26.12.2012 Views

ZTE Communications

ZTE Communications

ZTE Communications

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

S pecial Topic<br />

Exploiting the Faster-Than-Nyquist Concept in Wavelength-Division Multiplexing Systems Using Duobinary Shaping<br />

Jianqiang Li, Ekawit Tipsuwannakul, Magnus Karlsson, and Peter A. Andrekson<br />

Q Factor (dB)<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

□<br />

○<br />

-7<br />

without Post-Filter+MLSD<br />

-6 -5 -4 -3 -2 -1 0 1 2 3<br />

Launched Power Per Channel PL (dBm)<br />

MLSD: maximum-likelihood sequence detector<br />

▲Figure 8. 640 km SSMF transmission performance versus launch<br />

power per channel.<br />

performance is mainly penalized by increased in-band noise<br />

and interchannel linear crosstalk. In this case, more<br />

nonlinearity is required to further penalize the signal.<br />

6 Conclusion<br />

Applying the faster-than-Nyquist concept in<br />

spectrally-efficient WDM systems has been discussed. The<br />

fundamental idea behind faster-than-Nyquist is to increase<br />

spectral efficiency by accepting ISI. In light of this idea, we<br />

have proposed a novel receiver structure based on duobinary<br />

shaping in order to achieve a balanced trade-off between<br />

spectral efficiency, detection performance, and<br />

implementation complexity in optical WDM systems.<br />

Experiments were carried out in 25 GHz-spaced 100 Gb/s<br />

PM-QPSK WDM system with small implementation penalty<br />

and promising robustness. The proposed scheme can be<br />

expanded to higher-level modulation formats, for example,<br />

16-ary quadrature amplitude modulation (QAM) for higher<br />

spectral efficiency [25].<br />

References<br />

[1] P. J. Winzer,“Beyond 100G ethernet,”IEEE Commun. Mag., vol. 48, no. 7, pp.<br />

26-30, 2010.<br />

[2] A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham,<br />

“Spectrally efficient long-haul WDM transmission using 224-GB/s<br />

polarization-multiplexed 16-QAM,”J. Lightw. Technol., vol. 29, no. 4, pp.<br />

373-377, 2011.<br />

[3] J. Yu, X. Zhou, Y. K. Huang, S. Gupta, M. F. Huang, T. Wang, and P. Magill,<br />

“112.8-Gb/s PM-RZ-64QAM optical signal generation and transmission on a<br />

12.5 GHz WDM grid,”in Proc. OFC2010, Mar. 2010, Paper OThM1.<br />

[4] X. Zhou, J. Yu, M.-F. Huang, Y. Shao, T. Wang, L. Nelson, P. Magill, M. Birk, P. I.<br />

Borel, D. W. Peckham, R. Lingle, Jr., and B. Zhu,“64-Tb/s, 8 b/s/Hz,<br />

PDM-36QAM transmission over 320 km using both pre- and post-transmission<br />

digital signal processing,”J. Lightw. Technol., vol. 29, no. 4, pp. 571-577, Feb.<br />

2011.<br />

[5] W. Shieh,“OFDM for flexible high-speed optical networks,”J. Lightw. Technol.,<br />

vol. 29, no. 10, pp. 1560-1577, May. 2011.<br />

[6] A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y.<br />

Miyamoto, R. Kudo, K. Ishihara, and Y. Takatori,“No-guard-interval coherent<br />

optical OFDM for 100-Gb/s long-haul WDM transmission,”J. Lightw. Technol.,<br />

vol. 27, no. 16, pp. 3705-3713, Aug. 2009.<br />

[7] X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham,<br />

“448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of<br />

ultra-large-area fiber and five 80-GHz-grid ROADMs,”J. Lightw. Technol., vol.<br />

