19.06.2013 Views

Unusual Causes of Stroke - Hypercoagulable States and their work-up

Unusual Causes of Stroke - Hypercoagulable States and their work-up

Unusual Causes of Stroke - Hypercoagulable States and their work-up

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Unusual</strong> <strong>Causes</strong> <strong>of</strong> <strong>Stroke</strong><br />

John EE. Greenlee Greenlee, M.D. M D<br />

University <strong>of</strong> Utah Health Sciences Center<br />

George Geo ge E. . Wahlen W e VAHSC V SC<br />

Salt Lake City, Utah


DDisclosure l<br />

• Associate Editor for Medlink<br />

• Consultant for “Best Doctors in<br />

America”<br />

• Reviewer for Merck Manual<br />

• CConsultant: lt t Perseid P id<br />

Pharmaceutical Company<br />

• Unlabeled use <strong>of</strong> product:<br />

p<br />

none


TTopics to CCover<br />

• Anticardiolipin antibody syndromes<br />

• Hereditary y factors associated with stroke<br />

– Factor V (Leiden) mutation<br />

– Protein C <strong>and</strong> Protein S deficiency<br />

– AAnti ti thrombin th bi III activity ti it<br />

– Lipoprotein a<br />

• Sickle cell disease <strong>and</strong> sickle cell trait<br />

• Cerebral vasospasm / stroke associated with<br />

methamphetamine p<br />

<strong>and</strong> cocaine abuse


Anticardiolipin Antibody Syndromes


Anticardiolipin Antibodies: History<br />

• 1952: Conley et al<br />

– “AA hemorrhagic disorder caused by circulating<br />

anticoagulant in patients with disseminated<br />

l<strong>up</strong>us p erythematosus”<br />

y<br />

– Usually no hemorrhagic complications unless<br />

hypothrombinemia or thrombocytopenia<br />

• Association with false-positive VDRL


Anticardiolipin Antibodies: History<br />

• 1964: Bowie:<br />

– Association <strong>of</strong> l<strong>up</strong>us p anticoagulant g <strong>and</strong> antibodies to<br />

cardiolipin with venous thrombosis<br />

• 1972: “l<strong>up</strong>us anticoagulant”<br />

• 1983: First anticardiolipin antibody test<br />

• Subsequent association <strong>of</strong> anticardiolipin<br />

antibodies <strong>and</strong> l<strong>up</strong>us anticoagulant with stroke <strong>and</strong><br />

