlagenbau<br />

GmbH + Co. KG<br />

see Transfer to the casting furnace 1.5<br />

� Puller equipment<br />

Ausziehvorrichtungen/Puller<br />

OTTO JUNKER GmbH<br />

see Extrusion 2<br />

see Extrusion 2<br />

SMS Meer GmbH<br />

see Extrusion equipment 2.2<br />

� Section cooling<br />

Profilkühlung<br />

OTTO JUNKER GmbH<br />

SMS Meer GmbH<br />

see Extrusion equipment 2.2<br />

� Section saws<br />

Profilsägen<br />

OTTO JUNKER GmbH<br />

SMS Meer GmbH<br />

see Extrusion equipment 2.2<br />

� Section store equipment<br />

Profil-Lagereinrichtungen<br />

H+H HERRMANN + HIEBER GMBH<br />

För<strong>de</strong>rsysteme für Paletten<br />

und schwere Lasten<br />

Rechbergstraße 46<br />

D-73770 Denkendorf/Stuttgart<br />

Tel. +49 (0) 711 / 9 34 67-0<br />

Fax +49 (0) 711 / 3 46 0911<br />

E-Mail: info@herrmannhieber.<strong>de</strong><br />

Internet: www.herrmannhieber.<strong>de</strong><br />

Could not find your „keywords“?<br />

Please ask for our complete<br />

„Supply sources for the<br />

aluminium industry“.<br />

see Extrusion 2<br />

see Extrusion 2<br />

E-Mail: Schwichtenberg@giesel.<strong>de</strong><br />

116 ALUMINIUM · 1-2/2008


KASTO Maschinenbau GmbH & Co. KG<br />

Industriestr. 14, D-77855 Achern<br />

Tel.: +49 (0) 7841 61-0 / Fax: +49 (0) 7841 61 300<br />

kasto@kasto.<strong>de</strong> / www.kasto.<strong>de</strong><br />

Hersteller von Band- und Kreissägemaschinen<br />

sowie Langgut- und Blechlagersystemen<br />

Vollert Anlagenbau<br />

GmbH + Co. KG<br />

see Transfer to the casting furnace 1.5<br />

� Section transport equipment<br />

Profiltransporteinrichtungen<br />

OTTO JUNKER GmbH<br />

� Stackers / Destackers<br />

Stapler / Entstapler<br />

� Stretching equipment<br />

Reckeinrichtungen<br />

ALUMINIUM · 1-2/2008<br />

see Extrusion 2<br />

SMS Meer GmbH<br />

see Extrusion equipment 2.2<br />

OTTO JUNKER GmbH<br />

IUT Industriell Ugnsteknik AB<br />

see Extrusion 2<br />

SMS Meer GmbH<br />

see Extrusion equipment 2.2<br />

OTTO JUNKER GmbH<br />

see Extrusion 2<br />

SMS Meer GmbH<br />

see Extrusion equipment 2.2<br />

� Transport equipment for<br />

extru<strong>de</strong>d sections<br />

Transporteinrichtungen<br />

für Profilabschnitte<br />

H+H HERRMANN + HIEBER GMBH<br />

För<strong>de</strong>rsysteme für Paletten<br />

und schwere Lasten<br />

Rechbergstraße 46<br />

D-73770 Denkendorf/Stuttgart<br />

Tel. +49 (0) 711 / 9 34 67-0<br />

Fax +49 (0) 711 / 3 46 0911<br />

E-Mail: info@herrmannhieber.<strong>de</strong><br />

Internet: www.herrmannhieber.<strong>de</strong><br />

OTTO JUNKER GmbH<br />

Vollert Anlagenbau<br />

GmbH + Co. KG<br />

see Transfer to the casting furnace 1.5<br />

2.4 Heat treatment<br />

Wärmebehandlung<br />

� Extrusion<br />

Strangpressen<br />

OTTO JUNKER GmbH<br />

� Heat treatment furnaces<br />

Wärmebehandlungsöfen<br />

INOTHERM INDUSTRIEOFEN-<br />

UND WÄRMETECHNIK GMBH<br />

see Casthouse (foundry) 1.5<br />

see Billet Heating Furnaces 2.1<br />

� Custom <strong>de</strong>signed heat<br />

processing equipment<br />

Kun<strong>de</strong>nspezifische<br />

Wärmebehandlungsanlagen<br />

see Extrusion 2<br />

see Extrusion 2<br />

OTTO JUNKER GmbH<br />

IUT Industriell Ugnsteknik AB<br />

see Extrusion 2<br />

Sistem Teknik Ltd. Sti.<br />

see Billet Heating Furnaces 2.1<br />

LIEFERVERZEICHNIS<br />

� Homogenising furnaces<br />

Homogenisieröfen<br />

HERTWICH ENGINEERING GmbH<br />

see Casthouse (foundry) 1.5<br />

OTTO JUNKER GmbH<br />

IUT Industriell Ugnsteknik AB<br />

see Extrusion 2<br />

schwartz GmbH<br />

Edisonstraße 5<br />

D-52152 Simmerath<br />

Tel.: +49 (0) 2473 9488-0<br />

Fax: +49 (0) 2473 9488-11<br />

E-Mail: info@schwartz-wba.<strong>de</strong><br />

Internet: www.schartz-wba.<strong>de</strong><br />

see Billet Heating Furnaces 2.1<br />

2.5 Measurement and<br />

control equipment<br />

Mess- und Regeleinrichtungen<br />

� Extrusion plant control systems<br />

Presswerkssteuerungen<br />

SMS Meer GmbH<br />

see Extrusion equipment 2.2<br />

� Hardness measuring<br />

instuments, portable<br />

Härtemessgerät, tragbar<br />

Form+Test Seidner & Co. GmbH<br />

D-88491 Riedlingen<br />

Telefax 07371/9302-98<br />

E-Mail: linke@formtest.<strong>de</strong><br />

117


LIEFERVERZEICHNIS<br />

2.6 Die preparation and care<br />

Werkzeugbereitstellung<br />

und -pflege<br />

Castool Tooling Solutions<br />

(North America)<br />

21 State Crown Bvld<br />

Scarborough Ontario Canada MIV 4B1<br />

Tel.: +1 416 297 1521<br />

Fax: +1 416 297 1915<br />

E-Mail: sales@castool.com<br />

Internet: www.castool.com<br />

Sales Contact: Danny Dann<br />

� Die heating furnaces<br />

Werkzeuganwärmöfen<br />

IUT Industriell Ugnsteknik AB<br />

see Extrusion 2<br />

Sistem Teknik Ltd. Sti.<br />

see Billet Heating Furnaces 2.1<br />

� Extrusion dies<br />

Strangpresswerkzeuge<br />

Haarmann Holding GmbH<br />

Ludwigsallee 57<br />

D-52052 Aachen<br />

Telefon: 02 41 / 9 18 - 500<br />

Telefax: 02 41 / 9 18 - 5010<br />

E-Mail: info.holding@haarmann-gruppe.<strong>de</strong><br />

Internet: www.haarmann-gruppe.<strong>de</strong><br />

2.7 Second-hand<br />

extrusion plant<br />

Gebr. Strangpressanlagen<br />

Qualiteam International/ExtruPreX<br />

Champs Elyséesweg 17, NL-6213 AA Maastricht<br />

Tel. +31-43-3 25 67 77<br />

Internet: www.extruprex.com<br />

2.10 Machining of sections<br />

Profilbearbeitung<br />

� Processing of Profiles<br />

Profilbearbeitung<br />

Tensai (International) AG<br />

Extal Division<br />

Steinengraben 40<br />

CH-4051 Basel<br />

Telefon +41 (0) 61 284 98 10<br />

Telefax +41 (0) 61 284 98 20<br />

E-Mail: tensai@tensai.com<br />

2.11 Equipment and<br />

accessories<br />

Ausrüstungen und<br />

Hilfsmittel<br />

MARX GmbH & Co. KG<br />

www.marx-gmbh.<strong>de</strong><br />

see Melt operations 4.13 � Inductiv heating equipment<br />

Induktiv beheizte<br />

Erwärmungseinrichtungen<br />

schwartz GmbH<br />

Edisonstraße 5<br />

D-52152 Simmerath<br />

Tel.: +49 (0) 2473 9488-0<br />

Fax: +49 (0) 2473 9488-11<br />

E-Mail: info@schwartz-wba.<strong>de</strong><br />