28<br />

with Post-Filter+MLSD<br />

□<br />

□<br />

□<br />

○<br />

□<br />

○<br />

○<br />

<strong>ZTE</strong> COMMUNICATIONS<br />

○<br />

□<br />

○<br />

□<br />

○<br />

□<br />

○<br />

□<br />

○<br />

□<br />

with Post-Filter without Post-Filter<br />

○<br />

March 2012 Vol.10 No.1<br />

□<br />

○<br />

□<br />

○<br />

4<br />

□<br />

○<br />

5<br />

29, no. 4, pp. 483-490, Feb. 2011.<br />

[8] J. Zhang, N. Chi, J. Yu, Y. Shao, J. Zhu, B. Huang, L. Tao,“Generation of coherent<br />

and frequency-lock multi-carriers using cascaded phase modulators and<br />

recirculating frequency shifter for Tb/s optical communication”, Opt. Express, vol.<br />

19, no. 14, pp. 12891-12902, 2011.<br />

[9] J. Yu, Z. Dong, X. Xiao, Y. Xia, S. Shi, C. Ge, W. Zhou, N. Chi and Y. Shao,<br />

“Generation of 112 coherent multi-carriers and transmission of 10 Tb/s<br />

(112x100Gb/s) single optical OFDM superchannel over 640 km SMF,”in Proc.<br />

OFC2011, Mar. 2011, Paper PDPA6.<br />

[10] J. Yu, Z. Dong, J. Zhang, X. Xiao, H.-C. Chien, and N. Chi,“Generation of<br />

coherent and frequency-locked multi-carriers using cascaded phase<br />

modulators for 10Tb/s optical transmission,”J. Lightw. Technol. vol. 30, no. 4, pp.<br />

458-465, Feb. 2012.<br />

[11] G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri,“Performance limits<br />

of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,”IEEE<br />

Photon. Technol. Lett., vol. 22, no. 15, pp. 1129-1131, Aug. 2010.<br />

[12] X. Zhou, L. Nelson, P. Magill, R. Isaac, B. Zhu, D. W. Peckham, P. Borel, and K.<br />

Carlson,“8×450-Gb/s, 50-GHz-Spaced, PDM-32QAM transmission over<br />

400km and one 50-GHz-Grid ROADM,”,”in Proc. OFC2011, Mar. 2011, Paper<br />

PDPB3.<br />

[13] K. Igarashi, Y. Mori, K. Katoh, and K. Kikuchi,“Bit-error rate performance of<br />

Nyquist wavelength-division multiplexed quadrature phase-shift keying optical<br />

signals,”in Proc. OFC2011,Mar. 2011, Paper OMR6.<br />

[14] R. Cigliutti, E. Torrengo, G. Bosco, N. P. Caponio, A. Carena, V. Curri, P.<br />

Poggiolini, Y. Yamamoto, T. Sasaki, and F. Forghieri,“Transmission of 9×138Gb/s<br />

prefiltered PM-8QAM signals over 4000 km of pure silica-core fiber,”J. Lightw.<br />

Technol., vol. 29, no. 15, pp. 2310-2318, Aug. 2011.<br />

[15] G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, M.<br />

Belmonte, F. Forghieri, C. Muzio, S. Piciaccia, A. Brinciotti, A. La Porta, C. Lezzi,<br />

S. Savory, S. Abrate,“Investigation of the impact of ultra-narrow carrier spacing<br />

on the transmission of a 10-carrier 1Tb/s superchannel,”in Proc. OFC2010, San<br />

Diego, CA, Mar. 2010, Paper OThD3.<br />

[16] H. J. Landau,“Sampling, data transmission, and the Nyquist rate,”Proc. IEEE,<br />

vol. 55, pp. 1701-1706, Oct. 1967.<br />

[17] J. E. Mazo,“Faster-than-Nyquist signaling,”Bell System Tech. J., vol. 54, no. 8,<br />

pp. 1451-1462, Oct. 1975.<br />

[18] A. D. Liveris and C. N. Georghiades,“Exploiting faster-than-Nyquist signaling,”<br />