other conditions


Antiphospholipid Antibody<br />

Syndrome<br />

• Is a syndrome, not a specific disease entity<br />

– Defined (by committee) on the basis <strong>of</strong> both<br />

clinical <strong>and</strong> immunological parameters<br />

– The definition probably does not cover the full<br />

spectrum <strong>of</strong> disease<br />

• Is a disease blessed (or cursed) by eponyms<br />

– Hughes syndrome, Asherton syndrome,<br />

Sneddon syndrome


Antiphospholipid Antibody<br />

Syndrome<br />

Clinical<br />

• One or more episodes <strong>of</strong><br />

confirmed thrombosis<br />

– Arteries<br />

– Veins<br />

– Small vessels<br />

• Pregnancy morbidity <strong>and</strong><br />

ffetal ll loss<br />

Immunological<br />

• Serum anticardiolipin<br />

antibody <strong>of</strong> high titer<br />

– IgG or IgM isotype in blood<br />

– On 2 or more occasions, occasions at<br />

least 6 weeks apart<br />

• Prolonged<br />

antiphospholipid-<br />

ti h h li id<br />

dependent coagulation<br />

– L<strong>up</strong>us anticoagulant


Antiphospholipid Antibody<br />

Syndrome<br />

• Clinical manifestations are multifaceted<br />

• Serological tests are problematical<br />

– Antigenic targets still not completely understood<br />

– Difficulties with st<strong>and</strong>ardization among laboratories<br />

• Animal models provide information, but no<br />

animal model as yet d<strong>up</strong>licates human disease


AAntiphospholipid h h l dA Antibodies b d<br />

• Can be found in 2-12% <strong>of</strong> normal individuals<br />

– Incidence increases with age g<br />

– May be transient (e.g. with infectious mononucleosis)<br />

• Not all are pathogenic<br />

– ACA type A antibodies bind to β2 glycoprotein 1 to<br />

procoagulant lipid surfaces <strong>and</strong> are thought to be<br />

pathogenic<br />

– ACA type B antibodies: do not bind <strong>and</strong> are not<br />

pathogenic p g


Antiphospholipid Antibody<br />

Syndromes<br />

• Primary antiphospholipid antibody<br />

syndrome<br />

• Antiphospholipid antibody syndrome<br />

associated with other conditions<br />

– SLE, rheumatoid arthritis, other autoimmune<br />

disorders


Antiphospholipid Antibodies: A<br />

Conceptual Challenge<br />

• Antiphospholipid antibodies<br />

– Anticardiolipin p ( (aCL) )<br />

– Antibodies to β2 glycoprotein 1 (β2GP1)<br />

– L<strong>up</strong>us p anticoagulant g ( (LA) )<br />

– Others<br />

• These antibodies do not recognize g the same<br />

antigenic epitopes<br />

– Can be found together or independently


Antiphospholipid Antibodies: A<br />

Conceptual Challenge<br />

• IgG, IgM antibodies all most commonly<br />

studied<br />

– IgM sometimes considered an acute phase<br />

reactant unrelated to actual clinical pathology<br />

– IgA discounted (<strong>and</strong> not tested) in some studies<br />

• However However, cases exist with either IgM<br />

antibodies in isolation or IgA antibodies in<br />

isolation


Antibody Targets in Antiphospholipid<br />

Antibody Syndrome<br />

• L<strong>up</strong>us anticoagulant<br />

• Cardiolipin(s)<br />

• Beta(2)-glycoprotein 1<br />

• Phosphatidylserine<br />

• Prothrombin<br />

• Activated protein C<br />

• Tissue plasminogen<br />

activator<br />

• Plasmin<br />

• Annexin A2, A5<br />

• Protein Z<br />

• Other platelet <strong>and</strong><br />

endothelial antigens<br />

• And more besides<br />

– Neurons<br />

– Astrocyes y


Antiphospholipid Antibodies: A<br />

Conceptual Challenge<br />

• Antigenic targets not completely understood<br />

– Some antibodies reported are likely<br />

epiphenomena<br />

– Some pathogenic antibodies may not be any <strong>of</strong><br />

the above<br />

• Some patients may have none <strong>of</strong> these<br />

antibodies yet still have typical clinical<br />

manifestations (e.g. (e g Sneddon syndrome)


