20.01.2013 Views

kart_kreiv_ir_pav_integralai.pdf

kart_kreiv_ir_pav_integralai.pdf

kart_kreiv_ir_pav_integralai.pdf

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

∫∫∫<br />

V<br />

=<br />

∫∫<br />

D<br />

( x,<br />

y,<br />

z)<br />

∂Z<br />

∂z<br />

Z<br />

© A. Laurutis, D.Šiaučiūnas Paskaitų konspektas 110<br />

( x,<br />

y )<br />

( x,<br />

y )<br />

( x,<br />

y,<br />

f ( x,<br />

y)<br />

) dxdy − Z(<br />

x,<br />

y,<br />

f ( x,<br />

y)<br />

) dxdy.<br />

2<br />

dxdydz =<br />

⎛<br />

⎜<br />

⎝<br />

f 2<br />

⎜ ∫∫ ∫<br />

D<br />

f1<br />

∫∫<br />

D<br />

∂Z<br />

⎞<br />

dz⎟dxdy<br />

=<br />

∂z<br />

⎟<br />

⎠<br />

Jau žinome, kad Z(<br />

x y,<br />

f ( x,<br />

y)<br />

) dxdy = Z(<br />

x,<br />

y,<br />

z)<br />

∫∫<br />

D<br />

Z<br />

∫∫<br />

D<br />

, 2<br />

∫∫<br />

σ<br />

2<br />

1<br />

cosγdσ<br />

( x y,<br />

f ( x,<br />

y)<br />

) dxdy = Z(<br />

x,<br />

y,<br />

z)(<br />

− cos ) dσ<br />

= − Z(<br />

x,<br />

y,<br />

z)<br />

, 1<br />

Reiškinius (2) <strong>ir</strong> (3) įrašome į formulę (1), tada<br />

∫∫∫<br />

V<br />

( x,<br />

y,<br />

z)<br />

∂Z<br />

∂z<br />

∫∫<br />

Dar pridedame ( x,<br />

y,<br />

z)<br />

∫∫<br />

σ<br />

1<br />

σ<br />

3<br />

dxdydz =<br />

∫∫<br />

σ<br />

1<br />

Z<br />

∫∫<br />

σ<br />

1<br />

∫∫<br />

( x,<br />

y,<br />

z)<br />

cos dσ<br />

+ Z(<br />

x,<br />

y,<br />

z)<br />

γ cosγdσ<br />

∫∫<br />

γ cosγdσ<br />

.<br />

Z cosγdσ<br />

= 0 , nes šiame <strong>pav</strong><strong>ir</strong>šiujeσ 3 – cos γ = 0,<br />

tada<br />

( x,<br />

y,<br />

z)<br />

cos dσ<br />

+ Z(<br />

x,<br />

y,<br />

z)<br />

cosγdσ<br />

+ Z(<br />

x,<br />

y,<br />

z)<br />

cosγdσ<br />

= Z(<br />

x,<br />

y,<br />

z)<br />

∫∫<br />

σ<br />

∫∫<br />

Z γ cosγdσ<br />

<strong>ir</strong><br />

2<br />

∫∫∫<br />

V<br />

∂Z<br />

dxdydz =<br />

∂z<br />

Analogiškai galime gauti šias išraiškas:<br />

∂Y<br />

∫∫∫ dxdydz =<br />

∂y<br />

V<br />

σ<br />

∫∫<br />

σ<br />

∫∫<br />

σ<br />

3<br />

Z<br />

Y<br />

( x y,<br />

z)<br />

σ<br />

2<br />

σ<br />

∫∫<br />

σ<br />

1<br />

(1)<br />

(2)<br />

(3)<br />

, cosγdσ<br />

. (4)<br />

( x y,<br />

z)<br />

, cos βdσ<br />

, (4a)<br />

∂X<br />

∫∫∫ dxdydz = ∫∫ X ( x,<br />

y,<br />

z)<br />

coαβdσ<br />

. (4b)<br />

∂x<br />

V<br />

σ<br />

Sudedame jas visas (4, 4a, 4b) <strong>ir</strong> gauname Gauso – Ostrogradskio formulę<br />

∫∫∫<br />

V<br />

⎛ ∂X<br />

∂Y<br />

∂Z<br />

⎞<br />

⎜ + + ⎟dxdydz<br />

=<br />

⎝ ∂x<br />

∂y<br />

∂z<br />

⎠<br />

∫∫<br />

σ<br />

( X ( x y,<br />

z)<br />

cos + Y ( x,<br />

y,<br />

z)<br />

cos β + Z(<br />

x,<br />

y,<br />

z)<br />

cosγ<br />

)<br />

, α dσ<br />

,<br />

kuri nustato ryšį tarp trilypio integralo srityje V <strong>ir</strong> <strong>pav</strong><strong>ir</strong>šinio integralo <strong>pav</strong><strong>ir</strong>šiumi σ , ribojančiu<br />

šią sritį.<br />

Pavyzdys. Apskaičiuoti <strong>pav</strong><strong>ir</strong>šinį integralą<br />

3<br />

3<br />

3<br />

I = x dydz + y dxdz + z dxdy išoriniu sferos<br />

∫∫<br />

S<br />

2 2 2 2<br />

+ y + z R <strong>pav</strong><strong>ir</strong>šiumi.<br />

φ<br />

x =<br />

> Gauso – Ostrogradskio formulę perrašome į<br />

r<br />

<strong>pav</strong>idalą<br />

θ<br />

⎛ ∂X<br />

∂Y<br />

∂Z<br />

⎞<br />

x<br />

∫∫∫ ⎜ + + ⎟dxdydz<br />

= ∫∫ X ( x,<br />

y,<br />

z)<br />

dydz + Y ( x,<br />

y,<br />

z)<br />

dxdz + Z(<br />

x,<br />

y,<br />

z)<br />

dxdy<br />

⎝ ∂x<br />

∂y<br />

∂z<br />

V<br />

⎠<br />

σ<br />

, nes<br />

z<br />

P(x,y,z)<br />

y

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!