01.05.2014 Views

Monovision and cataract surgery Visual field and OCT correlation ...

Monovision and cataract surgery Visual field and OCT correlation ...

Monovision and cataract surgery Visual field and OCT correlation ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

POSSIBLE MECHANISMS OF RETINAL FUNCTION RECOVERY WITH THE USE OF CELL THERAPY WITH BONE MARROW- DERIVED STEM CELLS<br />

matrix proteins such as collagen type I, collagen type III, <strong>and</strong><br />

TIMP-1 which result in positive remodeling <strong>and</strong> function (25,35) .<br />

B5) ACTIVATION OF NEIGHBORING RESIDENT STEM CELLS<br />

Finally, exogenous stem cell transplantation may activate<br />

neighboring resident tissue stem cells. Recent work demonstrated<br />

the existence of endogenous, stem cell-like populations<br />

in adult heart, liver, brain, <strong>and</strong> kidney (33-39) .<br />

These resident stem cells may possess growth factor receptors<br />

that can be activated to induce their migration <strong>and</strong><br />

proliferation <strong>and</strong> promote both the restoration of dead tissue<br />

<strong>and</strong> the improved function in damaged tissue. Mesenchymal<br />

stem cells have also released HGF <strong>and</strong> IGF-1 in response to injury<br />

<strong>and</strong> when transplanted into ischemic myocardial tissue may<br />

activate subsequently the resident cardiac stem cells.<br />

Although the definitive mechanisms for protection via<br />

stem cells remains unclear, stem cells mediate enhanced angiogenesis,<br />

suppression of inflammation, <strong>and</strong> improved function<br />

via paracrine actions on injured cells, neighboring resident<br />

stem cells, the extracellular matrix, <strong>and</strong> the infarct zone.<br />

Improved underst<strong>and</strong>ing of these paracrine mechanisms may<br />

allow earlier <strong>and</strong> more effective clinical therapies (25,36-37) .<br />

C) RETINAL PIGMENT EPITHELIUM (RPE) REPAIR WITH BM<br />

DERIVED STEM CELL<br />

RPE dysfunction has been linked to many devastating eye<br />

disorders, including age-related macular degeneration, <strong>and</strong> to<br />

hereditary disorders, such as Stargardt disease <strong>and</strong> retinitis<br />

pigmentosa (38-40) . Attempts to repair the RPE include transplantation<br />

of RPE cells into the subretinal space (39-44) . Animal studies,<br />

RPE transplantation in humans, <strong>and</strong> macular relocation <strong>surgery</strong><br />

have all shown that replacing diseased RPE with healthier RPE<br />

can rescue photoreceptors, prevent further visual loss, <strong>and</strong> even<br />

promote visual (45) . Also, recent work on human RPE patch graft<br />

transplantation demonstrates survival <strong>and</strong> rescue of photoreceptors<br />

for a substantial time after grafting <strong>and</strong> holds some<br />

promise (38) . Rescue of RPE <strong>and</strong> photoreceptors beyond the area<br />

of donor cell distribution suggests that diffusible factors are also<br />

involved in the rescue process. However, some problems exist,<br />

including the ability to obtain an adequate source of autologous<br />

RPE <strong>and</strong> that homologous cells have been associated with<br />

rejection. Fetal or adult transplanted RPE cells attach to Bruch’s<br />

membrane with poor efficiency <strong>and</strong> do not proliferate. These<br />

transplantation procedures are complex, associated with high<br />

complication rates, <strong>and</strong> often result in only short-term (45) .<br />

Recently, it has been reported that the bone marrowderived<br />

cells regenerated RPE in two different acute injury<br />

models (39-44,46-48) .<br />

Based on the above mentioned mechanisms, experimental<br />

<strong>and</strong> human studies with intravitreal bone-marrow derived<br />

stem cells have begun (Table 1).<br />

Recently, some reports demonstrated the clinical feasibility<br />

of intravitreal administration of autologous bone marrowderived<br />

mononuclear cells (ABMC) in patients with advanced<br />

degenerative retinopathies (49-52) . More recently, our group<br />

conducted a prospective phase I trial to investigate the safety<br />

of intravitreal ABMC in patients with RP or cone-rod dystrophy,<br />

with promising results (53-55) . The history starts to be written<br />

in this very promising therapeutic <strong>field</strong>. Welcome!<br />

REFERENCES<br />

1. Lorenz E, Congdon C, Uphoff ED, R. Modification of acute irradiation injury in mice<br />

<strong>and</strong> guinea-pigs by bone marrow injections. Radiology. 1951;58:863-77.<br />

