25.05.2018 Views

vector

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

436 Vectors<br />

8. Evaluate F . nds ˆ. ,<br />

s<br />

and s is the region of the plane 2x + 2y + z = 6<br />

<br />

where 2<br />

F xyiˆ x ˆ j ( x z)<br />

kˆ<br />

in the first octant. (A.M.I.E.T.E., Summer 2004, Winter 2001) Ans. 27 4<br />

9. Verify Green’s Theorem for<br />

2 2<br />

( xy y ) dx x dy<br />

<br />

C <br />

where C is the boundary by y = x and y = x 2 .<br />

(AMIETE, June 2010)<br />

5.38 STOKE’S THEOREM (Relation between Line Integral and Surface Integral)<br />

(Uttarakhand, I Sem. 2008, U.P., Ist Semester, Dec. 2006)<br />

Statement. Surface integral of the component of curl F along the normal to the surface S,<br />

taken over the surface S bounded by curve C is equal to the line integral of the <strong>vector</strong> point function<br />

F taken along the closed curve C.<br />

Mathematically<br />

<br />

<br />

F . d r = curl Fnds ˆ<br />

S<br />

where ˆn = cos î + cos ĵ + cos ˆk is a unit<br />

external normal to any surface ds,<br />

Proof. Let r = xiˆ<br />

yj ˆ<br />

zkˆ<br />

dr = idx ˆ ˆj dy kdz ˆ<br />

F = Fi ˆ<br />

ˆ<br />

1 F ˆ 2 j F3 k<br />

<br />

On putting the values of F,<br />

d r in the statement of the theorem<br />

<br />

c<br />

( Fi ˆ ˆ ˆ ˆ ˆ ˆ<br />

1 F2 j Fk 3 ) ( idx j dy kdz)<br />

= <br />

i j k <br />

S<br />

<br />

x y z<br />

( Fiˆ ˆ ˆ ˆ ˆ ˆ<br />

<br />

1 F 2 j F3 k). (cos i cos j cos k)<br />

ds<br />

( F1 dx <br />

F3 F2 1 3<br />

2 1<br />

F2 dy F3<br />

dz)<br />

=<br />

ˆ F F<br />

ˆ<br />

F F<br />

<br />

i j kˆ<br />

<br />

<br />

.<br />

S<br />

<br />

<br />

y z z x x y<br />

<br />

( iˆcos ˆj cos kˆ<br />

cos )<br />

ds<br />

3 2 1 3<br />

2 1<br />

= F<br />

F F F<br />

F F<br />

<br />

cos cos cos ds<br />

S y z<br />

<br />

<br />

z x<br />

<br />

x y<br />

<br />

...(1)<br />

Let us first prove<br />

F c<br />

1 dx<br />

1 1<br />

= F<br />

F<br />

<br />

cos cos ds<br />

S<br />

<br />

<br />

<br />

z<br />

y<br />

<br />

...(2)<br />

Let the equation of the surface S be z = g (x, y). The projection of the surface on x – y plane<br />

is region R.<br />

F 1 ( x , y , z ) dx<br />

c<br />

= F 1 [ x , y , g ( x , y )] dx<br />

c<br />

<br />

= F1 ( x, y, g)<br />

dx dy [By Green’s Theorem]<br />

R y<br />

F1 F1<br />

g <br />

= dx dy<br />

R<br />

<br />

y z y<br />

<br />

...(3)<br />

The direction consines of the normal to the surface z = g(x, y) are given by<br />

cos <br />

= cos cos <br />

<br />

g<br />

g<br />

1<br />

x<br />

y

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!