30.07.2013 Views

DCP Series X.25 Packet Switched Communications Software (PSCS ...

DCP Series X.25 Packet Switched Communications Software (PSCS ...

DCP Series X.25 Packet Switched Communications Software (PSCS ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Product Information<br />

Announcement<br />

New Release Revision Update New Mail Code<br />

Title:<br />

<strong>DCP</strong> <strong>Series</strong> <strong>X.25</strong> <strong>Packet</strong> <strong>Switched</strong> <strong>Communications</strong> <strong>Software</strong> (<strong>PSCS</strong>) Configuration and Operations Guide<br />

Level 5R2D<br />

This Product Information Announcement announces the release and availability of the <strong>DCP</strong> <strong>Series</strong> <strong>X.25</strong> <strong>Packet</strong><br />

<strong>Switched</strong> <strong>Communications</strong> <strong>Software</strong> (<strong>PSCS</strong>) Configuration and Operations Guide (7831 5470–200).<br />

The Unisys <strong>DCP</strong> <strong>Series</strong> <strong>X.25</strong> <strong>PSCS</strong> program product provides added functions for Telcon software on a Unisys<br />

Distributed <strong>Communications</strong> Processor (<strong>DCP</strong>). <strong>X.25</strong> <strong>PSCS</strong> provides <strong>DCP</strong>s with access to packet networks that use<br />

the <strong>X.25</strong> protocol. These include the Defense Data Network (DDN), many public data networks (PDNs), and private<br />

packet networks. It supports communications with other devices using the Distributed <strong>Communications</strong> Architecture<br />

(DCA), System Network Architecture (SNA), transmission control protocol/internet protocol (TCP/IP), and open<br />

systems interconnection (OSI) protocols.<br />

In addition, <strong>X.25</strong> <strong>PSCS</strong> provides the DCE Network feature that enables Telcon networks to function as private<br />

packet networks. This feature enables directly attached DTEs to use the <strong>X.25</strong> protocol to access the Telcon<br />

network for communications with other DTEs.<br />

This document is a full revision and should totally replace earlier revisions and updates.<br />

To order additional copies of this document:<br />

• United States customers, call Unisys Direct at 1-800-448-1424.<br />

• All other customers, contact your Unisys Sales Office.<br />

• Unisys personnel, use the Electronic Literature Ordering (ELO) system.<br />

Announcement only:<br />

MBWA, MBZ, MU59, MX3,<br />

MX5, MX6, MX7, MX8, MY5<br />

Announcement and attachments:<br />

AFO1<br />

System: <strong>DCP</strong> <strong>Series</strong><br />

Release: Level 5R2D<br />

December 1994<br />

Part number: 7831 5470–200


<strong>DCP</strong> <strong>Series</strong><br />

<strong>X.25</strong> <strong>Packet</strong> <strong>Switched</strong><br />

<strong>Communications</strong><br />

<strong>Software</strong> (<strong>PSCS</strong>)<br />

Configuration and<br />

Operations<br />

Guide<br />

Copyright© 1994 Unisys Corporation.<br />

All rights reserved.<br />

Unisys is a registered trademark of Unisys Corporation.<br />

5R2D December 1994<br />

Printed in U S America<br />

Priced Item 7831 5470–200


NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product<br />

and related material disclosed herein are only furnished pursuant and subject to the terms and<br />

conditions of a duly executed agreement to purchase or lease equipment or to license<br />

software. The only warranties made by Unisys Corporation, if any, with respect to the products<br />

described in this document are set forth in such agreement. Unisys Corporation cannot<br />

accept any financial or other responsibility that may be the result of your use of the<br />

information in this document or software material, including direct, indirect, special, or<br />

consequential damages.<br />

You should be very careful to ensure that the use of this information and/or software material<br />

complies with the laws, rules, and regulations of the jurisdictions with respect to which it is<br />

used.<br />

The information contained herein is subject to change without notice. Revisions may be issued<br />

to advise of such changes and/or additions.<br />

Correspondence regarding this publication should be forwarded to Unisys Corporation by<br />

addressing remarks to Communication Systems Product Information, Salt Lake City<br />

Publications, MS B2B07, 322 North 2200 West, Salt Lake City, UT 84116-2979, U.S.A.<br />

Telenet is a registered trademark of General Telephone and Electronics Corporation.<br />

UNISCOPE is a registered trademark of Unisys Corporation.<br />

UNIX is a registered trademark of X/Open Company Limited.


Contents<br />

About This Guide ............................................. xv<br />

Section 1. Introduction<br />

1.1. <strong>X.25</strong> <strong>PSCS</strong> Product Overview ..................1–3<br />

1.1.1. DCE Network Feature .......................1–3<br />

1.1.2. ILM-20 Support ...........................1–4<br />

1.1.3. Idle Trunk Circuit Handling ....................1–5<br />

1.1.4. CNMS Interface ...........................1–5<br />

1.1.5. <strong>Packet</strong> Network Access ......................1–5<br />

1.1.6. Support for Standard and Proprietary Protocols .....1–6<br />

1.1.7. Public Data Networks Supported ................1–7<br />

1.1.8. Special Network Certification ..................1–7<br />

1.1.9. Special Capabilities .........................1–8<br />

1.1.10. DTE Routing and Routing Precedence ............1–9<br />

1.1.11. Minimizing <strong>Packet</strong> Layer Services (PLS) DTEs .......1–9<br />

1.1.12. Message Tracing .........................1–10<br />

1.1.13. 1988 ITU/TSS (CCITT) Compliance .............1–10<br />

1.1.14. Coded Character Sets ......................1–10<br />

1.1.15. Dynamic Line Switching .....................1–10<br />

1.2. <strong>X.25</strong> <strong>PSCS</strong> Limitations ......................1–11<br />

