23.12.2012 Views

Fuel cells and electrolysers in future energy systems - VBN

Fuel cells and electrolysers in future energy systems - VBN

Fuel cells and electrolysers in future energy systems - VBN

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

LCA‐Study<br />

LCA of Danish fish<br />

products. New<br />

methods <strong>and</strong><br />

<strong>in</strong>sights.<br />

Thrane (2006) [34]<br />

2nd generation<br />

bioethanol for<br />

transport: the IBUS<br />

concept.<br />

Jensen & Thyø<br />

(2007) [37]<br />

Life cycle assess‐<br />

ment of fuels for<br />

district heat<strong>in</strong>g: A<br />

comparison of<br />

waste <strong>in</strong>c<strong>in</strong>eration,<br />

biomass‐ <strong>and</strong> Ngas<br />

combustion.<br />

Eriksson et al.<br />

(2007) [39]<br />

Life cycle assess‐<br />

ment of the waste<br />

hierarchy – A<br />

Danish case study<br />

on waste paper.<br />

1. Marg<strong>in</strong>al technology <strong>in</strong><br />

LCA<br />

The marg<strong>in</strong>al electricity<br />

technology is PP based on<br />

coal or Ngas (does not<br />

mention which one is<br />

used).<br />

Coal (CHP) is used as mar‐<br />

g<strong>in</strong>al electricity technology.<br />

Central CHP plants (mix of<br />

fuels) are used as marg<strong>in</strong>al<br />

technology for district<br />

heat<strong>in</strong>g.<br />

Complex marg<strong>in</strong>al electric‐<br />

ity production on the<br />

Nordic electricity market.<br />

Found by modell<strong>in</strong>g the<br />

<strong>energy</strong> system <strong>in</strong> the model<br />

NELSON (dynamic optimi‐<br />

zation model). A mix of<br />

different technologies <strong>and</strong><br />

fuels are identified (e.g.<br />

coal, Ngas, w<strong>in</strong>d, oil, nu‐<br />

clear power <strong>and</strong> biomass).<br />

Marg<strong>in</strong>al electricity tech‐<br />

nology is from the Danish<br />

grid. Ngas (CHP) is used as<br />

technology. This also<br />

applies to heat, although<br />

not explicitly stated.<br />

2. Marg<strong>in</strong>al<br />

technology <strong>in</strong><br />

sensitivity analy‐<br />

ses<br />

No sensitivity<br />

analysis per‐<br />

formed.<br />

No sensitivity<br />

analysis has been<br />

performed of the<br />

marg<strong>in</strong>al <strong>energy</strong><br />

technology.<br />

The assessment<br />

<strong>in</strong>cluded two<br />

scenarios – one<br />

with a low fossil<br />

fuel content <strong>in</strong><br />

the <strong>energy</strong> mix,<br />

<strong>and</strong> one with a<br />

high content.<br />

Coal CHP is used<br />

as marg<strong>in</strong>al<br />

<strong>energy</strong> technol‐<br />

ogy <strong>in</strong> the sensi‐<br />

tivity analysis.<br />

3. The arguments for identifica‐<br />

tion<br />

In consequential LCAs, a mar‐<br />

ket‐based approach is used.<br />

Disregards all processes re‐<br />

stricted by quotas or other<br />

factors (e.g. w<strong>in</strong>d, as it is re‐<br />

stricted by w<strong>in</strong>d speed – not<br />

market dem<strong>and</strong>).<br />

Refer to Behnke (2006) [12] for<br />

identification of the marg<strong>in</strong>al<br />

technology for electricity pro‐<br />

duction. Central CHP plants are<br />

identified as marg<strong>in</strong>al technolo‐<br />

gies for heat production, but the<br />

fuel type has not been consid‐<br />

ered.<br />

Coal condens<strong>in</strong>g is the short‐<br />

term marg<strong>in</strong>al technology. Long‐<br />

term marg<strong>in</strong>al technologies<br />

could be nuclear power (clos<strong>in</strong>g<br />