2. Till JE, McCulloch EA. A direct measurement of the radiation sensitivity of normal<br />

mouse bone marrow cells. Radiat Res. 1961;14:213-22.<br />

3. Lanza R, Rosenthal N. The stem cell challenge. Sci Am. 2004;290:93-9.<br />

4. Mimeault M, Batra SK. Concise review: recent advances on the significance of stem<br />

cells in tissue regeneration <strong>and</strong> cancer therapies. Stem Cells. 2006;24(11):2319-45.<br />

5. Ortiz-Gonzalez XR, Keene CD, Verfaillie C, Low WC. Neural induction of adult bone<br />

marrow <strong>and</strong> umbilical cord stem cells. Curr Neurovasc Res. 2004;1(3):207-13.<br />

6. Trounson A. The production <strong>and</strong> directed differentiation of human embryonic<br />

stem cells. Endocr Rev. 2006;27(2):208-19. Review.<br />

7. Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N. Effects of eight<br />

growth factors on the differentiation of cells derived from human embryonic stem<br />

cells. Proc Natl Acad Sci U S A. 2002;97(21):11307-12.<br />

8. Machaliñska A, Baumert B, Kuprjanowicz L, Wiszniewska B, Karczewicz D, Machaliñski<br />

A, Baumert B, Kuprjanowicz L, Wiszniewska B, Karczewicz D, Machaliñski B.<br />

Potential application of adult stem cells in retinal repair-challenge for regenerative<br />

medicine. Curr Eye Res. 2009;34(9):748-60.<br />

9. Enzmann V, Yolcu E, Kaplan HJ, Ildstad ST. Stem cells as tools in regenerative<br />

therapy for retinal degeneration. Arch Ophthalmol. 2009;127(4):563-71.<br />

10. Ratajczak MZ, Kucia M, Reca R, Majka M, Janowska-Wieczorek A, Ratajczak J. Stem<br />

cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver<br />

<strong>and</strong> neural cells ‘hide out’ in the bone marrow. Leukemia. 2004;18(1):29-40.<br />

11. Müller-Sieburg CE, Cho RH, Thoman M, Adkins B, Sieburg HB. Deterministic<br />

regulation of hematopoietic stem cell self-renewal <strong>and</strong> differentiation. Blood. 2002;<br />

100(4):1302-9.<br />

12. Spangrude GJ, Heimfeld S, Weissman IL. Purification <strong>and</strong> characterization of mouse<br />

hematopoietic stem cells. Science. 1988;241(4861):58-62. Erratum in: Science. 1989;<br />

244(4908):1030.<br />

13. Nielsen JS, McNagny KM. CD34 is a key regulator of hematopoietic stem cell<br />

trafficking to bone marrow <strong>and</strong> mast cell progenitor trafficking in the periphery.<br />

Microcirculation. 2009;16(6):487-96.<br />

14. Kuçi S, Kuçi Z, Latifi-Pupovci H, Niethammer D, H<strong>and</strong>gretinger R, Schumm M, et al.<br />

Adult stem cells as an alternative source of multipotential (pluripotential) cells in<br />

regenerative medicine. Curr Stem Cell Res Ther. 2009;4(2):107-17.<br />

15. Challen GA, Boles N, Lin KK, Goodell MA. Mouse hematopoietic stem cell identification<br />

<strong>and</strong> analysis. Cytometry A. 2009;75(1):14-24. Review.<br />

16. Voltarelli JC, Ouyang J. Hematopoietic stem cell transplantation for autoimmune<br />

diseases in developing countries: current status <strong>and</strong> future prospectives. Bone<br />

