01.07.2013 Views

Random Processes in Hyperbolic Spaces Hyperbolic Brownian ...

Random Processes in Hyperbolic Spaces Hyperbolic Brownian ...

Random Processes in Hyperbolic Spaces Hyperbolic Brownian ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

21 <strong>Hyperbolic</strong> Geometry<br />

s<strong>in</strong>ce<br />

1 +<br />

|ip − iq|2 (p − q)2<br />

= 1 +<br />

2Im[ip]Im[iq] 2pq = p2 + q2 = cosh log(q/p).<br />

2pq<br />

But, if γ(t) = x(t) + iy(t) with t ∈ [0, 1] is any smooth curve jo<strong>in</strong><strong>in</strong>g z to w such that γ(1) = q and<br />

γ(0) = p, we have that<br />

<br />

||γ|| =<br />

1<br />

0<br />

|x ′ (t) + iy ′ 1<br />

(t)|<br />

dt ≥<br />

y(t)<br />

0<br />

In general, if we do not assume that p < q, we have that<br />

y ′ (t)<br />

dt = log(q/p). (2.23)<br />

y(t)<br />

η(ip, iq) = | log(p/q)|. (2.24)<br />

Remark 2.3.1. Formula (2.22) can be easily generalized to the (n + 1)-dimensional case. For<br />

z, w ∈ Hn+1 , we have<br />

|z − w|2<br />

cosh η(z, w) = 1 + . (2.25)<br />

2zn+1wn+1<br />

Remark 2.3.2. From Theorem 2.3.2 we obta<strong>in</strong> that the hyperbolic sphere with center y ∈ H n+1<br />

and hyperbolic radius r is the Euclidean sphere with center (y1, . . . , yn, yn+1 cosh r) and radius<br />

yn+1 s<strong>in</strong>h r. In fact {x ∈ Hn+1 : η(x, y) = r} = {x ∈ Hn+1 : cosh r = 1 + |x−y|2<br />

} this implies<br />

2xn+1yn+1<br />

that a po<strong>in</strong>t x on the hyperbolic sphere satisfies the equations<br />

2xn+1yn+1 cosh r = 2xn+1yn+1 + (x1 − y1) 2 + · · · + (xn+1 − yn+1) 2 ,<br />

2xn+1yn+1 cosh r = (x1 − y1) 2 + · · · + (xn − yn) 2 + x 2 n+1 + y 2 n+1,<br />

(yn+1 s<strong>in</strong>h r) 2 = (x1 − y1) 2 + · · · + (xn − yn) 2 + (xn+1 − yn+1 cosh r) 2 .<br />

Remark 2.3.3. It is possible to prove that the follow<strong>in</strong>g equations are equivalent to formula<br />

(2.22).<br />

s<strong>in</strong>h<br />

cosh<br />

tanh<br />

η(z, w)<br />

2<br />

η(z, w)<br />

2<br />

η(z, w)<br />

2<br />

2 x<br />

Start<strong>in</strong>g from (2.22) and apply<strong>in</strong>g s<strong>in</strong>h 2<br />

=<br />

=<br />

=<br />

|z − w|<br />

,<br />

2(Im[z]Im[w]) 1/2<br />

(2.26)<br />

|z − ¯w|<br />

,<br />

2(Im[z]Im[w]) 1/2<br />

<br />

<br />

<br />

z − w <br />

<br />

z<br />

− ¯w .<br />

(2.27)<br />

(2.28)<br />

1<br />

x<br />

= 2 (cosh x − 1) and cosh2 2<br />

1 = 2 (cosh x + 1) we obta<strong>in</strong><br />

easily (2.26) and (2.27). Formula (2.28) follows from (2.26) and (2.27). It is possible to obta<strong>in</strong> the<br />

follow<strong>in</strong>g explicit expression for the hyperbolic metric η<br />

observ<strong>in</strong>g that<br />

<br />

cosh log<br />

η(z, w) = log<br />

<br />

|z − ¯w| + |z − w|<br />

= 1 +<br />

|z − ¯w| − |z − w|<br />

|z − ¯w| + |z − w|<br />

, (2.29)<br />

|z − ¯w| − |z − w|<br />

2|z − w| 2<br />

|z − ¯w| 2 |z − w|2<br />

= 1 +<br />

− |z − w| 2 2Im[z]Im[w] .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!