1.3. <strong>X.25</strong> <strong>PSCS</strong> Restrictions .....................1–12<br />

1.4. DCE Network Limitations ....................1–13<br />

1.5. <strong>DCP</strong> Loading Over <strong>X.25</strong> Networks .............1–14<br />

1.6. Migration Issues ...........................1–15<br />

1.6.1. X25ROUTE Statement ......................1–15<br />

1.6.2. Level 4 Program Definition for SNA/net ..........1–17<br />

7831 5470–200 v


Contents<br />

vi<br />

Section 2. Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

2.1. Configuring Basic Connections to Networks .......2–3<br />

2.1.1. Configuring a Connection to a PDN ..............2–3<br />

2.1.2. Configuring a Connection to the DDN .............2–5<br />

2.1.3. Configuring a Multilink Connection ...............2–7<br />

2.2. Defining DTEs .............................2–9<br />

2.2.1. Configuring a <strong>DCP</strong> as a DTE ..................2–10<br />

2.2.2. Configuring a UTS 4000 Cluster Controller<br />

as a DTE...............................2–14<br />

2.2.3. Configuring the <strong>Packet</strong> Layer Services (PLS)<br />

Interface as a DTE ........................2–17<br />

2.2.4. Configuring a U <strong>Series</strong> Running DNS as a DTE .....2–19<br />

2.2.5. Configuring a U <strong>Series</strong> or IS-PC (Running TS/TN)<br />

as a DTE...............................2–21<br />

2.2.6. Configuring a DTE Running SNA Protocols ........2–23<br />

2.2.7. Configuring DTEs Using Permanent Virtual Circuits . . . 2–25<br />

2.3. Configuring an X.29 PAD ....................2–27<br />

2.4. Configuring an X.28/PAD ....................2–29<br />

2.5. Configuring Special <strong>X.25</strong> <strong>PSCS</strong> Capabilities ......2–33<br />

2.5.1. Configuring <strong>Packet</strong> Size .....................2–33<br />

2.5.2. Configuring <strong>Packet</strong> Level Window Size ...........2–33<br />

2.5.3. Configuring Frame Size .....................2–34<br />

2.5.4. Configuring a Frame Level Window .............2–35<br />

2.5.5. Configuring Permanent Virtual Circuits ...........2–36<br />

2.5.6. Configuring the CALLED and CALLING Options .....2–37<br />

2.5.7. Configuring Partial DTE Addresses .............2–38<br />

2.5.8. Configuring Incoming Call Routing Precedence .....2–41<br />

Section 3. Configuring a DCE Network<br />

3.1. Planning the Network ........................3–3<br />

3.1.1. Drawing a Network Map .....................3–3<br />

3.1.2. Rules for Creating Network Addresses ............3–5<br />

3.1.3. Selecting Statements .......................3–8<br />

3.2. Configuring the DCE Network .................3–10<br />

3.2.1. Configuring a One-Node DCE Network ...........3–10<br />

3.2.2. Adding a Node and DTEs to a DCE Network .......3–13<br />

3.2.3. Configuring an Internal DTE ..................3–16<br />

3.2.4. Configuring an Internal DTE for U <strong>Series</strong> or IS-PC<br />

DTEs Running with the TS/TN Protocol ..........3–20<br />

3.2.5. Configuring an X.75 Interface to Another Network . . . 3–24<br />

7831 5470–200


Contents<br />

3.3. Configuring Special DCE Network Capabilities ....3–27<br />

3.3.1. Configuring a Closed User Group ..............3–27<br />

3.3.2. Configuring Priority Virtual Circuits ..............3–30<br />

3.3.3. Configuring Reverse Charging .................3–31<br />

3.3.4. Configuring Flow Control Negotiation ............3–32<br />

3.3.5. Configuring DTE Hunt Groups .................3–33<br />

3.3.6. Configuring DTE Subaddresses ................3–35<br />

3.3.7. Configuring an ILM-20 Connection to a DTE .......3–37<br />

3.3.8. Configuring a Multilink Protocol Connection ........3–38<br />

Section 4. Configuration Examples<br />

4.1. <strong>DCP</strong>-to-<strong>DCP</strong> Trunk ..........................4–3<br />

4.2. <strong>DCP</strong>-to-<strong>DCP</strong> Multilink Trunk ...................4–8<br />

4.3. <strong>DCP</strong>-to-<strong>DCP</strong> Mixed Trunk ....................4–14<br />

4.4. <strong>DCP</strong>-to-UTS 4000 Cluster Controller ...........4–19<br />

4.5. <strong>DCP</strong>-to-U <strong>Series</strong> or IS-PC (TS/TN) ..............4–24<br />

4.6. X.28/PAD ...............................4–29<br />

4.7. X.29 PAD with Nonconfigured DTEs ............4–33<br />

4.8. X.29 PAD with Configured DTEs and X25ROUTE<br />

Statement ............................. 4–38<br />

4.9. <strong>DCP</strong>-to-Remote Host Using PLS ...............4–43<br />

4.10. Two-Node DCE Network .....................4–48<br />

Section 5. Using Network Management Services (NMS)<br />

5.1. NMS Command Authority Levels ...............5–3<br />

5.2. DOWN — Deactivating a Facility ................5–4<br />

5.3. LIST — Displaying Line Activity ................5–6<br />

5.4. RECORD — Controlling DCE Network Statistics<br />

Gathering ................................5–9<br />

5.5. STAT — Displaying Status ...................5–11<br />

5.5.1. STAT LINE Display ........................5–13<br />

5.5.2. STAT PDTE Display ........................5–15<br />

5.5.3. STAT PTRK Display ........................5–17<br />

7831 5470–200 vii


Contents<br />

viii<br />

5.6. SWITCH — Rerouting Call <strong>Packet</strong>s .............5–19<br />

5.7. TRAC — Message Tracing ...................5–21<br />

5.7.1. TRAC SNAP X25 ..........................5–21<br />

5.7.2. TRAC SNAP DCEF .........................5–27<br />

5.8. UP — Activating a Facility ...................5–29<br />

Section 6. Using <strong>X.25</strong> <strong>PSCS</strong> Configuration Statements<br />