Internet: www.schartz-wba.<strong>de</strong><br />

� Har<strong>de</strong>ning technology<br />

Härtetechnik<br />

Haarmann Holding GmbH<br />

see Die preparation and care 2.6<br />

Am großen Teich 16+27<br />

D-58640 Iserlohn<br />

Tel. +49 (0) 2371 / 4346-0<br />

Fax +49 (0) 2371 / 4346-43<br />

E-Mail: verkauf@ias-gmbh.<strong>de</strong><br />

Internet: www.ias-gmbh.<strong>de</strong><br />

� Ageing furnace for extrusions<br />

Auslagerungsöfen für<br />

Strangpressprofile<br />

IUT Industriell Ugnsteknik AB<br />

see Extrusion 2<br />

LOI Thermprocess GmbH<br />

Am Lichtbogen 29<br />

D-45141 Essen<br />

Germany<br />

Telefon +49 (0) 201 / 18 91-3 10<br />

Telefax +49 (0) 201 / 18 91-53 10<br />

E-Mail: info@loi.<strong>de</strong><br />

Internet: www.loi.<strong>de</strong><br />

see Billet Heating Furnaces 2.1<br />

2.12 Services<br />

Dienstleistungen<br />

Haarmann Holding GmbH<br />

see Die preparation and care 2.6<br />

Could not find your „keywords“?<br />

Please ask for our complete<br />

„Supply sources for the<br />

aluminium industry“.<br />

E-Mail:<br />

Schwichtenberg@giesel.<strong>de</strong><br />

118 ALUMINIUM · 1-2/2008


3<br />

Rolling mill technology<br />

Walzwerktechnik<br />

3.1 Casting equipment<br />

3.2 Rolling bar machining<br />

3.3 Rolling bar furnaces<br />

3.4 Hot rolling equipment<br />

3.5 Strip casting units and accessories<br />

3.6 Cold rolling equipment<br />

3.7 Thin strip / foil rolling plant<br />

3.8 Auxiliary equipment<br />

3.9 Adjustment <strong>de</strong>vices<br />

3.10 Process technology / Automation technology<br />

3.11 Coolant / lubricant preparation<br />

3.12 Air extraction systems<br />

3.13 Fire extinguishing units<br />

3.14 Storage and dispatch<br />

3.15 Second-hand rolling equipment<br />

3.16 Coil storage systems<br />

3.17 Strip Processing Lines<br />

3.0 Rolling mill Technology<br />

Walzwerktechnik<br />

SMS Demag Aktiengesellschaft<br />

Eduard-Schloemann-Straße 4<br />

D-40237 Düsseldorf<br />

Telefon: +49 (0) 211 881-0<br />

Telefax: +49 (0) 211 881-49 02<br />

Internet: www.sms-<strong>de</strong>mag.com<br />

E-Mail: communications@sms-<strong>de</strong>mag.com<br />

Geschäftsbereiche:<br />

Warmflach- und Kaltwalzwerke<br />

Wiesenstraße 30<br />

D-57271 Hilchenbach-Dahlbruch<br />

Telefon: +49 (0) 2733 29-0<br />

Telefax: +49 (0) 2733 29-2852<br />

Bandanlagen<br />

Wal<strong>de</strong>rstraße 51/53<br />

D-40724 Hil<strong>de</strong>n<br />

Telefon: +49 (0) 211 881-5100<br />

Telefax: +49 (0) 211 881-5200<br />

Elektrik + Automation<br />

Ivo-Beucker-Straße 43<br />

D-40237 Düsseldorf<br />

Telefon: +49 (0) 211 881-5895<br />

Telefax: +49 (0) 211 881-775895<br />

3.1 Casting equipment<br />

Gießanlagen<br />

OTTO JUNKER GmbH<br />

� Melting and holding furnaces<br />

Schmelz- und Warmhalteöfen<br />

ALUMINIUM · 1-2/2008<br />

see Extrusion 2<br />

see Equipment and accessories 2.11<br />

3.1 Gießanlagen<br />

3.2 Walzbarrenbearbeitung<br />

3.3 Walzbarrenvorbereitung<br />

3.4 Warmwalzanlagen<br />

3.5 Bandgießanlagen und Zubehör<br />

3.6 Kaltwalzanlagen<br />

3.7 Feinband-/Folienwalzwerke<br />

3.8 Nebeneinrichtungen<br />

3.9 Adjustageeinrichtungen<br />

3.10 Prozesstechnik / Automatisierungstechnik<br />

3.11 Kühl-/Schmiermittel-Aufbereitung<br />

3.12 Abluftsysteme<br />

3.13 Feuerlöschanlagen<br />

3.14 Lagerung und Versand<br />

3.15 Gebrauchtanlagen<br />

3.16 Coil storage systems<br />

3.17 Bandprozesslinien<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

Geschäftsbereich <strong>Alu</strong>minium<br />

Konstanzer Straße 37<br />

Postfach 170<br />

CH 8274 Tägerwilen<br />

Telefon +41/71/6666666<br />

Telefax +41/71/6666688<br />

E-Mail: aluminium@maerz-gautschi.ch<br />

Kontakt: Stefan Blum, Tel. +41/71/6666621<br />

� Metal filters / Metallfilter<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting equipment 3.1<br />

� Filling level indicators<br />

and controls<br />

Füllstandsanzeiger und -regler<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting equipment 3.1<br />

� Melt purification units<br />

Schmelzereinigungsanlagen<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting equipment 3.1<br />

3.2 Rolling bar machining<br />

Walzbarrenbearbeitung<br />

� Band saws / Bandsägen<br />

SMS Meer GmbH<br />

Ohlerkirchweg 66<br />

D-41069 Mönchengladbach<br />

Tel. +49 (0) 2161 / 3500<br />

Fax +49 (0) 2161 / 3501667<br />

E-Mail: info@sms-meer.com<br />

Internet: www.sms-meer.com<br />

LIEFERVERZEICHNIS<br />

� Bar scalping / Barrenfräsen<br />

SMS Demag Aktiengesellschaft<br />

see Rolling mill Technology 3.0<br />

� Slab milling machines<br />

Barrenfräsmaschinen<br />

SMS Meer GmbH<br />

see Rolling bar machining 3.2<br />

3.3 Rolling bar furnaces<br />

Walzbarrenvorbereitung<br />

� Homogenising furnaces<br />

Homogenisieröfen<br />

HERTWICH ENGINEERING GmbH<br />

see Casthouse (foundry) 1.5<br />

OTTO JUNKER GmbH<br />

IUT Industriell Ugnsteknik AB<br />

see Extrusion 2<br />

119


LIEFERVERZEICHNIS<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting equipment 3.1<br />

schwartz GmbH<br />

Edisonstraße 5<br />

D-52152 Simmerath<br />

Tel.: +49 (0) 2473 9488-0<br />

Fax: +49 (0) 2473 9488-11<br />

E-Mail: info@schwartz-wba.<strong>de</strong><br />

Internet: www.schartz-wba.<strong>de</strong><br />

� Annealing furnaces<br />

Glühöfen<br />

EBNER Industrieofenbau Ges.m.b.H.<br />

Ruflinger Str. 111, A-4060 Leonding<br />

Tel. +43 / 732 / 68 68<br />

Fax +43 / 732 / 68 68-1000<br />

Internet: www.ebner.cc<br />

E-Mail: sales@ebner.cc<br />

OTTO JUNKER GmbH<br />

IUT Industriell Ugnsteknik AB<br />

see Extrusion 2<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting equipment 3.1<br />

schwartz GmbH<br />

� Bar heating furnaces<br />

Barrenanwärmanlagen<br />

see Heat treatment 2.4<br />

EBNER Industrieofenbau Ges.m.b.H.<br />

see Annealing furnaces 3.3<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting equipment 3.1<br />

OTTO JUNKER GmbH<br />

� Roller tracks<br />

Rollengänge<br />

see Extrusion 2<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting equipment 3.1<br />