down) or Ngas (build<strong>in</strong>g of new<br />

CHP plants). F<strong>in</strong>d that the most<br />

realistic marg<strong>in</strong>al technology is<br />

the complex one.<br />

Refer to Weidema (2003) [13]<br />

for identification of the marg<strong>in</strong>al<br />

<strong>energy</strong> technology.<br />

4. Time horizon<br />

(short‐term or long‐<br />

term)<br />

Long‐term (time<br />

horizon not de‐<br />

f<strong>in</strong>ed).<br />

Long‐term perspec‐<br />

tive (towards 2025).<br />

Long‐term (the<br />

<strong>energy</strong> system<br />

analysis refers to a<br />

period of 50 years).<br />

Not mentioned<br />

explicitly.<br />

Schmidt et al.<br />

(2007) [33]<br />

1) 5‐step procedure for identify<strong>in</strong>g a marg<strong>in</strong>al technology from Weidema et al. (1999) [1] <strong>and</strong> Ekval <strong>and</strong> Weidema (2004) [11]:<br />

a) Time horizon, b) Process or market, c) Trend <strong>in</strong> market volume, d) Flexible technologies (unconstra<strong>in</strong>ed), e) Technologies actually affected<br />

5. Characteris‐<br />

tics of the<br />

change <strong>in</strong><br />

<strong>energy</strong> dem<strong>and</strong><br />

Not mentioned.<br />

Not mentioned.<br />

Only implicitly<br />

<strong>in</strong>cluded.<br />

Not mentioned.<br />

6. Importance of<br />

<strong>energy</strong> to conclusions<br />

Consumption of<br />

diesel oil very impor‐<br />

tant, especially at the<br />

fish<strong>in</strong>g stage. Electric‐<br />

ity consumption is<br />

only of m<strong>in</strong>or impor‐<br />

tance.<br />

Energy is important<br />

s<strong>in</strong>ce the whole<br />

assessment is <strong>energy</strong>‐<br />

related. No sensitivity<br />

analysis performed of<br />

the marg<strong>in</strong>al <strong>energy</strong><br />

technology.<br />

The <strong>energy</strong> mix is<br />

important to the<br />

rank<strong>in</strong>g of solutions.<br />

It is stated <strong>in</strong> the<br />

sensitivity analysis<br />

that the results of the<br />

assessment appear to<br />

be sensitive to the<br />

choice of marg<strong>in</strong>al<br />

technology.<br />

7. Identification of the mar‐<br />

g<strong>in</strong>al <strong>energy</strong> technology:<br />

Consistency with 5‐step pro‐<br />

cedure? 1) <strong>and</strong> type of mar‐<br />

g<strong>in</strong>al technology identified<br />

Do not follow the 5‐step pro‐<br />

cedure but refer to the market‐<br />

based approach <strong>in</strong> Weidema<br />

(2003) [13].<br />

Dynamic marg<strong>in</strong>al technology.<br />

Do not follow the 5‐step pro‐<br />

cedure but refer to Behnke<br />

(2006) [12] for identification of<br />

the marg<strong>in</strong>al electricity tech‐<br />

nology. Identification of the<br />

marg<strong>in</strong>al heat technology is<br />

not discussed.<br />

Dynamic marg<strong>in</strong>al technology.<br />

Do not follow the 5‐step pro‐<br />

cedure s<strong>in</strong>ce this procedure is<br />

a simplified approach to the<br />

identification of the marg<strong>in</strong>al<br />

technology. Identifies a “com‐<br />

plex” marg<strong>in</strong>al consist<strong>in</strong>g of<br />

both short‐term <strong>and</strong> long‐term<br />

technologies by the use of a<br />

dynamic optimisation model.<br />

Complex marg<strong>in</strong>al technology.<br />

Do not follow the 5‐step pro‐<br />

cedure but refer to Weidema<br />

(2003) [13] for identification of<br />

the marg<strong>in</strong>al technology.<br />

Dynamic marg<strong>in</strong>al technology.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!