25.05.2018 Views

vector

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Vectors 437<br />

And dx dy = projection of ds on the xy-plane = ds cos <br />

Putting the values of ds in R.H.S. of (2)<br />

F<br />

z<br />

F<br />

y<br />

<br />

1 1<br />

cos cos ds<br />

S<br />

<br />

=<br />

=<br />

R<br />

<br />

<br />

<br />

<br />

z<br />

cos y<br />

<br />

<br />

<br />

<br />

F1 cos F <br />

1 dx dy<br />

=<br />

R<br />

F1 F1<br />

dx dy<br />

cos cos <br />

z<br />

y<br />

cos <br />

F1 g<br />

F1<br />

<br />

<br />

dx dy<br />

R<br />

z y y<br />

<br />

F1 F1<br />

g <br />

= dx dy<br />

R<br />

<br />

y z y<br />

<br />

...(4)<br />

From (3) and (4), we get<br />

F c<br />

1 = F1 F1<br />

<br />

cos cos ds<br />

S<br />

<br />

z<br />

y<br />

<br />

...(5)<br />

Similarly, F c<br />

2 2 2<br />

= F<br />

F<br />

<br />

cos cos ds<br />

S<br />

<br />

x<br />

z<br />

<br />

<br />

<br />

...(6)<br />

and F c<br />

3 3 3<br />

= F<br />

F<br />

<br />

cos cos ds<br />

S<br />

<br />

y<br />

x<br />

<br />

...(7)<br />

On adding (5), (6) and (7), we get<br />

( F1 dx F2 dy F3<br />

dz)<br />

c<br />

=<br />

<br />

S<br />

F1 F1 F2 F2<br />

cos cos cos cos <br />

z y x z<br />

F3 F3<br />

<br />

cos cos ds Proved.<br />

y<br />

x<br />

<br />

5.39 ANOTHER METHOD OF PROVING STOKE’S THEOREM<br />

The circulation of <strong>vector</strong> F around a closed curve C is equal to the flux of<br />

the curve of the <strong>vector</strong> through the surface S bounded by the curve C.<br />

<br />

F<br />

d r<br />

<br />

c = curl Fnds curl FdS <br />

S S<br />

Proof : The projection of any curved surface over xy-plane can be treated as kernal of the<br />

surface integral over actual surface<br />

Now,<br />

S<br />

<br />

<br />

( F)<br />

kˆ<br />

dS<br />

= ( ) ( )<br />

<br />

= [( iˆ)( F ˆj) ( ˆj)( Fiˆ)]<br />

dx dy<br />

<br />

F i j dx dy<br />

[ kˆ iˆ<br />

ˆj]<br />

<br />

S<br />

<br />

<br />

F F dx dy<br />

<br />

= ( y) ( x)<br />

S<br />

S<br />

<br />

x<br />

y<br />

Fx<br />

dx Fy<br />

dy [By Green’s theorem]<br />

= [ ]<br />

=<br />

S<br />

[ ˆ ˆ ] ( ˆ ˆ<br />

iFx<br />

jFy<br />

idx j dy)<br />

S<br />

= F <br />

. dr<br />

<br />

c<br />

<br />

curl F ndS ˆ = . d r .<br />

S<br />

c F<br />

where, F = F iˆ F ˆj F kˆand<br />

dr dx iˆ dyj ˆ dz kˆ<br />

x y z<br />

<br />

<br />

Example 85. Evaluate by Strokes theorem ( yz dx zx dy xy dz)<br />

where C is the curve<br />

C<br />

x 2 + y 2 = 1, z = y 2 . (M.D.U., Dec 2009)<br />

Solution. Here we have<br />

yz dx zx dy xy dz<br />

= ( yziˆ zxj ˆ xykˆ<br />

).( idx ˆ ˆjdy kdz)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!