3.4 Hot rolling equipment<br />

Warmwalzanlagen<br />

Achenbach Buschhütten GmbH<br />

Siegener Str. 152, D-57223 Kreuztal<br />

Tel. +49 (0) 2732/7990, info@achenbach.<strong>de</strong><br />

Internet: www.achenbach.<strong>de</strong><br />

SIEMAG GmbH<br />

Obere Industriestraße 8<br />

D-57250 Netphen<br />

Tel.: +49 (0) 2738 / 21-0<br />

Fax: +49 (0) 2738 / 21-1299<br />

E-Mail: info@siemag.com<br />

Internet: www.siemag.com<br />

� Coil transport systems<br />

Bundtransportsysteme<br />

Vollert Anlagenbau<br />

GmbH + Co. KG<br />

see Transfer to the casting furnace 1.5<br />

Windhoff Bahn- und<br />

Anlagentechnik GmbH<br />

see Ano<strong>de</strong> rodding 1.4<br />

� Drive systems / Antriebe<br />

SMS Demag Aktiengesellschaft<br />

see Rolling mill Technology 3.0<br />

� Rolling mill mo<strong>de</strong>rnisation<br />

Walzwerksmo<strong>de</strong>rnisierung<br />

SMS Demag Aktiengesellschaft<br />

see Rolling mill Technology 3.0<br />

Do you need more information?<br />

E-Mail: Schwichtenberg@giesel.<strong>de</strong><br />

� Spools / Haspel<br />

SMS Demag Aktiengesellschaft<br />

see Rolling mill Technology 3.0<br />

� Hot rolling units /<br />

complete plants<br />

Warmwalzanlagen/Komplettanlagen<br />

SMS Demag Aktiengesellschaft<br />

see Rolling mill Technology 3.0<br />

� Toolings / Werkzeuge<br />

see Extrusion equipment 2.2<br />

3.5 Strip casting units<br />

and accessories<br />

Bandgießanlagen und<br />

Zubehör<br />

� Cores & shells for continuous<br />

casting lines<br />

Cores & shells for continuous<br />

casting lines<br />

Bruno Presezzi SpA<br />

Via per Ornago 8<br />

I-20040 Burago Molgora (Mi) – Italy<br />

Tel. +39 039 63502 229<br />

Fax +39 039 6081373<br />

E-Mail: aluminium.<strong>de</strong>pt@brunopresezzi.com<br />

Internet: www.brunopresezzi.com<br />

Contact: Franco Gramaglia<br />

� Revamps, equipments & spare parts<br />

for continuous casting lines<br />

Revamps, equipments & spare parts<br />

for continuous casting lines<br />

Bruno Presezzi SpA<br />

Via per Ornago 8<br />

I-20040 Burago Molgora (Mi) – Italy<br />

Tel. +39 039 63502 229<br />

Fax +39 039 6081373<br />

E-Mail: aluminium.<strong>de</strong>pt@brunopresezzi.com<br />

Internet: www.brunopresezzi.com<br />

Contact: Franco Gramaglia<br />

120 ALUMINIUM · 1-2/2008


� Twin-roll continuous casting<br />

lines (complete lines)<br />

Twin-roll continuous casting lines<br />

(complete lines)<br />

Bruno Presezzi SpA<br />

Via per Ornago 8<br />

I-20040 Burago Molgora (Mi) – Italy<br />

Tel. +39 039 63502 229<br />

Fax +39 039 6081373<br />

E-Mail: aluminium.<strong>de</strong>pt@brunopresezzi.com<br />

Internet: www.brunopresezzi.com<br />

Contact: Franco Gramaglia<br />

3.6 Cold rolling equipment<br />

Kaltwalzanlagen<br />

Achenbach Buschhütten GmbH<br />

Siegener Str. 152, D-57223 Kreuztal<br />

Tel. +49 (0) 2732/7990, info@achenbach.<strong>de</strong><br />

Internet: www.achenbach.<strong>de</strong><br />

Mainzer Landstrasse 16<br />

D-60325 Frankfurt am Main<br />

Tel.: +49 69 97 16 81 48<br />

Fax: +49 69 97 16 82 00<br />

E-Mail: juhani.aittola@pesmel.com<br />

Internet: www.pesmel.com<br />

SIEMAG GmbH<br />

Obere Industriestraße 8<br />

D-57250 Netphen<br />

Tel.: +49 (0) 2738 / 21-0<br />

Fax: +49 (0) 2738 / 21-1299<br />

E-Mail: info@siemag.com<br />

Internet: www.siemag.com<br />

SIGNODE® SYSTEM GMBH<br />

Packaging Equipment<br />

Non-Ferrous Specialist Team DSWE<br />

Magnusstr. 18, 46535 Dinslaken/Germany<br />

Telefon: +49 (0) 2064 / 69-210<br />

Telefax: +49 (0) 2064 / 69-489<br />

E-Mail: g.laks@signo<strong>de</strong>-europe.com<br />

Internet: www.signo<strong>de</strong>.com<br />

Contact: Mr. Gerard Laks<br />

Do you need<br />

more<br />

information?<br />

E-Mail:<br />

Schwichtenberg@giesel.<strong>de</strong><br />

ALUMINIUM · 1-2/2008<br />

� Coil annealing furnaces<br />

Bundglühöfen<br />

OTTO JUNKER GmbH<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting equipment 3.1<br />

schwartz GmbH<br />

Edisonstraße 5<br />

D-52152 Simmerath<br />

Tel.: +49 (0) 2473 9488-0<br />

Fax: +49 (0) 2473 9488-11<br />

E-Mail: info@schwartz-wba.<strong>de</strong><br />

Internet: www.schartz-wba.<strong>de</strong><br />

www.vits.com<br />

see Cold rolling equipment 3.6<br />

� Coil transport systems<br />

Bundtransportsysteme<br />

Vollert Anlagenbau<br />

GmbH + Co. KG<br />

see Transfer to the casting furnace 1.5<br />

Windhoff Bahn- und<br />

Anlagentechnik GmbH<br />

see Ano<strong>de</strong> rodding 1.4<br />

� Cold rolling units / complete plants<br />

Kaltwalzanlagen/Komplettanlagen<br />

SMS Demag Aktiengesellschaft<br />

see Rolling mill Technology 3.0<br />

� Drive systems / Antriebe<br />

see Extrusion 2<br />

see Equipment and accessories 2.11<br />

SMS Demag Aktiengesellschaft<br />

see Rolling mill Technology 3.0<br />

LIEFERVERZEICHNIS<br />

� Heating furnaces / Anwärmöfen<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting equipment 3.1<br />

OTTO JUNKER GmbH<br />

IUT Industriell Ugnsteknik AB<br />

see Extrusion 2<br />

schwartz GmbH<br />

Edisonstraße 5<br />

D-52152 Simmerath<br />

Tel.: +49 (0) 2473 9488-0<br />

Fax: +49 (0) 2473 9488-11<br />

E-Mail: info@schwartz-wba.<strong>de</strong><br />

Internet: www.schartz-wba.<strong>de</strong><br />

Vits Systems GmbH<br />

Winkelsweg 172<br />

D-40764 Langenfeld<br />

Tel.: +49 (0) 2173 / 798-0<br />

Fax: +49 (0) 2173 / 798-244<br />

E-Mail: mt@vits.<strong>de</strong>, Internet: www.vits.com<br />

� Process optimisation systems<br />

Prozessoptimierungssysteme<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting equipment 3.1<br />

� Process simulation<br />

Prozesssimulation<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting equipment 3.1<br />

SMS Demag Aktiengesellschaft<br />

see Rolling mill Technology 3.0<br />

� Revamps, equipments & spare parts<br />

Revamps, equipments & spare parts<br />

Bruno Presezzi SpA<br />

Via per Ornago 8<br />

I-20040 Burago Molgora (Mi) – Italy<br />

Tel. +39 039 63502 229<br />

Fax +39 039 6081373<br />

E-Mail: aluminium.<strong>de</strong>pt@brunopresezzi.com<br />

Internet: www.brunopresezzi.com<br />

Contact: Franco Gramaglia<br />

121


LIEFERVERZEICHNIS<br />

� Roll exchange equipment<br />

Walzenwechseleinrichtungen<br />

SMS Demag Aktiengesellschaft<br />

see Rolling mill Technology 3.0<br />

Vollert Anlagenbau<br />

GmbH + Co. KG<br />

see Transfer to the casting furnace 1.5<br />

Windhoff Bahn- und<br />

Anlagentechnik GmbH<br />

see Ano<strong>de</strong> rodding 1.4<br />

� Rolling mill mo<strong>de</strong>rnization<br />

Walzwerkmo<strong>de</strong>rnisierung<br />

Achenbach Buschhütten GmbH<br />

Siegener Str. 152, D-57223 Kreuztal<br />

Tel. +49 (0) 2732/7990, info@achenbach.<strong>de</strong><br />

Internet: www.achenbach.<strong>de</strong><br />

� Strip shears<br />

Bandscheren<br />

SMS Demag Aktiengesellschaft<br />

see Rolling mill Technology 3.0<br />

� Trimming equipment<br />

Besäumeinrichtungen<br />

SMS Demag Aktiengesellschaft<br />

see Rolling mill Technology 3.0<br />

3.7 Thin strip /<br />

foil rolling plant<br />

Feinband-/Folienwalzwerke<br />

Achenbach Buschhütten GmbH<br />

Siegener Str. 152, D-57223 Kreuztal<br />

Tel. +49 (0) 2732/7990, info@achenbach.<strong>de</strong><br />

Internet: www.achenbach.<strong>de</strong><br />

SIGNODE® SYSTEM GMBH<br />

Packaging Equipment<br />

Non-Ferrous Specialist Team DSWE<br />

Magnusstr. 18, 46535 Dinslaken/Germany<br />

Telefon: +49 (0) 2064 / 69-210<br />

Telefax: +49 (0) 2064 / 69-489<br />

E-Mail: g.laks@signo<strong>de</strong>-europe.com<br />

Internet: www.signo<strong>de</strong>.com<br />

Contact: Mr. Gerard Laks<br />

� Coil annealing furnaces<br />

Bundglühöfen<br />

OTTO JUNKER GmbH<br />

see Equipment and accessories 2.11<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting equipment 3.1<br />

schwartz GmbH<br />

see Cold colling equipment 3.6<br />

www.vits.com<br />

see Thin strip / foil rolling plant 3.7<br />

� Heating furnaces<br />

Anwärmöfen<br />

INOTHERM INDUSTRIEOFEN-<br />

UND WÄRMETECHNIK GMBH<br />

see Casthouse (foundry) 1.5<br />

OTTO JUNKER GmbH<br />

see Extrusion 2<br />

see Extrusion 2<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting equipment 3.1<br />