Marrow Transplant. 2003;32 Suppl 1:S69-71.<br />

17. Voltarelli JC. Applications of flow cytometry to hematopoietic stem cell transplantation.<br />

Mem Inst Oswaldo Cruz. 2000;95(3):403-14.<br />

18. Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC,<br />

Deans RJ, Krause DS, Keating A; International Society for Cellular Therapy. Clarification<br />

of the nomenclature for MSC: The International Society for Cellular Therapy<br />

position statement. Cytotherapy. 2005;7(5):393-5.<br />

19. Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal<br />

cells: the state of transdifferentiation <strong>and</strong> modes of tissue repair-current views. Stem<br />

Cells. 2007;25(11):2896-902.<br />

20. Otani A, Dorrell MI, Kinder K, Moreno SK, Nusinowitz S, Banin E, et al. Rescue of<br />

retinal degeneration by intravitreally injected adult bone marrow-derived lineagenegative<br />

hematopoietic stem cells. J Clin Invest. 2004;114(6):765-74. Comment in:<br />

J Clin Invest. 2004;114(6):755-7.<br />

21. Otani A, Kinder K, Ewalt K, Otero FJ, Schimmel P, Friedl<strong>and</strong>er M. Bone marrow-derived<br />

stem cells target retinal astrocytes <strong>and</strong> can promote or inhibit retinal angiogenesis.<br />

Nat Med. 2002;8(9):1004-10. Comment in: Nat Med. 2002;8(9): 932-4.<br />

22. Sasahara M, Otani A, Oishi A, Kojima H, Yodoi Y, Kameda T, et al. Activation of bone<br />

marrow-derived microglia promotes photoreceptor survival in inherited retinal<br />

degeneration. Am J Pathol. 2008;172(6):1693-703.<br />

23. Langmann T. Microglia activation in retinal degeneration. J Leukoc Biol. 2007;81(6):<br />

1345-51.<br />

24. Schuetz E, Thanos S. Microglia-targeted pharmacotherapy in retinal neurodegenerative<br />

diseases. Curr Drug Targets. 2004;5(7):619-27.<br />

25. Crisostomo PR, Markel TA, Wang Y, Meldrum DR. Surgically relevant aspects of stem<br />

cell paracrine effects. Surgery. 2008;143(5):577-81.<br />

26. V<strong>and</strong>ervelde S, van Luyn MJ, Tio RA, Harmsen MC. Signaling factors in stem cellmediated<br />

repair of infarcted myocardium. J Mol Cell Cardiol. 2005;39(2):363-76.<br />

27. Oh JY, Kim MK, Shin MS, Lee HJ, Ko JH, Wee WR, Lee JH. The anti-inflammatory <strong>and</strong><br />

anti-angiogenic role of mesenchymal stem cells in corneal wound healing following<br />

chemical injury. Stem Cells. 2008;26(4):1047-55.<br />

28. Gomei Y, Nakamura Y, Yoshihara H, Hosokawa K, Iwasaki H, Suda T, Arai F. Functional<br />

differences between two Tie2 lig<strong>and</strong>s, angiopoietin-1 <strong>and</strong> -2, in the regulation of<br />

adult bone marrow hematopoietic stem cells. Exp Hematol. 2010; 38(2):82-9.<br />

29. Li N, Li XR, Yuan JQ. Effects of bone-marrow mesenchymal stem cells transplanted<br />

into vitreous cavity of rat injured by ischemia/reperfusion. Graefes Arch Clin Exp<br />

Ophthalmol. 2009;247(4):503-14.<br />

30. Markel TA, Wang Y, Herrmann JL, Crisostomo PR, Wang M, Novotny NM, et al. VEGF<br />

is critical for stem cell-mediated cardioprotection <strong>and</strong> a crucial paracrine factor for<br />

defining the age threshold in adult <strong>and</strong> neonatal stem cell function. Am J Physiol<br />

Heart Circ Physiol. 2008;295(6):H2308-14.<br />

31. Markel TA, Crisostomo PR, Wang M, Herring CM, Meldrum DR. Activation of individual<br />

tumor necrosis factor receptors differentially affects stem cell growth factor <strong>and</strong><br />

cytokine production. Am J Physiol Gastrointest Liver Physiol. 2007;293(4): G657-62.<br />

478<br />

Arq Bras Oftalmol. 2010;73(5):474-9

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!