6.1. CLSTR — Defining UTS Terminal Clusters .........6–4<br />

6.2. DTE — Defining Data Terminal Equipment ........6–5<br />

6.2.1. DTEs on PDNs, the DDN, or Private Networks .......6–6<br />

6.2.2. DTEs on DCE Networks .....................6–11<br />

6.3. DTETYPE — Defining DTE Communication<br />

Attributes ................................6–15<br />

6.3.1. DTETYPEs for Standard <strong>Packet</strong> Networks .........6–16<br />

6.3.2. DTETYPEs for DCE Networks .................6–23<br />

6.4. EU — Defining <strong>X.25</strong> <strong>PSCS</strong> End Users ...........6–25<br />

6.4.1. EUs for X.28/PAD End Users .................6–25<br />

6.4.2. EUs for PLS End Users .....................6–30<br />

6.4.3. EUs for DCE Network ......................6–32<br />

6.5. LCLASS — Defining Line Characteristics ........6–34<br />

6.5.1. LCLASS For Standard <strong>Communications</strong> Lines ......6–34<br />

6.5.2. LCLASS For ILM-20 Lines ....................6–35<br />

6.6. LINE — Defining Physical <strong>Communications</strong> Lines . . 6–36<br />

6.7. PDNGRP — Defining a Network Connection ......6–38<br />

6.7.1. PDNGRPs for PDNs and Private <strong>Packet</strong> Networks . . . 6–39<br />

6.7.2. PDNGRPs for the DDN ......................6–43<br />

6.7.3. PDNGRPs for DCE Networks .................6–47<br />

6.8. PDNPAD — Defining Operational Parameters<br />

for a PAD ................................6–50<br />

6.9. TERM — Defining a Terminal .................6–58<br />

6.9.1. Terminals Using the UTS 4000 Cluster Controller . . . 6–58<br />

6.9.2. Terminals Using the X.29 PAD ................6–59<br />

7831 5470–200


Contents<br />

6.10. X25DEF — Defining Network Characteristics .....6–61<br />

6.11. X25NET — Defining DCE Network Routes ........6–73<br />

6.12. X25ROUTE — Specifying Routing Precedence ....6–75<br />

Section 7. <strong>X.25</strong> <strong>PSCS</strong> Troubleshooting<br />

7.1. Troubleshooting Overview ....................7–2<br />

7.2. Verifying Line Operation .....................7–3<br />

7.2.1. Verifying General Line Operation ................7–3<br />

Determining If <strong>X.25</strong> <strong>PSCS</strong> Installation Failed ......7–4<br />

Determining If <strong>X.25</strong> <strong>PSCS</strong> Initialization Failed ......7–5<br />

Determining If Hardware/<strong>DCP</strong> System Resources<br />

Failed ................................7–6<br />

7.2.2. Verifying Specific Line Operation ................7–8<br />

Physical Layer Connection ..................7–9<br />

Link Layer Connection .....................7–9<br />

7.3. Verifying Virtual Circuit Connections ...........7–11<br />

7.3.1. Using Data Session or Service Operation to Verify<br />

Connections .............................7–11<br />

7.3.2. Using NMS Commands to Verify Connections ......7–11<br />

7.3.3. Connection Troubleshooting Actions ............7–13<br />

Generating Telcon CENLOG Reports ..........7–13<br />

Generating Layer 3/4 Platform Interface User<br />

Reports ..............................7–14<br />

Using Message Tracing ...................7–14<br />

7.4. Verifying Message Data Transfer Performance ....7–15<br />

7.4.1. Identifying External Facilities and Interfaces That<br />

May Affect Data Transfer Performance ...........7–15<br />

Determining Adequate Virtual Circuit Connection<br />

Resources ............................7–15<br />

Determining Whether Telcon or Host Interface<br />

Resources Affect Data Transfer .............7–16<br />

Determining Adequate <strong>DCP</strong>/OS Resources ......7–17<br />

7.4.2. Determining Areas Within <strong>X.25</strong> <strong>PSCS</strong> That Affect<br />

Data Transfer ............................7–18<br />

<strong>Packet</strong> Level Characteristics ................7–18<br />

Incompatible Flow Control Values ...........7–18<br />

Facility Constraints ....................7–19<br />

Link Level Characteristics ..................7–19<br />

Incompatible Frame Control Values .........7–19<br />

Subscription Parameters ................7–20<br />

Physical Line Characteristics ...............7–20<br />

7831 5470–200 ix


Contents<br />

x<br />

Appendix A. <strong>X.25</strong> <strong>PSCS</strong> Reserved Words<br />

Appendix B. <strong>X.25</strong> <strong>PSCS</strong> Outgoing Call Routing Concepts<br />

Appendix C. NMS TRAC Command Trace File Formats<br />

C.1. SNAP=X25 Parameter Option Format ............C–2<br />

C.2. SNAP=DCEF Parameter Option Format ...........C–4<br />

7831 5470–200


Figures<br />

2–1. <strong>DCP</strong> Connection Configured to a PDN ............................2–3<br />

2–2. <strong>DCP</strong> Connection Configured to the DDN ..........................2–5<br />

2–3. <strong>DCP</strong> Connection Configured as Multilink ..........................2–7<br />

2–4. <strong>DCP</strong> Configured as a DTE ...................................2–10<br />

2–5. Cluster Controller Configured as a DTE ..........................2–14<br />

2–6. PLS Interface Configured as a DTE ............................2–17<br />

2–7. U <strong>Series</strong> (DNS) Configured as a DTE ...........................2–19<br />

