25.05.2018 Views

vector

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Vectors 431<br />

=<br />

<br />

2<br />

0<br />

<br />

2 2<br />

ˆ ˆ 2 ˆ 4 ˆ 3<br />

4 2<br />

ˆ<br />

x y<br />

dx yi xyj yk x yi x yj kˆ<br />

<br />

<br />

<br />

2 <br />

2 4 3 2<br />

= ˆ ˆ ˆ ˆ ˆ ˆ<br />

(16i 8xj 16k 4xi 4x j 8 xk)<br />

dx<br />

0<br />

2<br />

<br />

5 3<br />

2 4 4 8<br />

= ˆ ˆ ˆ x<br />

16 4 16 ˆ ˆ<br />

x <br />

xi x j xk i x j kˆ<br />

<br />

<br />

5 3 0<br />

128 64<br />

= 32 ˆ 16 ˆ 32 ˆ ˆ 16 ˆ ˆ 32 iˆ<br />

32kˆ<br />

i j k i j k = = 32 (3iˆ<br />

5 kˆ<br />

)<br />

5 3 5 3 15<br />

EXERCISE 5.12<br />

1. If F <br />

= 2<br />

(2x 3) z iˆ2xyj ˆ 4 xkˆ<br />

, then evaluate FdV , where V is bounded by the plane<br />

V<br />

4<br />

0<br />

Ans.<br />

x = 0, y = 0, z = 0 and 2x + 2y + z = 4. Ans. 8 3<br />

2. Evaluate dV ,<br />

V where = 45 x 2 y and V is the closed region bounded by the planes<br />

4x + 2y + z = 8, x = 0, y = 0, z = 0 Ans. 128<br />

3. If F = (2x 2 <br />

– 3z) iˆ<br />

2xyj ˆ 4 xkˆ<br />

, then evaluate FdV<br />

, where V is the closed region bounded<br />

V<br />

8<br />

by the planes x = 0, y = 0, z = 0 and 2x + 2y + z = 4.<br />

Ans. ( ˆ ˆ)<br />

3 j k<br />

4. Evaluate (2 x<br />

y) dV , where V is closed region bounded by the cylinder z = 4 – x 2 and the planes<br />

V<br />

x = 0, y = 0, y = 2 and z = 0. Ans. 80 3<br />

5. If F 2<br />

= 2 ˆ ˆ ˆ<br />

<br />

xz i xj y k,<br />

evaluate<br />

F dV over the region bounded by the surfaces x = 0, y = 0,<br />

y = 6 and z = x 2 , z = 4. Ans. (16iˆ3ˆj 48 kˆ<br />

)<br />

5.36 GREEN’S THEOREM (For a plane)<br />

<br />

Statement. If (x, y), (x, y), and be continuous functions over a region R bounded<br />

y<br />

x<br />

by simple closed curve C in x – y plane, then<br />

( dx<br />

dy)<br />

= <br />

<br />

dx dy<br />

C<br />

R<br />

<br />

x<br />

y<br />

(AMIETE, June 2010, U.P., I Semester, Dec. 2007)<br />

Proof. Let the curve C be divided into two curves C 1<br />

(ABC) and C 1<br />

(CDA).<br />

Let the equation of the curve C 1<br />

(ABC) be y = y 1<br />

(x) and equation of the curve C 2<br />

(CDA) be<br />

y = y 2<br />

(x).<br />

Let us see the value of<br />

<br />

dx dy = xc<br />

y<br />

y<br />

2<br />

( x)<br />

<br />

dy dx<br />

R y<br />

xa y y ( x)<br />

<br />

1 y<br />

<br />

= c 2 ( )<br />

( , )<br />

y <br />

x y<br />

y x<br />

dx<br />

a<br />

y y ( x)<br />

1<br />

c<br />

a<br />

c<br />

= ( x, y2) ( x, y1)<br />

dx = ( x, y2) dx ( x, y1)<br />

dx<br />

a<br />

a<br />

c<br />

= <br />

<br />

( x, y2) dx ( x, y1)<br />

dx<br />

<br />

c<br />

a<br />

<br />

= <br />

<br />

( x , y ) dx ( x , y ) dx<br />

<br />

<br />

c2 c1<br />

<br />

= – ( , )<br />

<br />

c<br />

c<br />

<br />

a<br />

x y dx

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!