schwartz GmbH<br />

Edisonstraße 5<br />

D-52152 Simmerath<br />

Tel.: +49 (0) 2473 9488-0<br />

Fax: +49 (0) 2473 9488-11<br />

E-Mail: info@schwartz-wba.<strong>de</strong><br />

Internet: www.schartz-wba.<strong>de</strong><br />

Vits Systems GmbH<br />

Winkelsweg 172<br />

D-40764 Langenfeld<br />

Tel.: +49 (0) 2173 / 798-0<br />

Fax: +49 (0) 2173 / 798-244<br />

E-Mail: mt@vits.<strong>de</strong>, Internet: www.vits.com<br />

� Thin strip / foil rolling mills /<br />

complete plant<br />

Feinband- / Folienwalzwerke /<br />

Komplettanlagen<br />

SMS Demag Aktiengesellschaft<br />

see Rolling mill Technology 3.0<br />

� Revamps, equipments & spare parts<br />

Revamps, equipments & spare parts<br />

Bruno Presezzi SpA<br />

Via per Ornago 8<br />

I-20040 Burago Molgora (Mi) – Italy<br />

Tel. +39 039 63502 229<br />

Fax +39 039 6081373<br />

E-Mail: aluminium.<strong>de</strong>pt@brunopresezzi.com<br />

Internet: www.brunopresezzi.com<br />

Contact: Franco Gramaglia<br />

� Rolling mill mo<strong>de</strong>rnization<br />

Walzwerkmo<strong>de</strong>rnisierung<br />

Achenbach Buschhütten GmbH<br />

Siegener Str. 152, D-57223 Kreuztal<br />

Tel. +49 (0) 2732/7990, info@achenbach.<strong>de</strong><br />

Internet: www.achenbach.<strong>de</strong><br />

Do you need<br />

more information?<br />

E-Mail:<br />

Schwichtenberg@giesel.<strong>de</strong><br />

122 ALUMINIUM · 1-2/2008


3.9 Adjustment <strong>de</strong>vices<br />

Adjustageeinrichtungen<br />

� Sheet and plate stretchers<br />

Blech- und Plattenstrecker<br />

SMS Meer GmbH<br />

see Rolling bar machining 3.2<br />

� Cable sheathing presses<br />

Kabelummantelungspressen<br />

SMS Meer GmbH<br />

see Rolling bar machining 3.2<br />

� Cable undulating machines<br />

Kabelwellmaschinen<br />

SMS Meer GmbH<br />

see Rolling bar machining 3.2<br />

3.10 Process technology /<br />

Automation technology<br />

Prozesstechnik /<br />

Automatisierungstechnik<br />

4Production AG<br />

Produktionsoptimieren<strong>de</strong> Lösungen<br />

A<strong>de</strong>nauerstraße 20, D-52146 Würselen<br />

Tel.: +49 (0) 2405 / 4135-0<br />

info@4production.<strong>de</strong>, www.4production.<strong>de</strong><br />

SIEMAG GmbH<br />

Obere Industriestraße 8<br />

D-57250 Netphen<br />

Tel.: +49 (0) 2738 / 21-0<br />

Fax: +49 (0) 2738 / 21-1299<br />

E-Mail: info@siemag.com<br />

Internet: www.siemag.com<br />

ALUMINIUM · 1-2/2008<br />

� Process control technology<br />

Prozessleittechnik<br />

SMS Demag Aktiengesellschaft<br />

see Rolling mill Technology 3.0<br />

Unitechnik Cieplik & Poppek AG<br />

D-51674 Wiehl, www.unitechnik.com<br />

� Standards and Specifications<br />

Normen und Spezifikationen<br />

ExcSol GmbH<br />

Im Burggarten 23, D-53507 Dernau<br />

Tel.: +49 (0) 2643/90 02 56, info@excsol.<strong>de</strong><br />

Walzwerke / Beratung / Programmierung<br />

*Normen / Spez. in Datenbanken<br />

*Produktkatalog / Prüfungen / Zeugnisse<br />

*Prozess-/Qualitätsmanagement<br />

� Strip thickness measurement<br />

and control equipment<br />

Banddickenmess- und<br />

-regeleinrichtungen<br />

ABB Automation Technologies AB<br />

Force Measurement<br />

S-72159 Västeras, Swe<strong>de</strong>n<br />

Phone: +46 21 342000<br />

Fax: +46 21 340005<br />

E-Mail: pressductor@se.abb.com<br />

Internet: www.abb.com/pressductor<br />

Achenbach Buschhütten GmbH<br />

Siegener Str. 152, D-57223 Kreuztal<br />

Tel. +49 (0) 2732/7990, info@achenbach.<strong>de</strong><br />

Internet: www.achenbach.<strong>de</strong><br />

SMS Demag Aktiengesellschaft<br />

see Rolling mill Technology 3.0<br />

LIEFERVERZEICHNIS<br />

� Strip flatness measurement<br />

and control equipment<br />

Bandplanheitsmess- und<br />

-regeleinrichtungen<br />

ABB Automation Technologies AB<br />

Force Measurement<br />

S-72159 Västeras, Swe<strong>de</strong>n<br />

Phone: +46 21 342000<br />

Fax: +46 21 340005<br />

E-Mail: pressductor@se.abb.com<br />

Internet: www.abb.com/pressductor<br />

Achenbach Buschhütten GmbH<br />

Siegener Str. 152, D-57223 Kreuztal<br />

Tel. +49 (0) 2732/7990, info@achenbach.<strong>de</strong><br />

Internet: www.achenbach.<strong>de</strong><br />

SMS Demag Aktiengesellschaft<br />

see Rolling mill Technology 3.0<br />

3.11 Coolant / lubricant<br />

preparation<br />

Kühl-/Schmiermittel-<br />

Aufbereitung<br />

� Rolling oil recovery and<br />

treatment units<br />

Walzöl-Wie<strong>de</strong>raufbereitungsanlagen<br />

SMS Demag Aktiengesellschaft<br />

see Rolling mill Technology 3.0<br />

� Filter for rolling oils and<br />

emulsions<br />

Filter für Walzöle und Emulsionen<br />

Achenbach Buschhütten GmbH<br />

Siegener Str. 152, D-57223 Kreuztal<br />

Tel. +49 (0) 2732/7990, info@achenbach.<strong>de</strong><br />

Internet: www.achenbach.<strong>de</strong><br />

123


LIEFERVERZEICHNIS<br />

� Rolling oil rectification units<br />

Walzölrektifikationsanlagen<br />

Achenbach Buschhütten GmbH<br />

Siegener Str. 152, D-57223 Kreuztal<br />

Tel. +49 (0) 2732/7990, info@achenbach.<strong>de</strong><br />

Internet: www.achenbach.<strong>de</strong><br />

SMS Demag Aktiengesellschaft<br />

see Rolling mill Technology 3.0<br />

3.12 Air extraction systems<br />

Abluft-Systeme<br />

� Exhaust air purification<br />

systems (active)<br />

Abluft-Reinigungssysteme (aktiv)<br />

Achenbach Buschhütten GmbH<br />

Siegener Str. 152, D-57223 Kreuztal<br />

Tel. +49 (0) 2732/7990, info@achenbach.<strong>de</strong><br />

Internet: www.achenbach.<strong>de</strong><br />

SMS Demag Aktiengesellschaft<br />

see Rolling mill Technology 3.0<br />

� Filtering plants and systems<br />

Filteranlagen und Systeme<br />

Dantherm Filtration GmbH<br />

Industriestr. 9, D-77948 Friesenheim<br />

Tel.: +49 (0) 7821 / 966-0, Fax: - 966-245<br />

E-Mail: info.<strong>de</strong>@danthermfiltration.com<br />

Internet: www.danthermfiltration.com<br />

3.14 Storage and dispatch<br />

Lagerung und Versand<br />

Mainzer Landstrasse 16<br />

D-60325 Frankfurt am Main<br />

Tel.: +49 69 97 16 81 48<br />

Fax: +49 69 97 16 82 00<br />

E-Mail: juhani.aittola@pesmel.com<br />

Internet: www.pesmel.com<br />

SIEMAG GmbH<br />

Obere Industriestraße 8<br />

D-57250 Netphen<br />

Tel.: +49 (0) 2738 / 21-0<br />

Fax: +49 (0) 2738 / 21-1299<br />

E-Mail: info@siemag.com<br />

Internet: www.siemag.com<br />

3.16 Coil storage systems<br />

Bundlagersysteme<br />

SIEMAG GmbH<br />

Obere Industriestraße 8<br />

D-57250 Netphen<br />

Tel.: +49 (0) 2738 / 21-0<br />

Fax: +49 (0) 2738 / 21-1299<br />

E-Mail: info@siemag.com<br />

Internet: www.siemag.com<br />

Vollert Anlagenbau<br />

GmbH + Co. KG<br />

see Transfer to the casting furnace 1.5<br />

3.17 Strip Processing Lines<br />

Bandprozesslinien<br />

� Strip Processing Lines<br />

Bandprozesslinen<br />

BWG Bergwerk- und Walzwerk-<br />

Maschinenbau GmbH<br />

Mercatorstraße 74 – 78<br />

D-47051 Duisburg<br />

Tel.: +49 (0) 203-9929-0<br />

Fax: +49 (0) 203-9929-400<br />

E-Mail: bwg@bwg-online.<strong>de</strong><br />

Internet: www.bwg-online.com<br />

� Colour Coating Lines<br />

Bandlackierlinien<br />

www.bwg-online.com<br />

see Strip Processing Lines 3.17<br />

� Strip Annealing Lines<br />

Bandglühlinien<br />

www.bwg-online.com<br />

see Strip Processing Lines 3.17<br />

� Stretch Levelling Lines<br />

Streckrichtanlagen<br />

www.bwg-online.com<br />

see Strip Processing Lines 3.17<br />

� Lithographic Sheet Lines<br />

Lithografielinien<br />

Could not find your „keywords“?<br />

Please ask for our complete<br />

„Supply sources for the<br />

aluminium industry“.<br />

www.bwg-online.com<br />