2–8. U <strong>Series</strong> or IS-PC Configured as a DTE ..........................2–21<br />

2–9. SNA Protocol Configured as a DTE .............................2–23<br />

2–10. DTEs Configured with Permanent Virtual Circuits ...................2–25<br />

2–11. X.29 PAD Configured to a <strong>DCP</strong> ...............................2–27<br />

2–12. X.28/PAD Configured to X.29 Host ............................2–29<br />

2–13. Configuring Partial DTE Addresses for Outgoing and Incoming Calls ......2–39<br />

3–1. DCE Network Map .........................................3–4<br />

3–2. Example of a DTE Address ...................................3–6<br />

3–3. DCE Network Address Relationships .............................3–7<br />

3–4. One-Node DCE Network ....................................3–10<br />

3–5. Two-Node DCE Network ....................................3–13<br />

3–6. DCE Network Configured with an Internal DTE .....................3–16<br />

3–7. DCE Network Configured with Internal DTE for U <strong>Series</strong> or IS-PC DTEs<br />

(with TS/TN Protocol) ......................................3–20<br />

3–8. DCE Network Configured with an X.75 Interface ....................3–24<br />

3–9. Configuring DTE Hunt Groups ................................3–34<br />

3–10. Configuring DTE Subaddresses ...............................3–36<br />

3–11. Configuring a Multilink Connection .............................3–39<br />

4–1. <strong>DCP</strong>-to-<strong>DCP</strong> Trunk Configuration ...............................4–3<br />

4–2. PDN Trunk (Statements) .....................................4–7<br />

4–3. <strong>DCP</strong>-to-<strong>DCP</strong> Multilink Trunk Configuration ..........................4–8<br />

4–4. Multilink Trunk (Statements) .................................4–13<br />

4–5. <strong>DCP</strong>-to-<strong>DCP</strong> Mixed Trunk Configuration ..........................4–14<br />

4–6. <strong>DCP</strong>-to-<strong>DCP</strong> Mixed Trunk (Statements) ..........................4–18<br />

4–7. <strong>DCP</strong>-to-UTS 4000 Cluster Controller Configuration ..................4–19<br />

4–8. <strong>DCP</strong>-to-UTS Cluster Controller (Statements) .......................4–23<br />

4–9. <strong>DCP</strong>-to-U <strong>Series</strong> or IS-PC (TS/TN) Configuration ....................4–24<br />

4–10. <strong>DCP</strong>-to-U <strong>Series</strong> or IS-PC (Statements) ..........................4–28<br />

4–11. X.28/PAD Connection to X.29 Host ............................4–29<br />

4–12. X.28/PAD Statements (DNS) .................................4–32<br />

4–13. X.29 PAD Connection to OS 2200 Host (Nonconfigured DTEs) ..........4–33<br />

4–14. X.29 PAD with Nonconfigured DTEs (Statements) ...................4–37<br />

4–15. X.29 PAD Connection to OS 2200 Host (Configured DTEs) .............4–38<br />

7831 5470–200 xi


Figures<br />

xii<br />

4–16. X.29 PAD with Configured DTEs (Statements) ......................4–42<br />

4–17. <strong>DCP</strong>-to-Host Configuration Using PLS ...........................4–43<br />

4–18. <strong>DCP</strong>-to-Host Using PLS (Statements) ...........................4–47<br />

4–19. DCE Network Configuration with an X.75 Interface (DNS) ..............4–48<br />

4–20. DCE Network (Statements) ..................................4–53<br />

5–1. LIST LINE Command Output ..................................5–7<br />

5–2. STAT LINE Display ........................................5–13<br />

5–3. STAT PDTE Display .......................................5–15<br />

5–4. STAT PTRK Display .......................................5–17<br />

B–1. Outgoing Call Routing .......................................B–4<br />

7831 5470–200


Tables<br />

6–1. Throughput Class Assignment Facility Codes ......................6–20<br />

6–2. Network Names and Mnemonics ..............................6–27<br />

6–3. Network Names and Mnemonics for the X25DEF Statement ............6–63<br />

6–4. NETID Values ...........................................6–64<br />

7831 5470–200 xiii


About This Guide<br />

Purpose<br />

Scope<br />

The Distributed <strong>Communications</strong> Processor (<strong>DCP</strong>) <strong>Series</strong> <strong>X.25</strong> <strong>Packet</strong> <strong>Switched</strong><br />

<strong>Communications</strong> <strong>Software</strong> (<strong>PSCS</strong>) enables communications between <strong>DCP</strong>s and other<br />

devices attached to supported packet-switched public data networks (PDNs), the<br />

Defense Data Network (DDN), and private packet networks. It also enables point-topoint<br />

connections between <strong>DCP</strong>s and other devices using the <strong>X.25</strong> protocol defined by<br />

the International Telecommunications Union/Telecommunications Standardization<br />

Sector (ITU/TSS), formerly the Consultative Committee on International Telephone<br />

and Telegraph (CCITT).<br />

———————————————————————————————————————<br />

The <strong>DCP</strong> <strong>Series</strong> <strong>X.25</strong> <strong>Packet</strong> <strong>Switched</strong> <strong>Communications</strong> <strong>Software</strong> (<strong>PSCS</strong>)<br />

Configuration and Operations Guide provides the information necessary to configure<br />

<strong>X.25</strong> <strong>PSCS</strong> on a <strong>DCP</strong>. It also offers <strong>X.25</strong> related information on Network Management<br />

System (NMS) commands.<br />

———————————————————————————————————————<br />

This guide provides the following information:<br />

• A description of <strong>X.25</strong> <strong>PSCS</strong> capabilities<br />

• Task-oriented information on how to configure standard <strong>X.25</strong> <strong>PSCS</strong> capabilities<br />

