25.05.2018 Views

vector

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Vectors 445<br />

= (0 – 0) iˆ – (2 z – 0) ˆj (3 y – 1) kˆ – 2 zj ˆ (3 y – 1) kˆ<br />

<br />

ˆ ˆ ˆ 2 2 2<br />

<br />

i j k ( x y z 16)<br />

ˆn = | = x y z<br />

|<br />

| |<br />

2xiˆ<br />

2yj ˆ 2zkˆ<br />

xiˆ<br />

yj ˆ zkˆ<br />

xiˆ<br />

yj ˆ zkˆ<br />

=<br />

=<br />

=<br />

2 2 2 2 2 2<br />

4x 4y 4z<br />

x y z 4<br />

<br />

ˆ ˆ ˆ<br />

( F)<br />

nˆ<br />

= [– 2 ˆ (3 – 1) ˆ xi yj zk<br />

zj y k]<br />

<br />

2 yz (3y 1) z<br />

=<br />

4<br />

4<br />

ˆk n<br />

xiˆ<br />

yj ˆ zkˆ<br />

z<br />

ds = dx dy <br />

. k ds = dx dy ds = dx dy<br />

4<br />

4<br />

<br />

ds = 4 dx dy<br />

z<br />

2 (3 1) 4<br />

( F)<br />

nˆ<br />

ds yz y z dx dy<br />

<br />

<br />

4 z <br />

= [ 2 y (3 y 1)] dx dy = ( y 1) dxdy<br />

On putting x = r cos , y = r sin , dx dy = r d dr, we get<br />

=<br />

=<br />

= ( r sin 1) r d dr<br />

2<br />

3 2<br />

4<br />

<br />

<br />

2<br />

d ( r sin r)<br />

dr<br />

= r<br />

r <br />

d <br />

<br />

sin <br />

3 2 = 64 <br />

d <br />

sin 8 <br />

0 <br />

<br />

3<br />

0 0<br />

<br />

2<br />

64 64 64<br />

= cos 8 <br />

= 16<br />

= – 16 <br />

3 3 3<br />

0<br />

The line integral is equal to the surface integral, hence Stoke’s Theorem is verified. Proved.<br />

<br />

2 2<br />

Example 98. Verify Stoke’s theorem for a <strong>vector</strong> field defined by F ( x – y ) iˆ 2xy ˆj<br />

in<br />

the rectangular in xy-plane bounded by lines x = 0, x = a, y = 0, y = b.<br />

(Nagpur University, Summer 2000)<br />

Solution. Here we have to verify Stoke’s theorem F <br />

. dr<br />

<br />

= ( ). ˆ<br />

C F<br />

nds<br />

S<br />

Where ‘C’ be the boundary of rectangle (ABCD) and S be the surface enclosed by curve C.<br />

2<br />

F 2 2<br />

= ( x – y ) iˆ (2 xy)<br />

ˆj<br />

<br />

F . dr =<br />

2 2<br />

[( x – y ) iˆ 2 xyj ˆ].[ idx ˆ ˆj dy]<br />

<br />

F . dr = (x<br />

2<br />

+ y 2 ) dx + 2xy dy ...(1)<br />

Now, F <br />

. dr<br />

<br />

<br />

= F . dr F . dr F . dr F . dr<br />

C<br />

...(2)<br />

OA AB BC CO<br />

<br />

Along OA, put y = 0 so that k dy = 0 in (1) and F . dr = x 2 dx,<br />

Where x is from 0 to a.<br />

3<br />

a<br />

a<br />

2<br />

F <br />

. dr<br />

<br />

3<br />

x dx<br />

x a<br />

OA = <br />

0 3 3<br />

<br />

Along AB, put x = a so that dx = 0 in (1), we get F .<br />

Where y is from 0 to b.<br />

<br />

b<br />

0<br />

0<br />

<br />

d r<br />

= 2ay dy<br />

...(3)<br />

2 2<br />

F . dr 2aydy<br />

= [ ay ] b<br />

0<br />

ab<br />

...(4)<br />

AB

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!