24.02.2013 Views

Optimality

Optimality

Optimality

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Optimal sampling strategies 283<br />

Claim (2): G (n) ∈ ∆n(M1, . . . , MP) and G (n) satisfies (7.1).<br />

(Initial Condition) The claim is trivial for n = 0.<br />

(Induction Step) Clearly from (3.4) and (3.5)<br />

(7.6)<br />

�<br />

k<br />

g (n+1)<br />

k<br />

= 1 + �<br />

k<br />

g (n)<br />

k<br />

= n + 1,<br />

and 0≤g (n+1)<br />

k ≤ Mk. Thus G (n+1) ∈ ∆n+1(M1, . . . , MP). We now prove that<br />

G (n+1) satisfies property (7.1). We need to consider pairs i, j as in (7.1) for which<br />

either i = m or j = m because all other cases directly follow from the fact that<br />

G (n) satisfies (7.1).<br />

Case (i) j = m, where m is defined as in (3.5). Assuming that g (n+1)<br />

m < Mm, for<br />

all i�= m such that g (n+1)<br />

i > 0 we have<br />

�<br />

ψi g (n+1)<br />

� �<br />

i − ψi g (n+1)<br />

� �<br />

i − 1 = ψi g (n)<br />

� �<br />

i − ψi g (n)<br />

�<br />

i − 1<br />

�<br />

≥ ψm g (n)<br />

� �<br />

m + 1 − ψm g (n)<br />

�<br />

m<br />

(7.7)<br />

�<br />

≥ ψm g (n)<br />

� �<br />

m + 2 − ψm g (n)<br />

�<br />

m + 1<br />

�<br />

= ψm g (n+1)<br />

� �<br />

m + 1 − ψm g (n+1)<br />

�<br />

m .<br />

that<br />

(7.8)<br />

Case (ii) i = m. Consider j�= m such that g (n+1)<br />

j<br />

ψm<br />

�<br />

g (n+1)<br />

m<br />

�<br />

− ψm<br />

Thus Claim (2) is proved.<br />

�<br />

g (n+1)<br />

� �<br />

m − 1 = ψm g (n)<br />

�<br />

m + 1<br />

�<br />

≥ ψj g (n)<br />

�<br />

j + 1<br />

�<br />

= ψj g (n+1)<br />

�<br />

j + 1<br />

< Mj. We have from (3.5)<br />

− ψm<br />

− ψj<br />

�<br />

− ψj<br />

�<br />

g (n)<br />

m<br />

g (n)<br />

j<br />

�<br />

�<br />

�<br />

g (n+1)<br />

j<br />

It only remains to prove the next claim.<br />

Claim (3): h(n), or equivalently � (n)<br />

k ψk(g k ), is non-decreasing and discreteconcave.<br />

Since ψk is non-decreasing for all k, from (3.4) we have that � (n)<br />

k ψk(g k ) is a<br />

non-decreasing function of n. We have from (3.5)<br />

h(n + 1)−h(n) = � �<br />

ψk(g<br />

k<br />

(n+1)<br />

k )−ψk(g (n)<br />

k )<br />

�<br />

(7.9)<br />

�<br />

ψk(g (n)<br />

(n)<br />

k + 1)−ψk(g k )<br />

�<br />

.<br />

= max<br />

k:g (n)<br />

k

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!