• Task-oriented information on how to configure the DCE Network feature<br />

• <strong>X.25</strong> <strong>PSCS</strong> configuration examples<br />

• Descriptions of NMS commands<br />

• A description of <strong>X.25</strong> <strong>PSCS</strong> configuration statements<br />

7831 5470–200 xv


About This Guide<br />

Audience<br />

• Troubleshooting <strong>X.25</strong> <strong>PSCS</strong><br />

• A list of <strong>X.25</strong> <strong>PSCS</strong> reserved words<br />

• Information on how <strong>X.25</strong> <strong>PSCS</strong> routes outgoing calls<br />

• NMS TRAC command file formats<br />

———————————————————————————————————————<br />

This guide is designed specifically for system and network administrators who<br />

configure <strong>X.25</strong> <strong>PSCS</strong> software, as well as for operators who issue NMS commands.<br />

———————————————————————————————————————<br />

Prerequisites<br />

To use this guide to configure <strong>X.25</strong> <strong>PSCS</strong> software, you should have Telcon and<br />

program product configuration experience or have attended Unisys classes on these<br />

subjects. You should also be familiar with the ITU/TSS <strong>X.25</strong> Recommendation. To<br />

issue NMS commands, you should be an experienced <strong>DCP</strong> operator.<br />

———————————————————————————————————————<br />

Organization<br />

xvi<br />

This guide is organized as follows:<br />

Section 1<br />

Introduction<br />

Section Description<br />

Section 2<br />

Configuring Standard<br />

<strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

Section 3<br />

Configuring a DCE<br />

Network<br />

Describes <strong>X.25</strong> <strong>PSCS</strong> capabilities, migration issues, and product<br />

limitations and restrictions.<br />

Provides procedural information on configuring <strong>X.25</strong> <strong>PSCS</strong> to<br />

provide access to a PDN, the DDN, or a private packet network.<br />

Describes how to plan a DCE network, and configure various DCE<br />

networks.<br />

continued<br />

7831 5470–200


Section Description<br />

Section 4<br />

Configuration Examples<br />

Section 5<br />

Using Network<br />

Management Services<br />

(NMS)<br />

Section 6<br />

Using <strong>X.25</strong> <strong>PSCS</strong><br />

Configuration<br />

Statements<br />

Section 7<br />

<strong>X.25</strong> <strong>PSCS</strong><br />

Troubleshooting<br />

Appendix A<br />

<strong>X.25</strong> <strong>PSCS</strong> Reserved<br />

Words<br />

Appendix B<br />

<strong>X.25</strong> <strong>PSCS</strong> Outgoing<br />

Call Routing Concepts<br />

Appendix C<br />

NMS TRAC Command<br />

Trace File Formats<br />

Provides examples of <strong>X.25</strong> <strong>PSCS</strong> configurations.<br />

Explains how to use <strong>X.25</strong> <strong>PSCS</strong>-related NMS commands.<br />

About This Guide<br />

Describes <strong>X.25</strong> <strong>PSCS</strong>-related configuration statements and their<br />

parameters and explains how to use them to configure <strong>X.25</strong> <strong>PSCS</strong>.<br />

Details troubleshooting methods for <strong>X.25</strong> <strong>PSCS</strong>.<br />

Lists <strong>X.25</strong> <strong>PSCS</strong> reserved words.<br />

Discusses <strong>X.25</strong> <strong>PSCS</strong> routing concepts.<br />

Provides examples of NMS TRAC command trace file formats.<br />

———————————————————————————————————————<br />

7831 5470–200 xvii


About This Guide<br />

Notation Conventions<br />

xviii<br />

The following notation conventions are used in this guide:<br />

Notation Convention Example<br />

Commands ITALIC CAPS RECORD command<br />

Optional information [ ] [<strong>DCP</strong>=name/netadd]<br />

Options ITALIC CAPS R option<br />

Parameters, parameter values ITALIC CAPS OPTIONS=RPOA parameter<br />

Screen display monofont <strong>X.25</strong> Reset by <strong>DCP</strong><br />

Single selection from group { } TYPE={H | M | L}<br />

Statements ITALIC CAPS DTETYPE statement<br />

Variables italic filename<br />

Note: Uppercase letters identify information you must spell exactly as it appears.<br />

Commands (RECORD and SWITCH) and parameters (<strong>DCP</strong>, LINE, TERM,<br />

and so on) are examples. You can abbreviate all commands and parameters,<br />

except for the RECORD and SWITCH commands, and their parameters.<br />

———————————————————————————————————————<br />

7831 5470–200


Related Product Information<br />

About This Guide<br />

In addition to this guide, the following Unisys documents contain helpful product<br />

information:<br />

Document Name/Number Description<br />

Buyer's Guide to <strong>DCP</strong><br />

Communication Products<br />

(7436 9828)<br />

<strong>DCP</strong> <strong>Series</strong> LAN Platform<br />

Configuration and Operations<br />

Guide<br />

(7831 5512)<br />

<strong>DCP</strong> <strong>Series</strong> Open Systems<br />

Interactive Transport<br />

Services (OSITS)<br />

Configuration and Operations<br />

Guide<br />

(7831 5587)<br />

<strong>DCP</strong> <strong>Series</strong> SNA/net<br />

Configuration Guide<br />

(7831 5629)<br />

This guide provides marketing personnel and clients with detailed<br />

information about <strong>DCP</strong> hardware, software, network connectivity,<br />

and product migration. It fills the gap between marketing<br />

brochures and technical manuals.<br />

This guide provides the following:<br />

• Detailed information on configuring and operating the LAN<br />

Platform, the Telcon program product that enables Telcon to<br />

communicate over 802.3, FDDI, and Token Ring LANs<br />

• Alphabetically arranged configuration and operation reference<br />

information for each Telcon configuration statement and NMS<br />

command the LAN Platform uses<br />

• Information on the tasks associated with configuring the LAN<br />

Platform<br />

Use this guide with the base Telcon product operations library<br />

and configuration library.<br />

This guide describes how to configure OSITS on a <strong>DCP</strong>. This<br />

