24.02.2013 Views

Optimality

Optimality

Optimality

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

152 D. M. Dabrowska<br />

To show part (i), we use the quadratic expansion, similar to the expansion of the<br />

ordinary Aalen–Nelson estimator in [19]. We have Rn = �4 j=1 Rjn,<br />

� t �<br />

R1n(t, θ) = 1<br />

n<br />

= 1<br />

n<br />

R2n(t, θ) = −1<br />

n 2<br />

R3n(t, θ) = −1<br />

n 2<br />

R4n(t, θ) =<br />

� t<br />

0<br />

n�<br />

i=1<br />

n�<br />

i=1<br />

�<br />

0<br />

Ni(du) Si<br />

−<br />

s(Γθ(u−), θ, u) s2 (Γθ(u−),<br />

�<br />

θ, u)EN(du)<br />

R (i)<br />

1n (t, θ),<br />

� t<br />

i�=j<br />

0<br />

� t<br />

n�<br />

i=1<br />

0<br />

� S− s<br />

s<br />

� Si− s<br />

s 2<br />

� Si− s<br />

� 2<br />

s 2<br />

�<br />

(Γθ(u−), θ, u)[Nj− ENj](du),<br />

�<br />

(Γθ(u−), θ, u)[Ni− ENi](du),<br />

N.(du)<br />

(Γθ(u−), θ, u)<br />

S(Γθ(u−), θ, u) ,<br />

where Si(Γθ(u−), θ, u) = Yi(u)α(Γθ(u−), θ, Zi).<br />

The term R3n has expectation of order O(n−1 ). Using Conditions 2.1, it is easy<br />

to verify that R2n and n[R3n− ER3n] form canonical U-processes of degree 2<br />

and 1 over Euclidean classes of functions with square integrable envelopes. We<br />

have�R2n� = O(b2 n) and n�R3n− ER3n� = O(bn) almost surely, by the law of<br />

iterated logarithm for canonical U processes [1]. The term R4n can be bounded by<br />

�R4n�≤�[S/s]−1� 2m −1<br />

1 An(τ). But for a point τ satisfying Condition 2.0(iii), we<br />

have An(τ) = A(τ)+O(bn) a.s. Therefore part (iv) below implies that √ n�R4n�→0<br />

a.s.<br />

The term R1n decomposes into the sum R1n = R1n;1− R1n;2, where<br />

� t<br />

R1n;1(t, θ) = 1<br />

n<br />

R1n;2(t, θ) =<br />

n�<br />

i=1<br />

� t<br />

0<br />

0<br />

Ni(du)−Yi(u)A(du)<br />

,<br />

s(Γθ(u−), θ, u)<br />

G(u, θ)Cθ(du)<br />

and G(t, θ) = [S(Γθ(u−), θ, u)−s(Γθ(u−), θ, u)Y.(u)/EY (u)]. The Volterra identity<br />

(2.2) implies<br />

ncov(R1n;1(t, θ), R1n;1(t ′ , θ ′ )) =<br />

ncov(R1n;1(t, θ), R1n;2(t ′ , θ ′ ))<br />

=<br />

� t � ′<br />

u∧t<br />

0 0<br />

� t � ′<br />

u∧t<br />

−<br />

0<br />

0<br />

ncov(R1n;2(t, θ), R1n;2(t ′ , θ ′ ))<br />

=<br />

� t � ′<br />

t ∧u<br />

0 0<br />

� ′<br />

t � t∧v<br />

+<br />

−<br />

0 0<br />

� ′<br />

t∧t<br />

0<br />

� t∧t ′<br />

0<br />

[1−A(∆u)]Γθ(du)<br />

s(Γθ ′(u−), θ′ , u) ,<br />

E[α(Γθ ′(v−), Z, θ′ |X = u, δ = 1]Cθ ′(dv)Γθ(du)<br />

Eα(Γθ ′(v−), Z, θ′ |X≥ u]]Cθ ′(dv)Γθ(du),<br />

f(u, v, θ, θ ′ )Cθ(du)Cθ ′(dv)<br />

f(v, u, θ ′ , θ)Cθ(du)Cθ ′(dv)<br />

f(u, u, θ, θ ′ )Cθ ′(∆u)Cθ(du),

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!