Anticardiolipin Antibody<br />

Syndromes: Pathogenesis<br />

Espinosa: Arthritis Research 2008


Antiphospholipid Antibodies: Major<br />

Effects<br />

• Platelet aggregation<br />

• Circulating fibrin-platelet aggregates<br />

• Circulating immune complex aggregates<br />

• Thrombus formation


Anticardiolipin Antibody<br />

Syndromes: Mechanisms <strong>of</strong> Injury<br />

• Vascular occlusion (Large or small vessel)<br />

– Arteries<br />

– Veins<br />

– Placental vessels<br />

• Platelet-fibrin emboli microvascular infarcts<br />

• Possibly a two-stage process<br />

– Anticardiolipin antibody-mediated injury may require<br />

prior vascular injury


Antiphospholipid Antibodies:<br />

Associated Systemic Diseases<br />

• Syndrome <strong>of</strong> recurrent fetal loss<br />

• Recurrent peripheral p p venous thrombosis<br />

• Cutaneous changes, esp. livedo reticularis<br />

• Systemic arterial thrombosis<br />

– Myocardial infarction / stent failure<br />

– Renal failure<br />

– Addison’s disease<br />

• Cardiac valvular abnormalities <strong>and</strong> marantic<br />

endocarditis e doca d t s


Antiphospholipid Antibody Syndrome:<br />

Described CNS Complications<br />

• <strong>Stroke</strong><br />

• Transient ischemic attack<br />

• Amaurosis fugax<br />

• Cerebral venous sinus<br />

thrombosis<br />

• Ocular ischemia<br />

• Acute ischemic<br />

encephalopathy<br />

• Multi-infarct dementia<br />

– May involve micro-infarcts<br />

• Seizures<br />

• Cognitive impairment<br />

• Optic atrophy<br />

• Transverse myelopathy<br />

– Esp. sp. wwith t SSLE<br />

• Multiple-sclerosis-like<br />

disease<br />

• Ch Chorea<br />

• Migraine<br />

• Psychiatric y<br />

disturbances


Antiphospholipid Antibody Syndrome:<br />

Major Cerebrovascular Complications<br />

• <strong>Stroke</strong> / TIA<br />

• Cortical vein or venous sinus occlusion<br />

• Retinal venous or arterial occlusion<br />

• Progressive cognitive decline without<br />

obvious stroke


MMayer et t al l Clin Cli Neurol N l Neurosurge N 2010;112:602-8<br />

2010 112 602 8


SSneddon dd syndrome d<br />

• Antiphospholipid<br />

antibodies<br />

• <strong>Stroke</strong><br />

– Brain, spinal cord, or<br />

retinal events<br />

• Livedo reticularis


Catastrophic Antiphospholipid<br />

(Asherton’s) Syndrome<br />

• ~1% <strong>of</strong> cases<br />

• Widespread microvascular thromboses in<br />

the presence <strong>of</strong> antiphospholipid antibodies<br />

• High rate <strong>of</strong> mortality: 30 30-50% 50%<br />

• Considered an indication for<br />

immunos<strong>up</strong>pression<br />

– However, no good controlled trials<br />

– No proven immunos<strong>up</strong>pressive regimen


Antiphospholipid Antibody <strong>and</strong><br />

<strong>Stroke</strong>: Physical Findings


Serological Diagnosis:<br />

L<strong>up</strong>us Anticoagulant<br />

• Inhibit phospholipid-dependent coagulation<br />

reactions<br />

• Characteristics <strong>of</strong> test<br />

– Prolonged aPTT<br />

– Nt Not corrected tdb by mixing ii with ithnormal lplatelet-poor ltlt<br />

plasma<br />

– Shortening/correction <strong>of</strong> the prolonged coagulation<br />

time by excess phospholipids<br />

– Exclusion <strong>of</strong> other coagulopathies, eg, factor VIII<br />

inhibitor or heparin p


Serological Diagnosis:<br />

Anticardiolipin Antibody Titers<br />

IgG IgM IgA<br />

Normal 1-15 units 1-10 units 1-14 units<br />

LLow positive iti 16 16-40 40 units it 11 11-20 20 units it 15 15-40 40 units it<br />

Moderate positive 41-80 units 21-40 units 41-80 units<br />

High positive >80 units >40 units >80 units


Antiphospholipid Antibody<br />

Syndrome: Treatment<br />

• Antiplatelet therapy<br />

– Clearly ineffective in many patients<br />

• AAnticoagulation ti l ti<br />

• INR 2-3<br />

• INR 3-4<br />

• IImmunos<strong>up</strong>pressive i treatment<br />

– Prednisone<br />

– IVIgG / Plasma exchange<br />

– Cyclophosphamide (may not affect antibody titers)<br />

– Rituximab<br />

• Only y<br />

limited data from controlled trials


Treatment


Catastrophic Anticardiolipin<br />

Antibody Syndrome: Treatment<br />

Espinosa: Arthritis Research 2008


PPossible bl New N Treatments<br />

T


Anticardiolipin Antibody Syndrome:<br />

Unanswered Questions<br />

• To what extent should therapy be individualized?<br />

• How does one monitor treatment effect?<br />

• Should one begin treatment with platelet inhibitors?<br />

• If one needs to use warfarin, what INR?<br />

– Anticoagulation t coagu at o to INR N 3-4.5 3 .5 not ot shown s ow s<strong>up</strong>erior s<strong>up</strong>e o in co controlled t o ed<br />

trials<br />

– INR <strong>of</strong> 3-4 increased risk <strong>of</strong> hemorrhage<br />

• At what point should one use immunos<strong>up</strong>pression?<br />

• Which immunos<strong>up</strong>pressive regimen should one use?