see Strip Processing Lines 3.17<br />

E-Mail: Schwichtenberg@giesel.<strong>de</strong><br />

124 ALUMINIUM · 1-2/2008


4 Foundry<br />

Gießerei<br />

4.1 Work protection and ergonomics<br />

4.2 Heat-resistant technology<br />

4.3 Conveyor and storage technology<br />

4.4 Mould and core production<br />

4.5 Mould accessories and accessory materials<br />

4.6 Foundry equipment<br />

4.7 Casting machines and equipment<br />

4.8 Handling technology<br />

4.9 Construction and <strong>de</strong>sign<br />

4.10 Measurement technology and materials testing<br />

4.11 Metallic charge materials<br />

4.12 Finshing of raw castings<br />

4.13 Melt operations<br />

4.14 Melt preparation<br />

4.15 Melt treatment <strong>de</strong>vices<br />

4.16 Control and regulation technology<br />

4.17 Environment protection and disposal<br />

4.18 Dross recovery<br />

4.19 Gussteile<br />

4.2 Heat-resistent technology<br />

Feuerfesttechnik<br />

� Refractories<br />

Feuerfeststoffe<br />

Promat GmbH – Techn. Wärmedämmung<br />

Scheifenkamp 16, D-40878 Ratingen<br />

Tel. +49 (0) 2102 / 493-0, Fax -493 115<br />

verkauf3@promat.<strong>de</strong>, www.promat.<strong>de</strong><br />

4.3 Conveyor and storage<br />

technology<br />

För<strong>de</strong>r- und Lagertechnik<br />

Vollert Anlagenbau<br />

GmbH + Co. KG<br />

see Transfer to the casting furnace 1.5<br />

4.5 Mold accessories and<br />

accessory materials<br />

Formzubehör, Hilfmittel<br />

� Fluxes<br />

Flussmittel<br />

Solvay Fluor GmbH<br />

Hans-Böckler-Allee 20<br />

D-30173 Hannover<br />

Telefon +49 (0) 511 / 857-0<br />

Telefax +49 (0) 511 / 857-2146<br />

Internet: www.solvay-fluor.<strong>de</strong><br />

ALUMINIUM · 1-2/2008<br />

4.6 Foundry equipment<br />

Gießereianlagen<br />

� Casting machines<br />

Gießmaschinen<br />

� Solution annealing furnaces/plant<br />

Lösungsglühöfen/anlagen<br />

ERNST REINHARDT GMBH<br />

Postfach 1880, D-78008 VS-Villingen<br />

Tel. 07721/8441-0, Fax 8441-44<br />

E-Mail: info@ernstreinhardt.<strong>de</strong><br />

Internet: www.Ernst-Reinhardt.com<br />

� Heat treatment furnaces<br />

Wärmebehandlungsöfen<br />

see Foundry equipment 4.6<br />

LIEFERVERZEICHNIS<br />

4.1 Arbeitsschutz und Ergonomie<br />

4.2 Feuerfesttechnik<br />

4.3 För<strong>de</strong>r- und Lagertechnik<br />

4.4 Form- und Kernherstellung<br />

4.5 Formzubehör, Hilfsmittel<br />

4.6 Gießereianlagen<br />

4.7 Gießmaschinen und Gießeinrichtungen<br />

4.8 Handhabungstechnik<br />

4.9 Konstruktion und Design<br />

4.10 Messtechnik und Materialprüfung<br />

4.11 Metallische Einsatzstoffe<br />

4.12 Rohgussnachbehandlung<br />

4.13 Schmelzbetrieb<br />

4.14 Schmelzvorbereitung<br />

4.15 Schmelzebehandlungseinrichtungen<br />

4.16 Steuerungs- und Regelungstechnik<br />

4.17 Umweltschutz und Entsorgung<br />

4.18 Schlackenrückgewinnung<br />

4.19 Cast parts<br />

see Equipment and accessories 2.11<br />

HERTWICH ENGINEERING GmbH<br />

see Casthouse (foundry) 1.5<br />

see Billet Heating Furnaces 2.1<br />

4.7 Casting machines<br />

and equipment<br />

Gießereimaschinen<br />

und Gießeinrichtungen<br />

OTTO JUNKER GmbH<br />

Molten Metall Level Control<br />

Ostra Hamnen 7<br />

SE-430 91 Hono / Schwe<strong>de</strong>n<br />

Tel.: +46 31 764 5520<br />

Fax: +46 31 764 5529<br />

E-mail: sales@precimeter.se<br />

Internet: www.precimeter.se<br />

Sales Contact: Rolf Backberg<br />

� Mould parting agents<br />

Kokillentrennmittel<br />

see Extrusion 2<br />

Schrö<strong>de</strong>r KG<br />

Schmierstofftechnik<br />

Postfach 1170<br />

D-57251<br />

Freu<strong>de</strong>nberg<br />

Tel. 02734/7071<br />

Fax 02734/20784<br />

www.schroe<strong>de</strong>r-schmierstoffe.<strong>de</strong><br />

125


LIEFERVERZEICHNIS<br />

4.8 Handling technology<br />

Handhabungstechnik<br />

Vollert Anlagenbau<br />

GmbH + Co. KG<br />

see Transfer to the casting furnace 1.5<br />

4.9 Construction and<br />

Design<br />

Konstruktion und Design<br />

THERMCON OVENS BV<br />

� <strong>Alu</strong>minium alloys<br />

<strong>Alu</strong>miniumlegierungen<br />

see Extrusion 2<br />

4.11 Metallic charge<br />

materials<br />

Metallische Einsatzstoffe<br />

Scholz AG<br />

Am Bahnhof<br />

D-73457 Essingen<br />

Tel. +49 (0) 7365-84-0<br />

Fax +49 (0) 7365-1481<br />

E-Mail: infoscholz@scholz-ag.<strong>de</strong><br />

Internet: www.scholz-ag.<strong>de</strong><br />

METALLHÜTTENWERKE BRUCH GMBH<br />

Postfach 10 06 29<br />

D-44006 Dortmund<br />

Telefon +49 (0) 231 / 8 59 81-121<br />

Telefax +49 (0) 231 / 8 59 81-124<br />

E-Mail: al-vertrieb@bruch.<strong>de</strong><br />

Internet: www.bruch.<strong>de</strong><br />

METALLHANDELSGESELLSCHAFT<br />

SCHOOF & HASLACHER MBH & CO. KG<br />

Postfach 600714, D 81207 München<br />

Telefon 089/829133-0<br />

Telefax 089/8201154<br />

E-Mail: info@metallhan<strong>de</strong>lsgesellschaft.<strong>de</strong><br />

Internet: www.metallhan<strong>de</strong>lsgesellschaft.<strong>de</strong><br />

ALERIS Recycling (German Works) GmbH<br />

<strong>Alu</strong>miniumstraße 3<br />

D-41515 Grevenbroich<br />

Telefon +49 (0) 2181/16 45 0<br />

Telefax +49 (0) 2181/16 45 100<br />

E-Mail: recycling@aleris.com<br />

Internet: www.aleris-recycling.com<br />

� Pre alloys / Vorlegierungen<br />

METALLHANDELSGESELLSCHAFT<br />

SCHOOF & HASLACHER MBH & CO. KG<br />

Postfach 600714, D 81207 München<br />

Telefon 089/829133-0<br />

Telefax 089/8201154<br />

E-Mail: info@metallhan<strong>de</strong>lsgesellschaft.<strong>de</strong><br />

Internet: www.metallhan<strong>de</strong>lsgesellschaft.<strong>de</strong><br />

� Recycling / Recycling<br />

TRIMET ALUMINIUM AG<br />

Nie<strong>de</strong>rlassung Gelsenkirchen<br />

Am Stadthafen 51-65<br />

D-45681 Gelsenkirchen<br />

Tel.: +49 (0) 209 / 94089-0<br />

Fax: +49 (0) 209 / 94089-60<br />

Internet: www.trimet.<strong>de</strong><br />

TRIMET ALUMINIUM AG<br />

Nie<strong>de</strong>rlassung Harzgero<strong>de</strong><br />

<strong>Alu</strong>miniumallee 1<br />

06493 Harzgero<strong>de</strong><br />

Tel.: 039484 / 50-0<br />

Fax: 039484 / 50-100<br />

Internet: www.trimet.<strong>de</strong><br />

4.13 Melt operations<br />

Schmelzbetrieb<br />

OTTO JUNKER GmbH<br />

� Heat treatment furnaces<br />

Wärmebehandlungsanlagen<br />

see Extrusion 2<br />

see Billet Heating Furnaces 2.1<br />

� Melting furnaces<br />

Schmelzöfen<br />

Büttgenbachstraße 14<br />

D-40549 Düsseldorf/Germany<br />

Tel.: +49 (0) 211 / 5 00 91-43<br />

Fax: +49 (0) 211 / 50 13 97<br />

E-Mail: info@bloomeng.<strong>de</strong><br />

Internet: www.bloomeng.com<br />

Sales Contact: Klaus Rixen<br />

HERTWICH ENGINEERING GmbH<br />

see Casthouse (foundry) 1.5<br />

see Equipment and accessories 2.11<br />

MARX GmbH & Co. KG<br />

Lilienthalstr. 6-18<br />

D-58638 Iserhohn<br />

Tel.: +49 (0) 2371 / 2105-0, Fax: -11<br />

E-Mail: info@marx-gmbh.<strong>de</strong><br />

Internet: www.marx-gmbh.<strong>de</strong><br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

� Holding furnaces<br />

Warmhalteöfen<br />

Büttgenbachstraße 14<br />

D-40549 Düsseldorf/Germany<br />

Tel.: +49 (0) 211 / 5 00 91-43<br />

Fax: +49 (0) 211 / 50 13 97<br />

E-Mail: info@bloomeng.<strong>de</strong><br />

Internet: www.bloomeng.com<br />

Sales Contact: Klaus Rixen<br />

see Equipment and accessories 2.11<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

126 ALUMINIUM · 1-2/2008


� Heat treatment furnaces<br />

Wärmebehandlungsanlagen<br />

HERTWICH ENGINEERING GmbH<br />

see Casthouse (foundry) 1.5<br />

see Equipment and accessories 2.11<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