IEEE Trans. Commun., vol. 51, no. 9, pp. 1502-1511, Sep. 2003.<br />

[19] G. Colavolpe,“Faster-than-Nyquist and beyond: how to improve spectral<br />

efficiency by accepting interference,”in Proc. ECOC 2011, Sep. 2011, Paper<br />

Mo.1.B.<br />

[20] J. -X. Cai, Y. Cai, C. R. Davidson, D. G. Foursa, A. J. Lucero, O. V. Sinkin, W. W.<br />

Patterson, A. N. Pilipetskii, G. Mohs, and N. S. Bergano,“Transmission of<br />

96×100-Gb/s bandwidth-constrained PDM-RZ-QPSK channels with 300%<br />

spectral efficiency over 10610 km and 400% spectral efficiency over 4370 km,”<br />

J. Lightw. Technol., vol. 29, no. 4, pp. 491-498, Feb. 2011.<br />

[21] J.-X. Cai, Y. Cai, C. R. Davidson, A. Lucero, H. Zhang, D. G. Foursa, O. V. Sinkin,<br />

W. W. Patterson, A. Pilipetskii, G. Mohs, and N. S. Bergano,“20 Tbit/s capacity<br />

transmission over 6,860 km,”in Proc. OFC2011, Mar. 2011, Paper PDPB4.<br />

[22] K. Horikoshi, T. Kobayashi, S. Yamanaka, E. Yamazaki, A. Sano, E. Yoshida, and<br />

Y. Miyamoto,“Spectrum-narrowing tolerant 171-Gbit/s PDM-16QAM<br />

transmission over 1,200 km using maximum likelihood sequence estimation,”in<br />

Proc. ECOC 2011, Sep. 2011, Paper We.10.P1.73.<br />

[23] J. Li, Z. Tao, H. Zhang, W. Yan, T. Hoshida, J. C. Rasmussen,“Enhanced digital<br />

coherent receiver for high spectral-efficiency dual-polarization quadrature<br />

duobinary systems,”presented in ECOC 2010, Turin, Italy, Sep. 2010, Paper<br />

Th.10.A.3.<br />

[24] J. Li, Z. Tao, H. Zhang, W. Yan, T. Hoshida, J. C. Rasmussen,“Spectrally efficient<br />

quadrature duobinary coherent systems with symbol-rate digital signal<br />

processing,”J. Lightw. Technol., vol. 29, no. 8, pp. 1098-1104, Apr. 2011.<br />

[25] J. Li, E. Tipsuwannakul, T. Eriksson, M. Karlsson, and P. A. Andrekson,<br />

“Approaching Nyquist limit in wavelength-division multiplexing systems by<br />

low-complexity duobinary shaping and detection,”to be published in J. Lightw.<br />

Technol.<br />

[26] J. G. Proakis, Digital <strong>Communications</strong>, Fourth Edition, New York: McGraw-Hill,<br />

2001.<br />

[27] G. D. Forney, Jr.,“Maximum likelihood sequence estimation of digital sequences<br />

in the presence of intersymbol interference,”IEEE Trans. Info. Theory, vol. IT-18,<br />

no. 3, pp. 363-378, May 1972.<br />

[28] D. D. Falconer and F. R. Magee, Jr.,“Adaptive channel memory truncation for<br />

maximum-likelihood sequence estimation,”Bell System Tech. J., vol. 52, no. 9,<br />

pp. 1541-1562, Nov. 1973.<br />

[29] S. Qureshi and E. Newhall,“An adaptive receiver for data transmission over<br />

time-dispersive channels,”IEEE Trans. Inform Theory, vol. IT-19, pp. 448-457,<br />

July 1973.<br />

[30] W. U. Lee and F. S. Hill Jr.,“A maximum likelihood sequence estimator with<br />

decision feedback equalization,”IEEE Tram. Commun., vol. COM-25, pp.<br />

971-980, Sept. 1977.<br />

[31] S. J. Savory,“Digital coherent optical receivers: algorithms and subsystems,”<br />

IEEE J. Sel. Top. Quantum Electron., vol. 16, no. 5, pp. 1164-1179, Sep./Oct.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!