guide includes the following:<br />

• An overview of the product<br />

• Descriptions of the required configuration statements<br />

• Examples of typical configurations<br />

• Operations procedures unique to OSITS<br />

This guide describes how to configure the SNA/net program<br />

product. This guide includes descriptions of the following:<br />

• SNA/net features<br />

• SNA/net software<br />

• Telcon configuration statements<br />

• Sample network configurations<br />

continued<br />

7831 5470–200 xix


About This Guide<br />

xx<br />

Document Name/Number Description<br />

<strong>DCP</strong> <strong>Series</strong> TCP–IP Stack<br />

Configuration and Operations<br />

Guide<br />

(7831 5546)<br />

<strong>DCP</strong> <strong>Series</strong> Telcon<br />

Configuration Guide<br />

(7831 5678)<br />

<strong>DCP</strong> <strong>Series</strong> Telcon<br />

Configuration Reference<br />

Manual<br />

(7831 5686)<br />

This guide describes how to configure TCP–IP Stack software on<br />

a <strong>DCP</strong>. This guide includes the following:<br />

• An overview of the product<br />

• Descriptions of the required configuration statements<br />

• Examples of typical configurations<br />

• Operations procedures unique to TCP–IP Stack<br />

This guide tells the user how to configure Telcon to enable<br />

communication in a <strong>DCP</strong> communication network. This guide tells<br />

the user how to configure:<br />

• Network protocols<br />

• Terminals<br />

• Applications<br />

• DSF<br />

This guide also provides an overview of Telcon and the software<br />

components Telcon works with, including the following:<br />

• <strong>DCP</strong>/OS<br />

• NMS<br />

• Telcon program products<br />

Use this guide with the <strong>DCP</strong> <strong>Series</strong> Telcon Configuration<br />

Reference Manual (7831 5686).<br />

This manual provides:<br />

• Detailed, alphabetically arranged reference information for<br />

each Telcon configuration statement used to configure the<br />

base Telcon communication product, which includes TCP/IP<br />

and OSI communication capabilities.<br />

• An extensive set of Telcon source configuration files, which<br />

cover the major areas of Telcon configuration.<br />

Use this manual with the <strong>DCP</strong> <strong>Series</strong> Telcon Configuration Guide<br />

(7831 5678).<br />

continued<br />

7831 5470–200


Document Name/Number Description<br />

<strong>DCP</strong> <strong>Series</strong> Telcon<br />

Installation Guide<br />

(7831 5645)<br />

<strong>DCP</strong> <strong>Series</strong> Telcon Message<br />

Manual<br />

(7436 0728)<br />

<strong>DCP</strong> <strong>Series</strong> Telcon Network<br />

Load Utility (NLU) Installation<br />

Guide<br />

(7436 1601)<br />

<strong>DCP</strong> <strong>Series</strong> Telcon<br />

Operations Guide<br />

(7831 5785)<br />

This guide provides information on how to<br />

About This Guide<br />

• Install and generate <strong>Communications</strong> Delivery software and<br />

related program products on an OS 2200 host<br />

• Load the generated software to Distributed <strong>Communications</strong><br />

Processors (<strong>DCP</strong>s)<br />

• Verify the loaded software<br />

This manual contains information on the following:<br />

• Status messages, error conditions, and corrective actions for<br />

NMS and CENLOG messages<br />

• Directory Service Agent (DSA) messages<br />

• Remote Files Services (RFS) messages<br />

• Instrumentation messages<br />

This guide describes how to install, configure, and operate the<br />

NLU product. NLU loads a <strong>DCP</strong> with Telcon when a bootloader is<br />

not available. NLU:<br />

• Supports a wide set of networks<br />

• Provides the means to use various transport protocols<br />

between <strong>DCP</strong>s or between a <strong>DCP</strong> and an OS 2200 host.<br />

This guide explains how to:<br />

• Organize <strong>DCP</strong> networks using NMS consoles and commands<br />

• Transfer files in a <strong>DCP</strong> environment<br />

• Interpret messages<br />

• Enable instrumentation<br />

• Control console and logged messages<br />

continued<br />

7831 5470–200 xxi


About This Guide<br />

xxii<br />

Document Name/Number Description<br />

<strong>DCP</strong> <strong>Series</strong> Telcon<br />

Operations Reference<br />

Manual<br />

(7831 5728)<br />

<strong>DCP</strong> <strong>Series</strong> <strong>X.25</strong> <strong>Packet</strong><br />

<strong>Switched</strong> <strong>Communications</strong><br />

<strong>Software</strong> (<strong>PSCS</strong>)<br />

Programming Reference<br />

Manual<br />

(7831 5496)<br />

<strong>DCP</strong> <strong>Series</strong> <strong>X.25</strong><br />

<strong>Packet</strong> <strong>Switched</strong><br />

<strong>Communications</strong> <strong>Software</strong><br />

(<strong>PSCS</strong>)/X.28 <strong>Packet</strong><br />

Assembler/Disassembler<br />

(PAD) End Use Guide<br />

(7831 5488)<br />

This manual contains information on the following Network<br />

Management Services (NMS) commands and parameters:<br />

• Telcon<br />

• ILM NMS<br />

• 802.3 LAN Platform NMS<br />

• OSITS NMS<br />

• TCP–IP Stack NMS<br />

• Remote File System (RFS)<br />

This manual also contains information about the following:<br />

• Instrumentation commands and messages<br />

• <strong>Software</strong> support procedures<br />

This manual provides the information needed to use the <strong>DCP</strong> <strong>X.25</strong><br />

