30.06.2013 Views

smart technologies for safety engineering

smart technologies for safety engineering

smart technologies for safety engineering

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Smart Technologies in Vibroacoustics 283<br />

displacements (u pz<br />

i<br />

), and the Maxwell’s law <strong>for</strong> electrostatics, E pz<br />

i<br />

=−V pz<br />

|i , relating the electric<br />

field (E pz<br />

i ) with its potential (V pz ), have been explicitly used in Equations (34).<br />

The constitutive equations (34) are given <strong>for</strong> a general case of anisotropic piezoelectricity.<br />

However, piezoelectric materials are usually treated as orthotropic or even transversally<br />

isotropic. This is certainly valid <strong>for</strong> thin piezoelectric patches with through-thickness polarization,<br />

which are often used in <strong>smart</strong> structures as fixed-on-surface piezoelectric actuators and<br />

sensors. In this case, assuming that the thickness (and there<strong>for</strong>e, the polarization) of the piezopatch<br />

is directed along the x3 axis, the orthotropic constitutive equations of the piezoelectric<br />

material can be expressed as follows, where the <strong>for</strong>mulas <strong>for</strong> stresses are<br />

σ pz<br />

11 = Ĉpz<br />

11 upz<br />

1|1 + Ĉpz<br />

12 upz<br />

2|2 + Ĉpz<br />

13 upz<br />

pz<br />

3|3 − êpz<br />

31 V|3 σ pz<br />

22 = Ĉpz<br />

12 upz<br />

1|1 + Ĉpz<br />

22 upz<br />

2|2 + Ĉpz<br />

23 upz<br />

pz<br />

3|3 − êpz<br />

32 V|3 σ pz<br />

33 = Ĉpz<br />

13 upz<br />

1|1 + Ĉpz<br />

23 upz<br />

2|2 + Ĉpz<br />

33 upz<br />

pz<br />

3|3 − êpz<br />

33 V|3 σ pz<br />

23 = Ĉpz<br />

44 (upz<br />

pz<br />

2|3 + upz<br />

3|2 ) − êpz<br />

24 V|2 σ pz<br />

13 = Ĉpz<br />

55 (upz<br />

pz<br />

1|3 + upz<br />

3|1 ) − êpz<br />

15 V|1 σ pz<br />

12 = Ĉpz<br />

66 (upz<br />

1|2 + upz<br />

2|1 )<br />

and <strong>for</strong> the electric displacements are<br />

D pz<br />

1<br />

D pz<br />

2<br />

D pz<br />

3<br />

= êpz<br />

15 (upz<br />

1|3 + upz<br />

3|1<br />

= êpz<br />

24 (upz<br />

2|3 + upz<br />

3|2<br />

) + ɛpz<br />

11<br />

) + ɛpz<br />

22<br />

pz<br />

V|1 pz<br />

V|2 = êpz<br />

31 upz<br />

1|1 + êpz<br />

32 upz<br />

2|2 + êpz<br />

33 upz<br />

3|3<br />

pz<br />

+ ɛpz<br />

33 V|3 Moreover, <strong>for</strong> transversal isotropy the following relations are satsfied by the elastic material<br />

constants:<br />

Ĉ pz<br />

22<br />

= Ĉpz<br />

11 , Ĉpz<br />

23<br />

by the piezoelectric constants:<br />

and by the dielectric constants:<br />

= Ĉpz<br />

13 , Ĉpz<br />

55<br />

ê pz<br />

24<br />

= êpz<br />

15 , êpz<br />

32 = êpz<br />

33<br />

ɛ pz<br />

22 = ɛpz<br />

11<br />

Ĉpz<br />

11 − Ĉpz<br />

12<br />

= Ĉpz<br />

44 , Ĉpz<br />

66 =<br />

2<br />

In the above relations, some pairs of indices have been replaced by new subscripts as<br />

given by the following rule of change (known from the so-called Kelvin–Voigt notation):<br />

11 ↦→ 1, 22 ↦→ 2, 33 ↦→ 3, 23 ↦→ 4, 13 ↦→ 5 and 12 ↦→ 6. Thus, C pz<br />

ijkl is represented as Ĉpz<br />

IJ<br />

and e pz<br />

kij as êpz<br />

kI , where i, j, k, l = 1, 2, 3 and I, J = 1,...,6. This contracted notation allows 21<br />

independent anisotropic elastic material constants to be grouped in a 6 × 6 symmetrical matrix<br />

and the third-order tensor of piezoelectric effects to be represented as a 3 × 6 matrix. Notice<br />

(35)<br />

(36)<br />

(37)<br />

(38)<br />

(39)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!