30.06.2013 Views

smart technologies for safety engineering

smart technologies for safety engineering

smart technologies for safety engineering

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Smart Technologies in Vibroacoustics 293<br />

where ûi, ûe i<br />

are expressed by Equations (57) (the second equation), (30), (42), (51), and (45).<br />

, ûpz<br />

i , ˆp, ˆp a and ˆV pz are given values. The relevant natural boundary conditions<br />

8.7.2 Weak Form of the Coupled System<br />

The weak <strong>for</strong>m of coupled multiphysical system combines the weak <strong>for</strong>ms <strong>for</strong> the corresponding<br />

problems presented in Section 8.4. The discussion of coupling interface conditions<br />

in Section 8.6 has presented very important results, namely that the coupling of two poroelastic<br />

domains, or a poroelastic domain to an elastic one, is naturally handled; i.e. the interface<br />

coupling integrals are zero, which results from the continuity of the fields of primary variables.<br />

Such a result is also straight<strong>for</strong>wardly obtained <strong>for</strong> elastic and piezoelectric domains. This is<br />

not the case when coupling to an acoustical domain. There<strong>for</strong>e, define (<strong>for</strong> convenience) the<br />

following interface: Ɣa-p,e,pz = Ɣa-p ∪ Ɣa-e ∪ Ɣa-pz , which is a simple sum of all surfaces, edges<br />

and points where the acoustic domain is coupled to the poroelastic, elastic and piezoelectric<br />

domains. Now, the weak <strong>for</strong>m of the coupled system reads<br />

<br />

pz<br />

− σij pz<br />

δui| j + ω 2 ϱpz ui δui + D pz<br />

i δV|i<br />

<br />

<br />

+<br />

Ɣt ˆt<br />

pz<br />

pz<br />

i δui<br />

<br />

+<br />

Ɣ Q ˆQ<br />

pz<br />

pz δV<br />

<br />

e<br />

+ − σij δui| j + ω<br />

e<br />

2 <br />

<br />

ϱe ui δui +<br />

Ɣt ˆt<br />

e<br />

e i δui<br />

<br />

<br />

+ P −<br />

p Ɣ p<br />

ˆpni δui<br />

p<br />

<br />

+ − 1<br />

ω2 p|i δp|i +<br />

ϱa<br />

1<br />

<br />

p δp + û<br />

Ka<br />

a i na <br />

i δp + n a <br />

i δpui + p δui = 0 (81)<br />

a<br />

Ɣ u a<br />

Ɣ a-p,e,pz<br />

where P stands <strong>for</strong> the integrand <strong>for</strong> a poroelastic domain and equals<br />

P =−σ ss<br />

ij δui| j + ω 2 ˜ϱ ui δui − φ2<br />

+ φ<br />

<br />

1 + ˜ϱsf<br />

˜ϱff<br />

ω2 p|i δp|i +<br />

˜ϱff<br />

φ2<br />

<br />

δp|i<br />

<br />

ui + p|i δui + φ<br />

˜λf<br />

<br />

1 + ˜λsf<br />

˜λf<br />

p δp<br />

<br />

δpui|i<br />

<br />

+ p δui|i<br />

In the above equations ui are the displacements of a piezoelectric or elastic solid or of the solid<br />

phase of a poroelastic material, V is the electric potential in the piezoelectric domain and p<br />

is the pressure in the acoustic medium or in the pores of poroelastic medium. The variational<br />

equation (81) must be satisfied <strong>for</strong> all admissible variations (i.e. virtual or test functions) of<br />

primary variables: δui, δV and δp. Furthermore,<br />

and<br />

σ pz<br />

ij<br />

uk|l + ul|k<br />

= Cpz<br />

ijkl + e<br />

2<br />

pz<br />

kij V|k , D pz uk|l + ul|k<br />

i = epz<br />

ikl − ɛ<br />

2<br />

pz<br />

ik V|k<br />

σ ss<br />

ij = μs (ui| j + u j|i) + ˜λss uk|k δij<br />

σ e<br />

ij = μe (ui| j + u j|i) + λe uk|k δij or σ e<br />

ij = Ce uk|l + ul|k<br />

ijkl<br />

2<br />

(82)<br />

(83)<br />

(84)<br />

(85)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!