<strong>PSCS</strong> layer 3/4 platform interface and packet layer services (PLS)<br />

interface to write programs that use <strong>PSCS</strong> services.<br />

The X.28/PAD software implements recommendations that<br />

describe how asynchronous terminals access packet-switched<br />

public data networks. In addition to providing asynchronous<br />

terminals with PDN access, the X.28/PAD offers synchronous<br />

terminals this service. This guide describes how to use the<br />

X.28/PAD from synchronous and asynchronous terminals.<br />

———————————————————————————————————————<br />

7831 5470–200


Section 1<br />

Introduction<br />

Section 1 provides an introduction to <strong>X.25</strong> packet switched communications software<br />

(<strong>PSCS</strong>), which includes the following:<br />

• <strong>X.25</strong> <strong>PSCS</strong> product overview<br />

• <strong>X.25</strong> <strong>PSCS</strong> limitations<br />

• <strong>X.25</strong> <strong>PSCS</strong> restrictions<br />

• DCE Network limitations<br />

• Migration issues<br />

Section Topic<br />

1.1<br />

1.1.1<br />

1.1.2<br />

1.1.3<br />

1.1.4<br />

1.1.5<br />

1.1.6<br />

1.1.7<br />

1.1.8<br />

1.1.9<br />

1.1.10<br />

1.1.11<br />

1.1.12<br />

1.1.13<br />

1.1.14<br />

1.1.15<br />

<strong>X.25</strong> <strong>PSCS</strong> Product Overview<br />

DCE Network Feature<br />

ILM-20 Support<br />

Idle Trunk Circuit Handling<br />

CNMS Interface<br />

<strong>Packet</strong> Network Access<br />

Support for Standard and Proprietary Protocols<br />

TCP/IP<br />

OSI<br />

SNA<br />

DCA<br />

Public Data Networks Supported<br />

Special Network Certification<br />

Special Capabilities<br />

DTE Routing and Routing Precedence<br />

Minimizing <strong>Packet</strong> Layer Services (PLS) DTEs<br />

Message Tracing<br />

1988 ITU/TSS (CCITT) Compliance<br />

Coded Character Sets<br />

Dynamic Line Switching<br />

1.2 <strong>X.25</strong> <strong>PSCS</strong> Limitations<br />

continued<br />

7831 5470–200 1–1


Introduction<br />

1–2<br />

Section Topic<br />

1.3 <strong>X.25</strong> <strong>PSCS</strong> Restrictions<br />

1.4 DCE Network Limitations<br />

1.5 <strong>DCP</strong> Loading Over <strong>X.25</strong> Networks<br />

1.6<br />

1.6.1<br />

1.6.2<br />

Migration Issues<br />

X25ROUTE Statement<br />

X.29 PAD/Videotex line indicator option<br />

Default Level 4 program option for incoming call routing<br />

Using DTE statements as filters for incoming calls<br />

Level 4 Program Definition for SNA/net<br />

———————————————————————————————————————<br />

7831 5470–200


1.1. <strong>X.25</strong> <strong>PSCS</strong> Product Overview<br />

Introduction<br />

X.35 <strong>PSCS</strong> continues to support capabilities introduced in previous releases. These are<br />

described in this section.<br />

———————————————————————————————————————<br />

1.1.1. DCE Network Feature<br />

The DCE Network feature enables a <strong>DCP</strong> to function as data circuit-terminating<br />

equipment (DCE), allowing directly attached DTEs (DADs) using the <strong>X.25</strong> protocol to<br />

use a Telcon network as a private <strong>X.25</strong> packet network. In addition to network access,<br />

a DCE network provides the following capabilities:<br />

• Priority virtual circuits, which ensure that traffic on a low priority circuit does not<br />

delay traffic on a higher priority circuit.<br />

• One-way logical channels, which enable you to reserve certain logical channels for<br />

incoming calls and others for outgoing calls.<br />

• D-bit and M-bit implementations, which enable you to specify whether the network<br />

or the receiving DTE provides acknowledgments. The M-bit implementation<br />

enables communicating DTEs to maintain data integrity when the network divides<br />

data blocks into smaller packets.<br />

• Nonstandard default packet and window sizes, enabling a DTE to select a default<br />

packet size other than 128 octets and a default window size other than 2.<br />

• Flow control parameter negotiation, enabling a DTE to request specific packet and<br />

window sizes on a per call basis during call establishment.<br />

• Closed user groups (CUGs), providing a method of restricting access to groups of<br />

DTEs.<br />

• Reverse charging, which enables sending DTEs to transfer charges for a call to a<br />

receiving DTE.<br />

• Multilink procedure, allowing individual links to be grouped and treated as a single<br />

link, which improves performance because the bandwidth of the group is larger<br />

than any single link. It also improves reliability because if one link fails, others<br />

may still be available.<br />

• Accounting and charging information capability, enabling you to collect and log<br />

DTE usage information on a virtual circuit basis.<br />

7831 5470–200 1–3


Introduction<br />

• Call switching, allowing a network operator to reroute a DTE call to another DTE.<br />

• Hunt groups, which provide a method of configuring a single address for a group<br />

of DTEs, enabling calls to be sent to the least active DTE.<br />

• X.75 interface to private networks, which enables internetworking with private<br />

networks.<br />

———————————————————————————————————————<br />

1.1.2. ILM-20 Support<br />

1–4<br />

This feature enables the <strong>X.25</strong> <strong>PSCS</strong> packet layer to interface with a link access<br />

procedure (LAPB) implementation executing in an ILM-20, offering the following<br />

benefits:<br />

• A greater number of connections. The 4 x 1 ILM-20 replaces single connection line<br />

modules.<br />

• Lower cost per connection.<br />

• Increased line speeds. The ILM-20 supports an aggregate speed of up to 2 million<br />

bits-per-second (mbps). Top speeds on other line modules cannot exceed 64,000<br />

bps.<br />

• Enhanced <strong>DCP</strong> performance. Achieved because the LAPB code is executing in the<br />

line module, not the <strong>DCP</strong> I/O processor.<br />

• Implementation of Modulo 128. Enables frame sequence numbering between 0 and<br />