4.14 Melt preparation<br />

Schmelzvorbereitung<br />

OTTO JUNKER GmbH<br />

� Degassing, filtration<br />

Entgasung, Filtration<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

Drache Umwelttechnik<br />

GmbH<br />

Werner-v.-Siemens-Straße 9/24-26<br />

D 65582 Diez/Lahn<br />

Telefon 06432/607-0<br />

Telefax 06432/607-52<br />

Internet: http://www.drache-gmbh.<strong>de</strong><br />

� Melt treatment agents<br />

Schmelzebehandlungsmittel<br />

maerz-gautschi<br />

Industrieofenanlagen GmbH<br />

see Casting Equipment 3.1<br />

4.15 Melt treatment <strong>de</strong>vices<br />

Schmelzbehandlungseinrichtungen<br />

OTTO JUNKER GmbH<br />

Metaullics Systems Europe B.V.<br />

P.O.Box 748<br />

NL-2920 CA Krimpen a/d Yssel<br />

Tel. +31-180/590890<br />

Fax +31-180/551040<br />

E-Mail: info@metaullics.nl<br />

Internet: www.metaullics.com<br />

ALUMINIUM · 1-2/2008<br />

see Extrusion 2<br />

see Extrusion 2<br />

4.16 Control and<br />

regulation technology<br />

Steuerungs- und<br />

Regelungstechnik<br />

� HCL measurements<br />

HCL Messungen<br />

OPSIS AB<br />

Box 244, S-24402 Furulund, Schwe<strong>de</strong>n<br />

Tel. +46 (0) 46-72 25 00, Fax -72 25 01<br />

E-Mail: info@opsis.se<br />

Internet: www.opsis.se<br />

4.17 Environment protection<br />

and disposal<br />

Umweltschutz und<br />

Entsorgung<br />

� Dust removal / Entstaubung<br />

NEOTECHNIK GmbH<br />

Entstaubungsanlagen<br />

Postfach 110261, D-33662 Bielefeld<br />

Tel. 05205/7503-0, Fax 05205/7503-77<br />

info@neotechnik.com, www.neotechnik.com<br />

5<br />

LIEFERVERZEICHNIS<br />

� Flue gas cleaning<br />

Rauchgasreinigung<br />

Dantherm Filtration GmbH<br />

Industriestr. 9, D-77948 Friesenheim<br />

Tel.: +49 (0) 7821 / 966-0, Fax: - 966-245<br />

E-Mail: info.<strong>de</strong>@danthermfiltration.com<br />

Internet: www.danthermfiltration.com<br />

4.18 Dross recovery<br />

Schlackenrückgewinnung<br />

OTTO JUNKER UK<br />

4.19 Cast parts / Gussteile<br />

TRIMET ALUMINIUM AG<br />

Nie<strong>de</strong>rlassung Harzgero<strong>de</strong><br />

<strong>Alu</strong>miniumallee 1<br />

06493 Harzgero<strong>de</strong><br />

Tel.: 039484 / 50-0<br />

Fax: 039484 / 50-100<br />

Internet: www.trimet.<strong>de</strong><br />

Materials and Recycling<br />

Werkstoffe und Recycling<br />

� Granulated aluminium<br />

<strong>Alu</strong>miniumgranulate<br />

ECKA Granulate Austria GmbH<br />

Bürmooser Lan<strong>de</strong>sstraße 19<br />

A-5113 St. Georgen/Salzburg<br />

Telefon +43 6272 2919-12<br />

Telefax +43 6272 8439<br />

Kontakt: Ditmar Klein<br />

E-Mail: d.klein@ecka-granules.com<br />

see Extrusion 2<br />

Do you need more information?<br />

E-Mail: Schwichtenberg@giesel.<strong>de</strong><br />

<strong>Alu</strong>-<strong>web</strong>.<strong>de</strong><br />

<strong>de</strong>r ALUMINIUM-<br />

Branchentreff.<br />

Haben Sie schon Ihren<br />

Basiseintrag bestellt?<br />

Nein, dann sofort anrufen:<br />

0511/73 04-142<br />

Stefan Schwichtenberg<br />

127


LIEFERVERZEICHNIS<br />

6<br />

Machining and Application<br />

Bearbeitung und Anwendung<br />

� Machining of aluminium<br />

<strong>Alu</strong>miniumbearbeitung<br />

Haarmann Holding GmbH<br />

see Die preparation and care 2.6<br />

6.1 Surface treatment<br />

processes<br />

Prozesse für die<br />

Oberflächenbehandlung<br />

Henkel KGaA<br />

D-40191 Düsseldorf<br />

Tel. +49 (0) 211 / 797-30 00<br />

Fax +49 (0) 211 / 798-36 36<br />

Internet: www.henkel-technologies.com<br />

� Adhesive bonding / Verkleben<br />

Henkel KGaA<br />

siehe Prozesse für die Oberflächentechnik 6.1<br />

� Anodising / Anodisation<br />

Henkel KGaA<br />

siehe Prozesse für die Oberflächentechnik 6.1<br />

� Cleaning / Reinigung<br />

Henkel KGaA<br />

siehe Prozesse für die Oberflächentechnik 6.1<br />

� Joining / Fügen<br />

Henkel KGaA<br />

siehe Prozesse für die Oberflächentechnik 6.1<br />

� Pretreatment before coating<br />

Vorbehandlung vor <strong>de</strong>r Beschichtung<br />

Henkel KGaA<br />

siehe Prozesse für die Oberflächentechnik 6.1<br />

� Thermal coating<br />

Thermische Beschichtung<br />

Berolina Metallspritztechnik<br />

Wesnigk GmbH<br />

Pappelhain 30<br />

D-15378 Hennickendorf<br />

Tel.: +49 (0) 33434 / 46060<br />

Fax: +49 (0) 33434 / 46701<br />

E-Mail: info@metallspritztechnik.<strong>de</strong><br />

Internet: www.metallspritztechnik.<strong>de</strong><br />

6.2 Semi products<br />

Halbzeuge<br />

� Wires / Drähte<br />

DRAHTWERK ELISENTAL<br />

W. Erdmann GmbH & Co.<br />

Werdohler Str. 40, D-58809 Neuenra<strong>de</strong><br />

Postfach 12 60, D-58804 Neuenra<strong>de</strong><br />

Tel. +49(0)2392/697-0, Fax 49(0)2392/62044<br />

E-Mail: info@elisental.<strong>de</strong><br />

Internet: www.elisental.<strong>de</strong><br />

Could not find your „keywords“?<br />

Please ask for our complete<br />

„Supply sources for the<br />

aluminium industry“.<br />

E-Mail:<br />

Schwichtenberg@giesel.<strong>de</strong><br />

6.3 Equipment for forging<br />

and impact extrusion<br />

Ausrüstung für Schmie<strong>de</strong>und<br />

Fließpresstechnik<br />

� Hydraulic Presses<br />

Hydraulische Pressen<br />

LASCO Umformtechnik GmbH<br />

Hahnweg 139, D-96450 Coburg<br />

Tel. +49 (0) 9561 642-0<br />

Fax +49 (0) 9561 642-333<br />

E-Mail: lasco@lasco.<strong>de</strong><br />

Internet: www.lasco.com<br />

8 Literature<br />

Literatur<br />

� Technikcal literature<br />

Fachliteratur<br />

Taschenbuch <strong>de</strong>s Metallhan<strong>de</strong>ls<br />

Fundamentals of Extrusion Technology<br />

Giesel Verlag GmbH<br />

Verlag für Fachmedien<br />

Ein Unternehmen <strong>de</strong>r Klett-Gruppe<br />

Rehkamp 3 · 30916 Isernhagen<br />

Tel. 0511 / 73 04-122 · Fax 0511 / 73 04-157<br />

Internet: www.alu-bookshop.<strong>de</strong>.<br />

� Technical journals<br />

Fachzeitschriften<br />

Giesel Verlag GmbH<br />

Ein Unternehmen <strong>de</strong>r Klett-Gruppe<br />

Rehkamp 3 · 30916 Isernhagen<br />

Tel. 0511 / 73 04-122 · Fax 0511 / 73 04-157<br />

128 ALUMINIUM · 1-2/2008


International<br />

ALUMINIUM<br />

Journal<br />

84. Jahrgang 1.1.2008<br />

Redaktion / Editorial office<br />

Dipl.-Vw. Volker Karow<br />

Chefredakteur, Editor in Chief<br />

Franz-Meyers-Str. 16, 53340 Meckenheim<br />

Tel: +49(0)2225 8359 643<br />

Fax: +49(0)2225 18458<br />

E-Mail: vkarow@online.<strong>de</strong><br />

Dipl.-Ing. Rudolf P. Pawlek<br />

Fax: +41 274 555 926<br />

Hüttenindustrie und Recycling<br />

Dipl.-Ing. Bernhard Rieth<br />

Walzwerkstechnik und Bandverarbeitung<br />

Verlag / Publishing house<br />

Giesel Verlag GmbH, Verlag für Fachmedien,<br />

Unternehmen <strong>de</strong>r Klett-Gruppe, Postfach<br />

120158, 30907 Isernhagen; Rehkamp<br />

3, 30916 Isernhagen, Tel: 0511/7304-0, Fax:<br />

0511/7304-157. E-mail: Giesel@giesel.<strong>de</strong><br />

Internet: www.alu-<strong>web</strong>.<strong>de</strong>.<br />

Postbank/postal cheque account Hannover,<br />

BLZ/routing co<strong>de</strong>: 25010030; Kto.-<br />

Nr./ account no. 90898-306, Bankkonto/<br />

bank account Commerzbank AG, BLZ/<br />

routing co<strong>de</strong>: 25040066, Kto.-Nr./account<br />

no. 1500222<br />

Geschäftsleitung / General Manager<br />

Dietrich Taubert,<br />

Tel: 05 11/73 04-147<br />

E-Mail: Taubert@giesel.<strong>de</strong><br />

Objektleitung / General Manager<br />

Material Publications<br />

Stefan Schwichtenberg<br />

Tel: 05 11/ 73 04-142<br />

E-Mail: Schwichtenberg@giesel.<strong>de</strong><br />

Anzeigendisposition / Advertising<br />

layout<br />

Beate Schaefer<br />

Tel: 05 11/ 73 04-148<br />

E-Mail: BSchaefer@giesel.<strong>de</strong><br />

Vertriebsleitung / General Manager<br />

Distribution Department<br />

Jutta Illhardt<br />

Tel: 05 11/ 73 04-126<br />

E-Mail: Illhardt@giesel.<strong>de</strong><br />

Abonnenten-Service / Rea<strong>de</strong>r service<br />

Kirsten Voß<br />

Tel: 05 11/ 73 04-122<br />

E-Mail: Vertrieb@giesel.<strong>de</strong><br />

Herstellung & Druck / Printing house<br />

BWH GmbH, Beckstr. 10<br />

D-30457 Hannover<br />

Jahresbezugspreis<br />

EUR 285,- (Inland inkl. 7% Mehrwertsteuer<br />

und Versandkosten). Europa EUR<br />

289,- inkl. Versandkosten. Übersee US$<br />

375,- inkl. Normalpost; Luftpost zuzügl.<br />

US$ 82,-.<br />

Preise für Stu<strong>de</strong>nten auf Anfrage. ALUMI-<br />

NIUM erscheint zehnmal pro Jahr. Kündigungen<br />

jeweils sechs Wochen zum En<strong>de</strong><br />

<strong>de</strong>r Bezugszeit.<br />

Subscription rates<br />

EUR 285.00 p.a. (domestic incl. V.A.T.) plus<br />

postage. Europe EUR 289.00 incl. surface<br />

mail. Outsi<strong>de</strong> Europe US$ 375.00 incl. surface<br />

mail, air mail plus US$ 82.00.<br />

ALUMINIUM is published monthly (10<br />

issues a year). Cancellations six weeks<br />

prior to the end of a year.<br />

Anzeigenpreise / Advertisement rates<br />

Preisliste Nr. 48 vom 1.1.2008.<br />

Price list No. 48 from 1.1.2008.<br />

Die Zeitschrift und alle in ihr enthaltenen<br />

Beiträge und Abbildungen sind urheberrechtlich<br />

geschützt. Je<strong>de</strong> Verwertung außerhalb<br />

<strong>de</strong>r en gen Grenzen <strong>de</strong>s Urheberrechtsgesetzes<br />