Hereditary Disorders <strong>of</strong> Coagulation


“He’s had a stroke. We need to order<br />

a hypercoagulable panel”<br />

-Neurology Neurology resident


Hereditary Abnormalities <strong>of</strong> Clotting<br />

Factors<br />

• Factor V Leiden<br />

• Prothrombin 20210A<br />

• Antithrombin III<br />

• Protein C deficiency<br />

• Protein S deficiency


Hereditary Abnormalities <strong>of</strong> Clotting<br />

Factors<br />

• Association with deep venous<br />

thrombophlebitis well established<br />

• Significant in cerebral vein / venous sinus<br />

thrombosis<br />

• Significance in arterial stroke not well<br />

established<br />

tblihd


Factor V Leiden <strong>and</strong> Deficiencies <strong>of</strong><br />

Protein C, Protein S, Antithrombin III<br />

• Factor V Leiden<br />

– Mutation <strong>of</strong> factor V<br />

– Prevents cleavage <strong>of</strong> factor V by activated<br />

protein C<br />

– Present in <strong>up</strong> to 9% <strong>of</strong> individuals<br />

– Important in venous occlusion<br />

• 20% <strong>of</strong> individuals with initial DVT<br />

• 60% <strong>of</strong> o individuals d v du s with w recurrent ecu e DVT V


Factor V Leiden <strong>and</strong> Deficiencies <strong>of</strong><br />

Protein C, Protein S, Antithrombin III<br />

• Protein C, Protein S, Antithrombin III<br />

deficiencies<br />

– Less common than factor V Leiden<br />

– Association with DVT<br />

– Protein C <strong>and</strong> protein S deficiency: association<br />

with s<strong>up</strong>erficial thrombophlebitis


Inherited Thrombophilia <strong>and</strong> <strong>Stroke</strong><br />

Risk<br />

Protein C Protein S Antithrombin III<br />

Asymptomatic controls 0.14-0.5% 0.1% 0.02-0.2%<br />

Unselected patients 3.2% 2.2% 1.1%<br />

with venous thrombosis<br />

Patients with familial 4.9% 5.1% 4.2%<br />

venous thrombosis: 4.2%<br />

Patients with<br />

ischemic stroke<br />

14% 1.4% 09% 0.9% 52% 5.2%<br />

Hankey et al: <strong>Stroke</strong>, 2001


Inherited Thrombophilia <strong>and</strong> <strong>Stroke</strong><br />

Risk<br />

Factor V Leiden Prothrombin 20210A<br />

Asymptomatic controls 3%-6% 1-2%<br />

Unselected patients 19% 6.3%%<br />

with venous thrombosis<br />

Patients with familial 46% 18%<br />

venous thrombosis: 4.2%<br />

Patients with<br />

ischemic stroke<br />

46% 4.6% 37% 3.7%<br />

Hankey et al: <strong>Stroke</strong>, 2001


Inherited Thrombophilia <strong>and</strong> <strong>Stroke</strong><br />

Risk: Lipoprotein a<br />

• Identified in some studies as an independent risk<br />

factor<br />

– Myocardial infarction<br />

– Atherothrombotic stroke in young adults<br />

• Elevated levels reported in 27% <strong>of</strong> children with<br />

stroke<br />

• Jones et al: associated with large large-artery artery<br />

atherosclerotic stroke<br />

– But not small artery occlusive stroke (Clinical<br />

Ch Chemistry. i t 2009 2009;55:1888-1890<br />

55 1888 1890


Lipoprotein a<br />

• Potentially useful for risk stratification in primary<br />

<strong>and</strong> secondary yp prevention<br />

– Significance in the individual less certain<br />

• Not proven if reduction in lipoprotein a decreases<br />

stroke risk<br />

– Lack <strong>of</strong> well-tolerated <strong>and</strong> effective agents<br />

• Not known whether lipoprotein a stroke risk can<br />

be addressed by treating other vascular risk factors


RRare <strong>Causes</strong> C <strong>of</strong> f <strong>Stroke</strong> S k<br />

• Factors VIII, IX, XI, XII<br />

• Antiphosphatidylethanolamine<br />

• (Plasinogen Inhibitor - 1)<br />

• (Tissue Plasminogen activator, antigen<br />

• Plasminogin g


Screening for Coagulopathies:<br />

Whom to Screen<br />


Screening for Coagulopathies:<br />

Whom to Screen<br />

• L<strong>up</strong>us anticoagulant<br />

• Anticardiolipin antibody<br />

• Protein C, S, antithrombin III<br />

• Lipoprotein a<br />

• Factor V Leiden<br />

– Functional assay for activated protein C<br />

resistance


Sickle Cell Disease <strong>and</strong> Trait


SSickle kl Cell C ll Hemoglobin H l b<br />

• Point mutation: valine<br />

for glutamic acid<br />

– Position 6,<br />

hemoglobin B chain<br />

• If homozygous: sickle<br />

cell disease:<br />

– Hemoglobin SS<br />

• If heterozygous: sickle<br />

cell trait<br />

– HHemoglobin l bi SA


SSickle kl Cell C ll Hemoglobin H l b<br />

Hydrophobic region on<br />

hemoglobin g B chain<br />

<br />

Agglutination gg <strong>of</strong> B chains<br />

<br />

Sickling


SSickle kl Cell C ll Trait T <strong>and</strong> dD Disease<br />

• Sickle cell trait<br />

– Approximately 2 million individuals in U.S.A. U S A<br />

• Sickle cell disease<br />

– EEstimated ti t d72 72,000 000i individuals di id l<br />

– 1 in 500 African Americans<br />

– Only l about b 30% <strong>of</strong> fi individuals di id l have h<br />

symptomatic disease


Sickle Cell Disease<br />

• Presentation early in life<br />

• Hemolytic anemia<br />

• “Vaso-occlusive crises”<br />

– Extremities, bones, <strong>and</strong> viscera (e.g. spleen)<br />

• Bacterial infections<br />

• Acute chest syndrome: pulmonary edema,<br />

etc.


