24.02.2013 Views

Optimality

Optimality

Optimality

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

142 D. M. Dabrowska<br />

where λ =−1,<br />

ηθ(t) =<br />

� τ<br />

0<br />

Kθ(t, u)ρ − ˙ Γ (u, θ)EN(du),<br />

ρ−Γ ˙ (u, θ) = v(u, θ) ˙ Γθ(u)+ρ(u, θ) and Bθ is given by (2.4). For fixed θ, the kernel Kθ<br />

is symmetric, positive definite and square integrable with respect to Bθ. Therefore it<br />

can have only positive eigenvalues. For λ =−1, the equation has a unique solution<br />

given by<br />

(2.9) ψθ(t) = ηθ(u)−<br />

� τ<br />

0<br />

∆θ(t, u,−1)ηθ(u)Bθ(du),<br />

where ∆θ(t, u, λ) is the resolvent corresponding to the kernel Kθ. By definition, the<br />

resolvent satisfies a pair of integral equations<br />

Kθ(t, u) = ∆θ(t, u, λ)−λ<br />

= ∆θ(t, u, λ)−λ<br />

� τ<br />

0<br />

� τ<br />

0<br />

∆θ(t, w, λ)Bθ(dw)Kθ(w, u)<br />

Kθ(t, w)Bθ(dw)∆θ(w, u, λ),<br />

where integration is with respect to different variables in the two equations. For<br />

λ =−1 the solution to the equation is given by<br />

ψθ(t) =<br />

� τ<br />

0<br />

� τ<br />

−<br />

Kθ(t, u)ρ − ˙ Γ (u, θ)EN(du)<br />

0<br />

∆θ(t, w,−1)Bθ(dw)<br />

� τ<br />

0<br />

Kθ(w, u)ρ − ˙ Γ (u, θ)EN(du)<br />

and the resolvent equations imply that the right-hand side is equal to<br />

(2.10) ψθ(t) =<br />

� τ<br />

0<br />

∆θ(t, u,−1)ρ − ˙ Γ (u, θ)EN(du).<br />

For θ = θ0, substitution of this expression into the formula for the matrices<br />

Σ1,ϕ(θ0, τ) and Σ2,ϕ(θ0, τ) and application of the resolvent equations yields also<br />

Σ1,ϕ(θ0, τ) = Σ2,ϕ(θ0, τ)<br />

=<br />

� τ<br />

v − ˙ Γ (u, θ0)EN(du)<br />

0<br />

� τ � τ<br />

−<br />

0<br />

0<br />

∆θ0(t, u,−1)ρ − ˙ Γ (u, θ0)ρ − ˙ Γ (t, θ0) T EN(du)EN(dt).<br />

It remains to find the resolvent ∆θ. We shall consider first the case of θ = θ0.<br />

To simplify algebra, we multiply both sides of the equation (2.8) byPθ0(0, t) −1 =<br />

exp � t<br />

0 s′ (θ0,Γθ0(u), u)Cθ0(du). For this purpose set<br />

˜ψ(t) =Pθ0(0, t) −1 ψ(t),<br />

˙ G(t) =Pθ0(0, t) −1 ˙ Γθ0(t),<br />

˜v(t, θ0) = v(t, θ0)Pθ0(0, t) 2 , ˜ρ − ˙ G (t, θ0) =Pθ0(0, t)ρ − ˙ Γ (t, θ0),<br />

b(t) =<br />

� t<br />

0<br />

˜v(u, θ0)dEN(u), c(t) =<br />

Multiplication of (2.8) byPθ0(0, t) −1 yields<br />

(2.11)<br />

˜ ψ(t) +<br />

� τ<br />

0<br />

k(t, u) ˜ ψ(u)b(du) =<br />

� τ<br />

0<br />

� t<br />

0<br />

Pθ0(0, u) −2 dCθ0(u).<br />

k(t, u)˜ρ − ˙ G (u, θ0)EN(du),

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!