ist ohne Zustimmung <strong>de</strong>s<br />

Verlages unzulässig und strafbar. Das gilt<br />

insbeson<strong>de</strong>re für Ver vielfältigungen, Übersetzungen,<br />

Mikroverfilmungen und die Einspeicherung<br />

und Bearbeitung in elektronischen<br />

Systemen. Der Verlag übernimmt<br />

keine Gewähr für die Richtigkeit <strong>de</strong>r in<br />

diesem Heft mitgeteilten Informationen<br />

und haftet nicht für abgeleitete Folgen.<br />

Haftung bei Leistungsmin<strong>de</strong>rung durch<br />

höhere Gewalt o<strong>de</strong>r an<strong>de</strong>re vom Verlag<br />

nicht verschul<strong>de</strong>te Umstän<strong>de</strong> (z. B. Streik)<br />

ist ausgeschlossen.<br />

This jour nal and all con tri bu tions contained<br />

there in are pro tect ed by copy right.<br />

Any util iza tion out si<strong>de</strong> the strict lim its of<br />

copy right leg is la tion with out the ex press<br />

con sent of the pub lish er ist pro hib it ed<br />

and ac tion able at law. This ap plies in<br />

par tic u lar to re pro duc tion, trans la tions,<br />

mi cro film ing and stor age or pro cess ing in<br />

elec tron ic systems. The pub lish er of fers<br />

no guar an tee that the in for ma tion in this<br />

vol ume is ac cu rate and ac cepts no li abil ity<br />

for con se quenc es <strong>de</strong> riv ing there from. No<br />

li abil ity what soev er is ac cept ed for per fomance<br />

lag caused by force ma jeure or by<br />

cir cum stanc es be yond the publisher’s control<br />

(e.g. in dus tri al ac tion).<br />

ISSN: 0002-6689<br />

© Giesel Verlag GmbH<br />

Verlagsrepräsentanz / Representatives<br />

Nielsen-Gebiet 1 (Schleswig-Holstein,<br />

Ham burg, Bremen, Nie<strong>de</strong>rsachsen ohne<br />

Osnabrück):<br />

Giesel Verlag GmbH<br />

Tel: 05 11/73 04-142,<br />

Fax: 05 11/73 04-157<br />

E-Mail: giesel@giesel.<strong>de</strong><br />

www.giesel-verlag.<strong>de</strong><br />

Nielsen-Gebiet 2 (Nordrhein-Westfalen,<br />

Raum Osnabrück):<br />

Medienbüro Jürgen Wickenhöfer<br />

Minkelsches Feld 39, 46499 Hamminkeln<br />

Tel: 0 28 52/94180<br />

Fax: 0 28 52/94181<br />

E-Mail: info@jwmedien.<strong>de</strong><br />

www.jwmedien.<strong>de</strong><br />

Nielsen-Gebiet 3a (Hessen, Saarland,<br />

Rheinland-Pfalz):<br />

multilexa GmbH, publisher services<br />

Unterm Hungerrain 23, 63853 Mömlingen<br />

Tel: 0 60 22/35 14<br />

Fax: 0 60 22/3 80 80<br />

E-Mail: thomas.werner@multilexa.<strong>de</strong><br />

www.multilexa.<strong>de</strong><br />

Nielsen-Gebiet 3 b (Ba<strong>de</strong>n-Württemberg):<br />

G. Fahr, Verlags- und Pressebüro e. K.<br />

Marktplatz 10, 72654 Neckartenzlingen<br />

Tel: 0 71 27/30 84<br />

Fax: 07127/2 14 78<br />

E-Mail: info@verlagsbuero-fahr.<strong>de</strong><br />

Nielsen-Gebiet 4 (Bayern):<br />

G. Fahr, Verlags- und Pressebüro<br />

Marktplatz 10, 72654 Neckartenzlingen<br />

Tel: 0 71 72/30 84<br />

Fax: 07172/2 14 78<br />

E-Mail: info@verlagsbuero-fahr.<strong>de</strong><br />

IMPRESSUM / IMPRINT<br />

Nielsen-Gebiet 5, 6 + 7 (Berlin, Mecklenburg-Vorpommern,<br />

Bran<strong>de</strong>nburg,<br />

Sachsen-Anhalt Sachsen, Thüringen):<br />

multilexa GmbH, publisher services<br />

Unterm Hungerrain 23, 63853 Mömlingen<br />

Tel: 0 60 22/35 14<br />

Fax: 0 60 22/3 80 80<br />

E-Mail: thomas.werner@multilexa.<strong>de</strong><br />

www.multilexa.<strong>de</strong><br />

Netherlands, Belgium, Luxembourg<br />

BSW International Marketing<br />

Bent S. Wissing<br />

Oestbanega<strong>de</strong> 11<br />

DK-2100 Kopenhagen<br />

Tel: +45(0)35 385255<br />

E-Mail: bswissing@<strong>web</strong>speed.dk<br />

Switzerland<br />

JORDI PUBLIPRESS<br />

Postfach 154 · CH-3427 Utzenstorf<br />

Tel. +41 (0)32 666 30 90,<br />

Fax +41 (0)32 666 30 99<br />

E-Mail: info@jordipublipress.ch<br />

www.jordipublipress.ch<br />

Austria<br />

Verlagsbüro Forstner<br />

Buchbergstraße 15/1, A-1140 Wien<br />

Tel: +43(0)1 9 79 71 89<br />

Fax: +43(0)1 9 79 1329<br />

E-Mail: forstner.wolfgang@aon.at<br />

Italy<br />

MEDIAPOINT & COMMUNICATIONS<br />

SRL<br />

Corte Lambruschini – Corso Buenos<br />

Aires, 8<br />

Vo piano – Interno 7, I-16129 Genova<br />

Tel: +39(0)10 5 70 49 48,<br />

Fax: +39(0)10 5 53 00 88<br />

E-Mail: info@mediapointsrl.it<br />

www.mediapointsrl.it<br />

USA, Canada, Africa, U.A.E. etc.<br />

John Travis<br />

PO Box 42194<br />

UK – London SW8 4YR<br />

Großbritannien<br />

Tel: +44 (0)7799001442<br />

Fax:+44 (0)1344291072<br />

E-Mail: jtravis@aluminiumindustry.com<br />

United Kingdom<br />

John Travis<br />

PO Box 42194<br />

UK – London SW8 4YR<br />

Großbritannien<br />

Tel: +44 (0)7799001442<br />

Fax:+44 (0)1344291072<br />

E-Mail: jtravis@aluminiumindustry.com<br />

Scandinavia and Denmark<br />

BSW International Marketing<br />

Bent S. Wissing<br />

Oestbanega<strong>de</strong> 11<br />

DK-2100 Kopenhagen<br />

Tel: +45(0)35 385255<br />

Fax: +45 (0)35 385220<br />

E-Mail: bswissing@<strong>web</strong>speed.dk<br />

France<br />

DEF & Communication<br />

Axelle Chrismann<br />

48 boulevard Jean Jaurès<br />

F-92110 Clichy<br />

Tel: +33 (0)1 47 30 71 80,<br />

Fax: +33 (0)1 47 30 01 89<br />

E-Mail: achrismann@wanadoo.fr<br />

Der ALUMINIUM-Branchentreff <strong>de</strong>s<br />

Giesel Verlags: www.alu-<strong>web</strong>.<strong>de</strong><br />

ALUMINIUM ·1-2/2008 129


VORSCHAU / PREVIEW<br />

130<br />

IM NÄCHSTEN HEFT<br />

Special: <strong>Alu</strong>minium-Recycling und Schmelztechnologien<br />

Branchen- und Marktentwicklung, internationale<br />

Herausfor<strong>de</strong>rungen, Technologietrends.<br />

Beiträge unter an<strong>de</strong>rem über:<br />

• Höhere Produktivität von Schmelzöfen durch<br />

schienengebun<strong>de</strong>ne Chargiermaschinen<br />

• Kipptrommelofen ersetzt herkömmlichen<br />

Flammofen zum Schmelzen<br />

• Globale Perspektiven <strong>de</strong>s <strong>Alu</strong>miniumrecyclings<br />

Markt und Technik<br />

• Die „Renaissance“ <strong>de</strong>s Nie<strong>de</strong>rdruckgießens –<br />