S<strong>Stroke</strong> k in Sickle S kl Cell C ll Disease D<br />

• Prevalence: 0.5-1% per<br />

year<br />

– 11% by 20 years <strong>of</strong> age<br />

– Compared to 2.5/100,000<br />

for children w/o sickle cell<br />

disease<br />

• May be overt or silent<br />

– Not usually preceded by<br />

TIA<br />

– May follow acute chest<br />

syndrome


S<strong>Stroke</strong> k in Sickle S kl Cell C ll Disease D<br />

• Usually ischemic (70-80%<br />

<strong>of</strong> cases)<br />

• Usually thrombotic<br />

• Intimal hyperplasia <br />

arterial t i lstenosis t i<br />

– Possible roles for decreased<br />

protein p C/S, , other factors<br />

• Rarely due to fat<br />

embolism<br />

Silva: <strong>Stroke</strong> 2009


S<strong>Stroke</strong> k in Sickle S kl Cell C ll Disease D<br />

• Usually anterior<br />

circulation<br />

– Distal ICA<br />

– Proximal ACA<br />

– Proximal MCA<br />

• Usually distal to posterior<br />

communicating i i artery<br />

Silva: <strong>Stroke</strong> 2009


<strong>Stroke</strong> in Sickle Cell Disease: Other<br />

Presentations<br />

• PRES<br />

• Moyamoya disease<br />

• Cerebral hemorrhage<br />

– Older patients<br />

– Aneurysm r<strong>up</strong>ture<br />

– Moyamoya vessels<br />

– Veins


Sickle Cell Trait: MRI in Children<br />

SSteen et al, l Radiology R di l 2003; 2003 228:208–215<br />

228 208 215


Sickle Cell Disease <strong>and</strong> Trait:<br />

Diagnosis<br />

• Consider hemoglobinopathy in African-American<br />

(or Mediterranean) patients with stroke<br />

– HHemoglobin l bi electrophoresis<br />

l t h i<br />

• CT / CTA, MR / MRA<br />

• Angiography<br />

– Especially in hemorrhage, to exclude vascular<br />

malformation<br />

– Safe if hemoglobin S < 30% <strong>of</strong> total hemoglobin<br />

• TCD: major role in assessing need for <strong>and</strong><br />

response to therapy in children


SSickle kl Cell C ll Disease: D Treatment T<br />

• Most experience is with stroke in children<br />

• TPA: no controlled studies, very yfew case reports p<br />

• Major treatment in children blood transfusion plus<br />

hydration<br />

– Efficacy <strong>of</strong> simple transfusion versus exchange not<br />

established<br />

– Exchange g possibly p ymore effective acutely y<strong>and</strong><br />

in<br />

decreasing likelihood <strong>of</strong> stroke (Hulbert 2006)<br />

– Goal (children) to reduce hemoglobin S to


SSickle kl Cell C ll Disease: D STOP Trials T l<br />

STOP 1<br />

• TCD as major monitoring<br />

tool<br />

– TCD velocities <strong>of</strong> 200<br />

cm/sec. known to indicate<br />

high stroke risk<br />

• Children with TCD mean<br />

blood flow velocities <strong>of</strong><br />

200 cm/second<br />

r<strong>and</strong>omized to either<br />

– Regular blood transfusions<br />

– No transfusion.<br />

• 90% reduction d ti in i first fi t<br />

stroke with transfusion.<br />

STOP2<br />

• Discontinuing<br />

transfusions after 30<br />

months or more<br />

reversion reversion to abnormal<br />

TCD values <strong>and</strong> stroke


Sickle Cell Disease: Other<br />

Treatments<br />

• Hydroxyurea<br />

– Increases hemoglobin g F<br />

– Diminishes painful crises<br />

– Role in stroke not known<br />

• Stem cell transplantation<br />

• Aspirin or other platelet inhibitors:<br />

recommended by some clinicians, no<br />

controlled data


Sickle Cell Disease: Surgical<br />

Treatment<br />

• EC/IC bypass<br />

• Encephaloduroarteriosynangiosis<br />

YYoon et al l AJR 2000


Complications <strong>of</strong> Sickle Cell Trait<br />

• Probable<br />

– Venous thromboembolic events, fetal loss, neonatal<br />

ddeaths, h <strong>and</strong> dpreeclampsia l i<br />

• Possible<br />

– Acute chest syndrome syndrome, asymptomatic bacteriuria, bacteriuria<br />

anemia in pregnancy<br />

• Insufficient evidence:<br />

– Retinopathy, cholelithiasis, priapism, leg ulcers, liver<br />

necrosis, avascular necrosis <strong>of</strong> the femoral head, stroke<br />

Tsaras et al Am J Med 2009;122:507-12


<strong>Stroke</strong> in Sickle Cell Disease <strong>and</strong><br />

Trait: Possible Risk Factors<br />

• Exertion / dehydration<br />

– Usually associated with collapse <strong>and</strong> sudden<br />

death (rare)<br />

• High altitude<br />

• Sleep apnea


Reversible Cerebral Vasospasm<br />

<strong>Stroke</strong> Following Substance Abuse


Reversible Cerebral Vasospasm<br />

Syndrome<br />

• Severe headaches<br />

– With or without other<br />

neurological symptoms<br />

• Characteristic<br />

angiographic findings<br />

– “String <strong>of</strong> beads”<br />

• Spontaneous<br />

resolution in 1-3<br />

months<br />

Ducros et al Brain 2007;130:3091-3101


Reversible Cerebral Vasospasm<br />

Syndrome: Not a New Condition<br />

• 1978: “Isolated benign cerebral vasculitis” asc litis”<br />

• 1985: “Benign acute cerebral vasculopathy”<br />

• 1984: Migrainous vasospasm”<br />

• 1988: “Call-Fleming Syndrome”<br />

• 1993: “Migraine angiitis<br />

• 1995: “Drug-induced Drug induced angiopathy angiopathy”<br />

• 1999: “CNS pseudovasculitis”<br />

• 1999: “Postpartum angiopathy”<br />

• 1999: “Thunderclap Thunderclap headache with reversible vasospasm<br />

• 2001: “Benign angiopathy <strong>of</strong> the central nervous system<br />

• 2003: “Primary thunderclap headache<br />

• 2005 2005: “Drug-induced “D id dangiopathy” i h”


