05.01.2013 Views

Abel's theorem in problems and solutions - School of Mathematics

Abel's theorem in problems and solutions - School of Mathematics

Abel's theorem in problems and solutions - School of Mathematics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

158 Problems <strong>of</strong> Chapter 2<br />

Answer. a) b) (here is the real positive<br />

root); c) where d)<br />

where (here is<br />

the real positive root).<br />

231. H<strong>in</strong>t. See formula (3.5) <strong>of</strong> the solution <strong>of</strong> Problem 229;<br />

(cf., 227).<br />

232. H<strong>in</strong>t. If <strong>and</strong> then<br />

Answer. (cf., 231).<br />

233. By virtue <strong>of</strong> the result <strong>of</strong> 221 where O is the orig<strong>in</strong> <strong>of</strong><br />

the coord<strong>in</strong>ates. Answer. a) the distance <strong>of</strong> the po<strong>in</strong>t from the orig<strong>in</strong><br />

<strong>of</strong> the coord<strong>in</strong>ates; b) the angle between the positive side <strong>of</strong> the axis<br />

<strong>and</strong> the ray c) the distance between the po<strong>in</strong>ts <strong>and</strong> (because<br />

(cf., 221); d) the angle between rays <strong>and</strong> (cf.,<br />

226).<br />

234. See 233. Answer. a), b) The circle <strong>of</strong> radius 1 (<strong>and</strong> R) with<br />

centre at the orig<strong>in</strong> <strong>of</strong> the coord<strong>in</strong>ates; c) the circle <strong>of</strong> radius R <strong>and</strong> centre<br />

at the po<strong>in</strong>t d) the disc <strong>of</strong> radius R with centre together with its<br />

bound<strong>in</strong>g circle; e) the straight l<strong>in</strong>e perpendicular to the segment jo<strong>in</strong><strong>in</strong>g<br />

po<strong>in</strong>ts <strong>and</strong> <strong>and</strong> pass<strong>in</strong>g through its middle po<strong>in</strong>t; f) the negative<br />

side <strong>of</strong> the real axis; g) the bisector <strong>of</strong> the first quadrant <strong>of</strong> the plane; h)<br />

the ray def<strong>in</strong><strong>in</strong>g the angle with the positive side <strong>of</strong> the axis<br />

235. See 229 <strong>and</strong> 232. Answer. In the vertices <strong>of</strong> a regular<br />

with centre at the orig<strong>in</strong> <strong>of</strong> the coord<strong>in</strong>ates.<br />

236. Let a po<strong>in</strong>t <strong>and</strong> an arbitrary real number be given.<br />

Choose (<strong>in</strong>dependently <strong>of</strong> <strong>and</strong> <strong>of</strong> Thus for every satisfy<strong>in</strong>g<br />

the condition the <strong>in</strong>equality<br />

is satisfied. Consequently the function is cont<strong>in</strong>uous for every<br />

value <strong>of</strong> the argument (For one may take an arbitrary positive real<br />

number).<br />

237. Let a po<strong>in</strong>t <strong>and</strong> an arbitrary real number be given.<br />

Choose (<strong>in</strong>dependently <strong>of</strong> Thus for every satisfy<strong>in</strong>g the<br />

condition the <strong>in</strong>equality is<br />

satisfied, i.e., we will have Consequently the function <strong>of</strong><br />

complex argument is cont<strong>in</strong>uous for every value <strong>of</strong> the argument.<br />

Consider<strong>in</strong>g only the real values <strong>of</strong> the argument we obta<strong>in</strong> that the

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!