CST-Gruppe mit ganzheitlichem Gießtechnologie-<br />

Konzept<br />

Research<br />

Pulvermetallurgische Weiterentwicklung <strong>de</strong>r <strong>Alu</strong>miniumschaumherstellung<br />

durch Einführung schäumbaren<br />

Schüttguts<br />

Erscheinungstermin: 3. März 2008<br />

Anzeigenschluss: 15. Februar 2008<br />

Redaktionsschluss: 14. Februar 2008<br />

Abonnement-Bestellung<br />

� Ja, wir möchten die Zeitschrift ALUMINIUM ab sofort<br />

zum Jahresbezugspreis von EUR 285,- inkl. Mehrwertsteuer<br />

(Ausland EUR 289,-) und Versandkosten abonnieren.<br />

Das Magazin erscheint zehn Mal pro Jahr.<br />

Das Abonnement kann mit einer sechswöchigen Frist<br />

zum Bezugsjahresen<strong>de</strong> gekündigt wer<strong>de</strong>n.<br />

Name / name<br />

Firma / company<br />

Anschrift / address<br />

Umsatzsteuer-I<strong>de</strong>nt.-Nr. / VAT Reg.-No.<br />

Datum / date Unterschrift/Signature<br />

IN THE NEXT ISSUE<br />

Special: <strong>Alu</strong>minium recycling and melting<br />

technologies<br />

Industry and market <strong>de</strong>velopment, global<br />

challenges, trends in technology.<br />

Subjects covered inclu<strong>de</strong>:<br />

• Increased melt furnace productivity by rail-bound<br />

charging machines<br />

• Tilt rotary replacing traditional reverberatory<br />

melting<br />

• Global perspectives of aluminium recycling<br />

Markets and technology<br />

• ‘Renaissance’ of low pressure casting –<br />

CST group’s integrated casting solutions concept<br />

Research<br />

Pow<strong>de</strong>r metallurgical <strong>de</strong>velopment of aluminium<br />

foam production by introduction of foamable bulk<br />

material<br />

Fax: +49 (0) 511 73 04 157<br />

Date of publication: 3 March 2008<br />

Advertisement <strong>de</strong>adline: 15 February 2008<br />

Editorial <strong>de</strong>adline: 14 February 2008<br />

Subscription-Or<strong>de</strong>r<br />

� Yes, we want to subscribe ALUMINIUM. The rate is<br />

EUR 289.00 per year incl. postage. Outsi<strong>de</strong> Europe<br />

US$ 375.00 incl. surface mail, air mail plus US$ 82.00<br />

The magazine is published ten times a year.<br />

Cancellations six weeks prior to the end of a<br />

subscription year.<br />

ALUMINIUM · 1-2/2008


4 5<br />

Media-Informationen<br />

2008<br />

Giesel Verlag GmbH, Rehkamp 3, D-30916 Isernhagen, Telefon +49(0)511 / 7304-0, Telefax +49(0)511 / 7304-157<br />

Ausgabe<br />

1 / 2<br />

3<br />

4<br />

5<br />

6<br />

7 / 8<br />

9<br />

10<br />

11<br />

12<br />

Termine<br />

ET: 05. 02.<br />

AS: 21. 01.<br />

RS: 18. 01.<br />

ET: 03. 03.<br />

AS: 15. 02.<br />

RS: 14. 02.<br />

ET: 04. 04.<br />

AS: 21. 03.<br />

RS: 20. 03.<br />

ET: 02. 05.<br />

AS: 18. 04.<br />

RS: 17. 04.<br />

ET: 02. 06.<br />

AS: 16. 05.<br />

RS: 15. 05.<br />

ET: 01. 08.<br />

AS: 17. 07.<br />

RS: 15. 07.<br />

ET: 01. 09.<br />

AS: 15. 08.<br />

RS: 14. 08.<br />

ET: 02. 10.<br />

AS: 17. 09.<br />

RS: 16. 09.<br />

ET: 03. 11.<br />

AS: 17. 10.<br />

RS: 16. 10.<br />

ET: 01. 12.<br />

AS: 14. 11.<br />

RS: 13. 11.<br />

Themenschwerpunkt / Special<br />

Die internationale Hüttenindustrie:<br />

Verfahren, Anlagen, neue Projekte, Ausrüstungen<br />

und Bezugsquellen<br />

Gezielte Verbreitung in internationalen Hütten und<br />

Umschmelzwerken<br />

Recycling und Schmelztechnologien:<br />

Branchen- und Marktentwicklung, internationale<br />

Herausfor<strong>de</strong>rungen, Technologietrends, Ausrüstungen<br />

und Bezugsquellen<br />

<strong>Alu</strong>miniumbearbeitung:<br />

Neue Entwicklungen und Trends, Verfahren,<br />

Werkzeuge und Maschinen<br />

Die internationale Strangpressindustrie:<br />

Maschinen und Anlagen, Technologien, Messund<br />

Regeltechnik, Projekte, F&E<br />

Gezielte Verbreitung in <strong>de</strong>r internationalen<br />

Strangpressbranche<br />

<strong>Alu</strong>miniumguss:<br />

Neue Technologien, Anlagen, Gießöfen, Formenbau,<br />

Mess- und Regelungstechnik, Ausrüstungen und<br />

Bezugsquellen<br />

Vorschauf auf ALUMINIUM 2008:<br />

Aussteller stellen sich vor,<br />

<strong>de</strong>taillierte Vorberichte<br />

Vorschauf auf ALUMINIUM 2008:<br />

Vorberichte, Firmenporträts,<br />

Aussteller-Interviews und weitere<br />

Informationen im Vorfeld <strong>de</strong>r Messe<br />

Die internationale Walzwerkindustrie:<br />

Walzen, Bandguss, Bandbehandlung – neue Technologien,<br />

Maschinen, Ausrüstungen und Bezugsquellen<br />

Gezielte Verbreitung in <strong>de</strong>r intern. Walzwerkbranche<br />

Oberflächentechnik:<br />

Verfahren, Anlagen, Anwendungen, Qualitätsmanagement,<br />

Liefermöglichkeiten<br />

Fügetechniken:<br />

Technologien, Anlagen, Verfahren, Ausrüstungen,<br />

Anwendungen<br />

Die Themenschwerpunkte bestimmen nicht <strong>de</strong>n Gesamtinhalt. Aktuelle Beiträge<br />

ergänzen die jeweilige Berichterstattung. Än<strong>de</strong>rungen vorbehalten.<br />

Fachteil / Märkte /<br />

Anwendungen<br />

Fachberichte:<br />

Casthouse Solutions<br />

Marktbericht:<br />

China / Asien<br />

Termin- und<br />

Themenplan<br />

Märkte:<br />

<strong>Alu</strong>minium in <strong>de</strong>r Verpackung<br />

Profilbearbeitung:<br />

Spanen, Umformen, Fügen, etc.<br />

Marktbericht:<br />

Produkte und Anwendungen aus<br />

<strong>Alu</strong>miniumguss<br />

Wärmebehandlung von<br />

<strong>Alu</strong>minium:<br />

Anlagen, Verfahren, Projekte,<br />

Ausrüstungen<br />

Leichtbautrends:<br />

Anwendungen, Werkstoffe,<br />

Verfahren, Strategie<br />

Marktberichte:<br />

Die <strong>de</strong>utsche und europäische Walzbranche<br />

<strong>Alu</strong>miniumblech:<br />

Verarbeitung und Anwendung<br />

Märkte:<br />

<strong>Alu</strong>minium im Verkehr<br />

Schweißen von <strong>Alu</strong>minium:<br />

Aktuelle Entwicklungen<br />

Märkte:<br />

<strong>Alu</strong>minium im Bauwesen<br />

Messen /<br />

Veranstaltungen<br />

ALUMINIUM India 2008<br />

22. - 24. 2. 2008<br />

Mumbai, Indien<br />

TMS Annual Meeting<br />

& Exhibition<br />

9. - 13. 3. 2008<br />

New Orleans, USA<br />

Euroguss<br />

11. - 13. 3. 2008<br />

Nürnberg<br />

Hannover Messe<br />

21. - 25. 4. 2008<br />

Metef<br />

9. - 12. 4. 2008<br />

Brescia, Italien<br />

ALUMINIUM CHINA 2008<br />

28. - 30. 5. 2008<br />

Guangzhou, China<br />

O&S<br />

3. - 5. 6. 2008<br />

Stuttgart<br />

euroLITE<br />

24. - 26. 6. 2008, Salzburg<br />

ALUMINIUM 2008<br />

23. - 25. 9. 2008, Essen<br />

11. Int. Conf. on<br />

<strong>Alu</strong>minium Alloy<br />

22. - 26. 9. 2008, Aachen<br />

Interpart<br />

7. - 9. 10. 2008, Karlsruhe<br />

SURFACTS<br />

7. - 9. 10. 2008, Karlsruhe<br />

EuroBlech 2008<br />

21. - 25. 10. 2008, Hannover<br />

parts2clean<br />

28. - 30. 10. 2008, Stuttgart<br />

Bau 2009<br />

12. - 17. 1. 2009<br />

München<br />

ET = Erscheinungstermin AS = Anzeigenschluss RS = Redaktionsschluss


Simply closer to<br />

your products.<br />

Your technology partner in the aluminum industry.<br />

How do we meet the growing <strong>de</strong>mands of our customers<br />

in the aluminum industry worldwi<strong>de</strong>? By supplying<br />

all-inclusive mechatronic solutions. Whatever<br />

you want to manufacture from this material, or what<br />

product quality you aim to achieve – at SMS Demag<br />

we know what it takes. That’s because we listen!<br />

And because we draw on our holistic process know-<br />

how and experience. Our plants – whether new facilities,<br />

conversions or revamps – always ensure that our<br />

solutions encompass the latest <strong>de</strong>velopments in aluminum<br />

production and processing.<br />

Always closer to you – SMS Demag.<br />

SMS DEMAG AG<br />

Eduard-Schloemann-Strasse 4 Phone: +49 (0) 211 881-0 E-mail: communications@sms-<strong>de</strong>mag.com<br />

40237 Düsseldorf, Germany Fax: +49 (0) 211 881-4902 Internet: www.sms-<strong>de</strong>mag.com<br />

MEETING your EXPECTATIONS

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!