Reversible Cerebral Vasospasm<br />

Syndrome: Precipitating Factors<br />

• Postpartum states<br />

• Exposure to drugs, drugs alcohol, alcohol medications,<br />

medications<br />

blood products<br />

• Ct Catecholamine-secreting hl i ti tumors t<br />

• Other conditions


Reversible Cerebral Vasospasm<br />

Syndrome: Associated Agents<br />

• Illicit drugs<br />

– Cannabis, , cocaine, , ecstasy, y, amphetamines, p , LSD<br />

• Binge alcohol drinking (usually in combination<br />

with use <strong>of</strong> vasoactive substances<br />

• SSRIs<br />

• Nasal decongestants g<br />

– Phenylpropanolamine, pseudoephrine, ephedrine


Reversible Cerebral Vasospasm<br />

Syndrome: Associated Agents<br />

• Ergotamine agents<br />

– Ergotamine tartrate, tartrate methergine methergine, bromocriptine,<br />

bromocriptine<br />

lisuride, sumatriptan, isomethoptine<br />

• Misc Misc. agents:<br />

– Tacrolimus, cyclophosphamide, erythropoietin,<br />

IVIgG IVIgG, interferon alpha, alpha blood transfusions transfusions,<br />

nicotine patches, oral contraceptives, other<br />

hormonal treatments


Reversible Cerebral Vasospasm<br />

Syndrome: Associated Conditions<br />

• Hypercalcemia<br />

• Porphyria<br />

• Spinal subdural hematoma<br />

• Postcarotid endarterectomy<br />

• Neurosurgical procedures<br />

• Cervical artery dissection<br />

• Unr<strong>up</strong>tured cerebral saccular aneurysm<br />

• Cerebral artery dysplasia


Reversible Cerebral Vasospasm<br />

Syndrome: Precipitating Factors<br />

• Spontaneous: 37%<br />

• Peripartum: 12%<br />

– During spinal anesthesia using epinephrine<br />

– Early postpartum (4-11 days)<br />

• Associated with use <strong>of</strong> vasoactive substances:<br />

62%<br />

– May involve use <strong>of</strong> more than one agent<br />

Ducros et al Brain 2007;130:3091-3101<br />

2007;130:3091 3101


Reversible Cerebral Vasospasm<br />

Syndrome: Symptoms<br />

• Hallmark: recurrent thunderclap headache<br />

over a few days y to 2 weeks<br />

– Only symptom in 76% <strong>of</strong> cases<br />

– Can be single instead <strong>of</strong> repeating<br />

• Focal neurological deficits or seizures in<br />

24% <strong>of</strong> cases<br />

– Transient: esp. visual<br />

– Persistent


Reversible Cerebral Vasospasm<br />

Syndrome: Vascular Imaging<br />

• Vasospasm on MRA or angiography<br />

• Increased velocity on TCD<br />

– Including patients with normal MRA)<br />

• MMultifocal l if lsegmental l vasoconstriction i i on<br />

catheter angiogram<br />

– Including patients with normal MRA or TCD<br />

• Cervical (esp. vertebral) artery dissection


Reversible Cerebral Vasospasm<br />

Syndrome: Brain imaging<br />

• Subarachnoid<br />

hemorrhage g<br />

• <strong>Stroke</strong><br />

• PRES<br />

Ducros et al Brain 2007;130:3091-3101


Bartinsky, AJNR 2008;29:447-55


Reversible Cerebral Vasospasm<br />

Syndrome: Treatment<br />

• D/C vasoactive medications<br />

• Nimodipine: no controlled data<br />

– Intra-arterial<br />

– IIntravenous t<br />

– Oral<br />

• Milrinone<br />

• Intravenous prostacycline


Reversible Cerebral Vasospasm<br />

Syndrome: Outcome<br />

• Resolution in most patients<br />

• Persistent headache in some patients<br />

• Persistent neurological deficits<br />

• Post-stroke epilepsy


<strong>Stroke</strong> Following Substance Abuse


<strong>Stroke</strong> Following Substance Abuse<br />

• Substance abuse not a new problem<br />

– Early y1900s: approximately pp y1/400<br />

Americans were<br />

addicted to opiates<br />

– Use <strong>of</strong> cocaine <strong>and</strong> stimulant amines widespread<br />

