24.02.2013 Views

Optimality

Optimality

Optimality

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

162 D. M. Dabrowska<br />

�[ˆr1− r](·, θ0)�∞ = oP(1), so that the same integration by parts argument implies<br />

that √ nUn2(θ0) = √ n Ũn2(θ0) + oP(1). Finally, √ nUn1(θ0) = √ n Ũn1(θ0) + oP(1),<br />

by Lemma 5.1 and Fubini theorem.<br />

Suppose now that θ varies over a ball B(θ0, εn) centered at θ0 and having radius<br />

εn, εn ↓ 0, √ nεn → ∞. It is easy to verify that for θ, θ ′ ∈ B(θ0, εn) we have<br />

Un(θ ′ )−Un(θ) = −(θ ′ − θ) T Σ1n(θ0) + (θ ′ − θ) T Rn(θ, θ ′ ), where Rn(θ, θ ′ ) is a<br />

remainder term satisfying sup{|Rn(θ, θ ′ )| : θ, θ ′ ∈ B(θ0, εn)} = oP(1). The matrix<br />

Σ1n(θ) is equal to the sum Σ1n(θ) = Σ11n(θ) + Σ12n(θ),<br />

Σ11n(θ) = 1<br />

n<br />

Σ12n(θ) =− 1<br />

n<br />

n�<br />

i=1<br />

� τ<br />

n�<br />

i=1<br />

0<br />

� τ<br />

[g1ig T 2i](Γnθ(u), θ, u) T Ni(du),<br />

0<br />

[fi− Sf/S](Γnθ(u), θ, u)Ni(du),<br />

where Sf(Γnθ(u), θ, u) = n −1 � n<br />

i=1 Yi(u)[αifi](Γnθ(u), θ, u) and<br />

g1i(θ, Γnθ(u), u) = b1i(Γnθ(u), θ)−b2i(Γnθ(u), θ)ϕθ0(u),<br />

g2i(θ, Γnθ(u), u) = b1i(Γnθ(u), θ) + b2i(Γnθ(u), θ) ˙ Γnθ(u)<br />

fi(θ, Γnθ(u), u) = ¨α<br />

α (Γnθ(u), θ, Zi)− ˙α′<br />

α (Γnθ(u), θ, Zi)ϕθ0(u) T<br />

+ ˙ Γnθ(u)[ ˙α′<br />

α (Γnθ(u), θ, Zi)] T<br />

+ α′′<br />

α (Γnθ(u), θ, Zi) ˙ Γnθ(u)ϕθ0(u) T .<br />

These matrices satisfy Σ11n(θ0) →P Σ1,ϕ(θ0, τ) and Σ12n(θ0) →P 0, and<br />

Σ1,ϕ(θ0, τ) = Σ1(θ0) is defined in the statement of Proposition 2.2. By assumption<br />

this matrix is non-singular. Finally, set hn(θ) = θ + Σ1(θ0) −1 Un(θ). It is easy to<br />

verify that this mapping forms a contraction on the set{θ :|θ−θ0|≤An/(1−an)},<br />

where An =|Σ1(θ0) −1 Un(θ0)| = OP(n −1/2 ) and an = sup{|I− Σ1(θ0) −1 Σ1n(θ0) +<br />

Σ1(θ0) −1 Rn(θ, θ ′ )| : θ, θ ′ ∈ B(θ0, εn)} = oP(1). The argument is similar to Bickel<br />

et al. ([6], p.518), though note that we cannot apply their mean value theorem<br />

arguments.<br />

Next consider Condition 2.3(v.2). In this case we have Ûn(θ ′ )− Ûn(θ) =−(θ ′ −<br />

θ) T Σ1n(θ0) + (θ ′ − θ) T ˆ Rn(θ, θ ′ ), where sup{| ˆ Rn(θ, θ ′ ) : θ, θ ′ ∈ B(θ0, εn)} = oP(1).<br />

In addition, for θ∈Bn(θ0, ε), we have the expansion Ūn(θ) = [ Ūn(θ)− Ūn(θ0)] +<br />

Ūn(θ0) = oP(|θ− θ0| + n −1/2 ). The same argument as above shows that the equation<br />

Ûn(θ) has, with probability tending to 1, a unique root in the ball B(θ0, εn).<br />

But then, we also have Un( ˆ θn) = Ûn( ˆ θn) + Ūn( ˆ θn) = oP(| ˆ θn− θ0| + n −1/2 ) =<br />

oP(OP(n −1/2 ) + n −1/2 ) = op(n −1/2 ).<br />

Part (iv) can be verified analogously, i.e. it amounts to showing that if √ n[ ˆ θ−θ0]<br />

is bounded in probability, then the remainder term ˆ Rn( ˆ θ, θ0) is of order oP(| ˆ θ−θ0|),<br />

and Ūn( ˆ θ) = oP(| ˆ θ− θ0| + n −1/2 ).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!