01.07.2013 Views

Random Processes in Hyperbolic Spaces Hyperbolic Brownian ...

Random Processes in Hyperbolic Spaces Hyperbolic Brownian ...

Random Processes in Hyperbolic Spaces Hyperbolic Brownian ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

11 Tools of Riemannian Geometry<br />

To calculate Rijij, <strong>in</strong> view of (1.27), we have that<br />

Rijij = <br />

R l iji glj = <br />

=<br />

=<br />

l<br />

1<br />

(x n ) 2<br />

1<br />

(x n ) 2<br />

<br />

⎡<br />

s<br />

⎣ <br />

l<br />

Γ s iiΓ j<br />

js<br />

R l iji<br />

− <br />

δlj<br />

(xn Rj iji<br />

=<br />

) 2 (xn ) 2<br />

s<br />

Γ s jiΓ j j j<br />

is + ∂jΓii − ∂iΓji (Γ<br />

s=i,j<br />

s iiΓ j<br />

js − ΓsjiΓ j<br />

is ) + ΓjiiΓjjj<br />

− Γjji<br />

Γjij<br />

+ ΓiiiΓ j<br />

ji − ΓijiΓ j j j<br />

ii + ∂jΓii − ∂iΓji where, <strong>in</strong> view of (1.15), the Christoffel symbols for the hyperbolic metric are given by<br />

Γ k ij = 1<br />

2<br />

<br />

g kl {∂iglj + ∂jgil − ∂lgij}<br />

l<br />

= 1 <br />

(x<br />

2<br />

l<br />

n ) 2 <br />

δkl ∂i<br />

(xn )<br />

= 1<br />

2 (xn ) 2<br />

<br />

δkj<br />

∂i<br />

(xn δik<br />

+ ∂j<br />

) 2 (xn )<br />

= −δkjfi − δikfj + δijfk.<br />

δlj<br />

+ ∂j 2<br />

<br />

δil δij<br />

− ∂l 2 (xn ) 2<br />

(x n )<br />

δij<br />

− ∂k 2 (xn ) 2<br />

The last formula implies that Γk ij = 0 if i = j = k, Γiij = −fj, Γ j<br />

ij = −fi, Γk ii = fk and Γi ii = −fi<br />

and thus<br />

Rijij =<br />

1<br />

(xn ) 2<br />

<br />

− <br />

s<br />

<br />

(fs) 2 + (fi) 2 + (fj) 2 + fii + fjj<br />

F<strong>in</strong>ally, observ<strong>in</strong>g that |∂i| 2 |∂j| 2 − 〈∂i, ∂j〉 2 = gii gjj, we have<br />

K(∂i, ∂j) = Rijij<br />

gii gjj<br />

= (x n ) 4 Rijij = (x n ) 2<br />

<br />

− <br />

s<br />

<br />

(fs) 2 + (fi) 2 + (fj) 2 + fii + fjj<br />

and s<strong>in</strong>ce fn = 1<br />

x n and fi = 0 for i = n if follows that K(∂i, ∂j) = −1 for all i, j = 1, . . . , n.<br />

In view of (1.23), the Laplace operator ∆ <strong>in</strong> the hyperbolic space is given by<br />

∆ = (x n ) n<br />

= (x n ) n<br />

= (x n ) n<br />

= (x n ) 2<br />

n ∂<br />

∂x<br />

j=1<br />

j<br />

<br />

(x n ) 2 (x n −n ∂<br />

)<br />

∂xj <br />

⎡<br />

n−1 <br />

⎣ (x<br />

j=1<br />

n ) 2−n ∂2<br />

∂(xj ) 2 + (2 − n)(xn )<br />

⎡<br />

n<br />

⎣ (x n ) 2−n ∂2<br />

∂(xj ) 2 + (2 − n)(xn )<br />

j=1<br />

n<br />

j=1<br />

= (x n ) n<br />

n<br />

j=1<br />

2−n−1 ∂<br />

1−n ∂<br />

<br />

∂<br />

∂xj <br />

(x n 2−n ∂<br />

)<br />

∂xj <br />

∂xn + (xn ) 2−n<br />

∂(xn ) 2<br />

⎦<br />

⎤<br />

∂xn ⎦<br />

∂2 ∂(xj ∂<br />

+ (2 − n)xn . (1.30)<br />

) 2 ∂xn There are several models for the hyperbolic space, the ball model, for example, consists of the<br />

.<br />

∂ 2<br />

⎤<br />

<br />

⎤<br />

⎦ ,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!