• In some ways difficult to assess<br />

– Not all drug abusers tell the truth<br />

– Idiid Individuals l use different diff names for f different diff drugs d<br />

– Tainted or adulterated compounds are common


<strong>Stroke</strong> Following Substance Abuse<br />

• May be caused by<br />

– The actual drug<br />

– Other agents in the drug<br />

mixture<br />

– Adulterants (talc, etc)<br />

– Drug-associated endocarditis<br />

or other infections


Illicit Drugs Associated with <strong>Stroke</strong>


Cocaine<br />

• Usually cause stroke in minutes to hours after use<br />

– Rarely ydelayed y <strong>up</strong> pto<br />

one week<br />

• Cocaine hydrochloride<br />

– 80% <strong>of</strong> strokes are hemorrhagic<br />

– Roughly 50% are associated with aneurysm or AVM<br />

• Alkaloidal cocaine<br />

– 50% <strong>of</strong> strokes are hemorrhagic<br />

– 50% are ischemic


CCocaine: MMechanisms h <strong>of</strong> f Injury I<br />

• Abr<strong>up</strong>t hypertension<br />

• Cocaine-induced coagulation g<br />

– Can result in moyamoya<br />

syndrome<br />

• Vasospasm<br />

– Vascular endothelin-1<br />

– Can involve vasa vasora <strong>of</strong><br />

larger arteries mural necrosis<br />

aneurysm or r<strong>up</strong>ture<br />

Konzen et al. <strong>Stroke</strong> 1995;26:1114-<br />

• Vasculitis 1118


CCocaine-Induced I d dHHemorrhage h<br />

• More likely in African-American<br />

individuals<br />

• As compared to cocaine-negative controls<br />

– Higher admission blood pressures<br />

– Si Significantly ifi l more subcortical b i l hemorrhages<br />

h h<br />

– Higher rates <strong>of</strong> intraventricular hemorrhage<br />

– Worse functional outcome<br />

– 3 times more likely to die<br />

Martin Schild et al <strong>Stroke</strong>. 2010;41:680-4


CCocaine-induced d dVVasculitis l<br />

• Usually small vessels<br />

– Not seen on<br />

angiography<br />

• Can be progressive<br />

• Successfully treated<br />

with corticosteroids in<br />

a ffew<br />

cases<br />

Fredericks <strong>Stroke</strong> 1991


Methamphetamine <strong>and</strong> Related<br />

Drugs<br />

• Cause hemorrhage, stroke, necrotizing<br />

vasculitis similar to cocaine<br />

• Onset <strong>of</strong> stroke usually soon after use (like<br />

cocaine)<br />

– But onset may be delayed <strong>up</strong> to 3 weeks or<br />

longer


<strong>Stroke</strong> Associated with Stimulant<br />

Amines: Treatment<br />

• Very little controlled data<br />

• Control <strong>of</strong> blood pressure<br />

– Aggressive in intracerebral hemorrhage<br />

• TPA: Martin Schild et al. <strong>Stroke</strong> 2009<br />

– 29 patients with cocaine-induced stroke vs controls<br />

– No difference in outcome<br />

• Essentially no other controlled studies with TPA<br />

in stroke after cocaine or methamphetamine


TTreatment: APASS Trial T l<br />

• Subset <strong>of</strong> the WARSS trial<br />

• 1770 patients<br />

– 1050 (59”%) APL negative<br />

– 720 (41%) APL positive<br />

• No increase in stroke rate in APL + patients (22.2% vs 21.8%)<br />

– Patients with both APL <strong>and</strong> LA: 31.8% even rate) vs patients negative for<br />

both (24% event rate)<br />

• No difference between aspirin <strong>and</strong> warfarin<br />

• NOT necessarily applicable to patients with known APLS syndrome<br />

• Unanswered questions q concerning gstroke in the yyoung, g, repeated p<br />

strokes, <strong>and</strong> Sneddon syndrome


SSickle kl Cell C ll Disease D<br />

• Affects ~30% <strong>of</strong><br />

individuals with<br />

hhemoglobin l bi SS<br />

• Variable presentation:<br />

may depend in part on<br />

haplotype<br />

– 3 major haplotypes (Benin,<br />

Senegal Senegal, <strong>and</strong> Bantu)<br />

– Bantu most severe, Senegal<br />

least severe


SSickle kl Cell C ll Disease D<br />

• Affects ~30% <strong>of</strong> patients with hemoglobin<br />

SSA


Th The Cl Clotting Cascade C d<br />

Fibrin<br />

polymers<br />

Fibrin<br />

monomers<br />

Thrombin<br />

Fibrinogen


TTreatment: APASS Trial T l<br />

• Subset <strong>of</strong> the WARSS trial<br />

• 1770 patients<br />

– 1050 (59%) APL negative<br />

– 720 (41%) APL positive<br />

• No increase in stroke rate in APL + patients (22.2% vs<br />

21 21.8%) 8%)<br />

– Patients with both APL <strong>and</strong> LA: 31.8% even rate) vs patients<br />

negative for both (24% event rate)<br />

• No difference between aspirin p <strong>and</strong> warfarin<br />

• NOT conducted in patients with known APL syndrome<br />

– Unanswered questions concerning stroke in the young, repeated<br />

strokes, <strong>and</strong> Sneddon syndrome


Antiphospholipid Antibodies <strong>and</strong><br />

<strong>Stroke</strong><br />

• Strong association with stroke in the young<br />

– Brey et al: LA or aPL in 21/46 patients


• Encephalopathy <strong>and</strong> biopsy-proven cerebrovascular inflammatory changes in a cocaine abuser.<br />

• Diez-Tejedor E, Frank A, Gutierrez M, Barreiro P.<br />

• Department <strong>of</strong> Neurology (<strong>Stroke</strong> Unit), Hospital Universitario La Paz, Universidad Autonoma de<br />

Madrid, Paseo de la Castellana, 261, Madrid, Spain.<br />

• Ab Abstract t t<br />

• Cocaine abuse is a well known cause <strong>of</strong> cerebrovascular complications. An inflammatory<br />

vasculopathy hypothesis has been proposed, but the medical literature has only reported a few<br />

pathological confirmations. We report a case with a biopsy demonstrating cerebral inflammatory<br />

vascular changes that are associated with cocaine abuse. A 21-year-old male, a twice weekly cocaine<br />

abuser abuser, developed encephalopathy encephalopathy, apraxia <strong>and</strong> left hemiparesis with hemisensory loss during the<br />

first week after his last cocaine intake; postural tremor <strong>and</strong> dystonia appeared later. Laboratory data<br />

were unrevealing. Cerebral angiography showed a lack <strong>of</strong> vascularization in the left precentral <strong>and</strong><br />

central arterial gro<strong>up</strong>s. A corticomeningeal cerebral biopsy demonstrated perivascular cell collection<br />

<strong>and</strong> transmural lymphomonocytic infiltration <strong>of</strong> the small cortical vessels. All symptoms improved<br />

with corticosteroid treatment, but 4 years later, the patient returned with a worsening <strong>of</strong> his<br />

encephalopathy <strong>and</strong> a severe memory impairment, impairment emotional lability <strong>and</strong> apraxia. apraxia A cerebral<br />

magnetic resonance image (MRI) showed subcortical <strong>and</strong> periventricular lesions suggesting ischemic<br />

damage in small-size vessel areas as well as cortical atrophy. This new case s<strong>up</strong>ports the existence <strong>of</strong><br />

an encephalopathy associated with vascular inflammatory changes in a cocaine abuser, although<br />

more clinical <strong>and</strong> experimental data are necessary to define its physiopathology.<br />

• PMID: 10210820 [PubMed [ - as s<strong>up</strong>plied pp by y publisher] p ]


FFredericks d i k et t al l <strong>Stroke</strong> St k 1991;22;1437-1439<br />

1991 22 1437 1439


• Check TPA-pubmed<br />

CCocaine-induced d dstroke k


CCocaine-induced d dstroke k<br />

Konzen et al. <strong>Stroke</strong> 1995;26:1114 1995;26:1114-1118 1118


IgA Anticardiolipin Antibodies:<br />

Samarkos et al 2006<br />

• IgA anti-cardiolipin antibodies in 40% <strong>of</strong><br />

patients with primary antiphospholipid<br />

antibody syndrome (PAPS)<br />

– IgA anti- anti- β2 glycoprotein 1 in 25.7% 25 7% <strong>of</strong><br />

patients with PAPS<br />

• Only anti-cardiolipin antibodies correlated<br />

with disease<br />

– Those to β2 glycoprotein 1 correlated less well


S<strong>Stroke</strong> k in Sickle S kl Cell C ll Disease D<br />

Study Number <strong>of</strong> silent Total number Prevalence Confidence<br />

cerebral infarcts <strong>of</strong> patients Interval<br />

CSSCD 58 266 21.8% 16.8-26.8<br />

French cohort 23 155 15% 9.4-20.6<br />

London cohort 16 64 25% 14.4-35.6<br />

Cumulative total 97 485 20% 16.4-23.6<br />

Overt <strong>Stroke</strong>s Silent Cerebral Infarcts<br />

Frequency < age 14% 9% 22%<br />

Average g age g <strong>of</strong> onset 7.7 years y Prior to age g 6<br />

TCD Abnormal Not necessarily abnormal<br />

velocity<br />

CCSD: Cooperative Study for Sickle Cell Disease Buchanan: Hematology 2004

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!