127.<br />

This feature has been certified by European NET2 standards, and can be used on any<br />

network that recognizes the European NET2 certification standard.<br />

———————————————————————————————————————<br />

7831 5470–200


1.1.3. Idle Trunk Circuit Handling<br />

Introduction<br />

The idle trunk circuit handling feature lowers PDN charges by implementing the<br />

following:<br />

• A timer that defines how long <strong>X.25</strong> <strong>PSCS</strong> maintains an inactive switched virtual<br />

circuit (SVC) trunk before it is cleared. Previous releases of <strong>X.25</strong> <strong>PSCS</strong> attempted<br />

to maintain the trunk when there was no traffic.<br />

• A counter that defines how many attempts <strong>X.25</strong> <strong>PSCS</strong> makes to establish an SVC<br />

trunk before declaring a remote <strong>DCP</strong> out of service.<br />

• A timer that defines the amount of time between attempts to reestablish an SVC<br />

that has been cleared. Previous releases repeatedly attempted to establish an SVC.<br />

———————————————————————————————————————<br />

1.1.4. CNMS Interface<br />

<strong>X.25</strong> <strong>PSCS</strong> provides an interface to CNMS. Support for this feature enables you to<br />

collect information by <strong>X.25</strong> link, PDNGRP, DTE, X.29 PAD, and X.29 terminal.<br />

———————————————————————————————————————<br />

1.1.5. <strong>Packet</strong> Network Access<br />

<strong>X.25</strong> <strong>PSCS</strong> enables <strong>DCP</strong>s to access PDNs, the DDN, and private packet networks. It<br />

offers the following features:<br />

• Implements ITU/TSS Recommendation <strong>X.25</strong>, providing <strong>DCP</strong>s with access to packet<br />

networks.<br />

• Implements ITU/TSS Recommendation X.29, enabling asynchronous terminals<br />

using a network X.3 packet assembler/disassembler (PAD) to access <strong>DCP</strong>s and OS<br />

2200 hosts over PDNs and private packet networks.<br />

• Implements ITU/TSS Recommendations X.3 and X.28, enabling asynchronous<br />

terminals to communicate with foreign hosts over PDNs running applications<br />

complying with ITU/TSS Recommendation X.29. Unisys X.28/PAD software also<br />

provides these services for synchronous terminals. The X.28/PAD feature supports<br />

up to 820 active terminals.<br />

7831 5470–200 1–5


Introduction<br />

• Provides a layer 3/4 platform interface, enabling <strong>DCP</strong> programmers to write<br />

applications that use the <strong>X.25</strong> services of <strong>X.25</strong> <strong>PSCS</strong>.<br />

• Provides a layer 4 that enables OS 2200 applications to access the <strong>X.25</strong> services<br />

that <strong>X.25</strong> <strong>PSCS</strong> offers.<br />

• Provides a feature that enables Telcon applications to use <strong>X.25</strong> services to<br />

communicate with U <strong>Series</strong> systems (running IS-5000 or IS-6000), Unisys personal<br />

workstations (running IS-PC or IS-CS), UTS 4000 Cluster Controllers (running UTS<br />

<strong>X.25</strong> <strong>PSCS</strong>), and other <strong>DCP</strong>s.<br />

———————————————————————————————————————<br />

1.1.6. Support for Standard and Proprietary Protocols<br />

TCP/IP<br />

OSI<br />

1–6<br />

<strong>X.25</strong> <strong>PSCS</strong> supports industry standard as well as proprietary protocols.<br />

———————————————————————————————————————<br />

<strong>X.25</strong> <strong>PSCS</strong> supports the TCP-IP Stack, a program product that implements TCP/IP<br />

protocols. This support enables <strong>DCP</strong>s to communicate with the following:<br />

• TCP/IP-compliant applications across the DDN and PDNs.<br />

• OS 2200 hosts and U <strong>Series</strong> systems (running IS-5000 or IS-6000) across the DDN.<br />

This capability provides an interface between the TCP-IP Stack applications and<br />

DCA applications, enabling <strong>DCP</strong>s to communicate as though they were using<br />

Telcon connections. Full Telcon functionality is maintained.<br />

———————————————————————————————————————<br />

<strong>X.25</strong> <strong>PSCS</strong> provides an interface to the OSI Transport Services (OSITS) program<br />

product, enabling <strong>DCP</strong>s to communicate over PDNs with Open Systems<br />

Interconnection-compliant applications.<br />

———————————————————————————————————————<br />

7831 5470–200


SNA<br />

DCA<br />

Introduction<br />

<strong>X.25</strong> <strong>PSCS</strong> provides an interface to the SNA/net program product, enabling <strong>DCP</strong>s to<br />

communicate over PDNs with IBM 37xx communications controllers and PU T2.0<br />

Cluster Controllers using the SNA protocols.<br />

———————————————————————————————————————<br />

<strong>X.25</strong> <strong>PSCS</strong> provides an interface to Unisys DCA software, enabling <strong>DCP</strong>s to<br />

communicate over PDNs with other Unisys devices.<br />

———————————————————————————————————————<br />

1.1.7. Public Data Networks Supported<br />

The following lists the public data networks on which <strong>X.25</strong> <strong>PSCS</strong> is certified to run:<br />

Accunet (USA)<br />

Arpac (Argentina)<br />

Austpac (Australia)<br />

B<strong>X.25</strong> (USA, private operator)<br />

Datapac (Canada)<br />

Datex (Sweden)<br />

Datex-P 1980 (Austria and Germany)<br />

DCS (Belgium)<br />

DDX (NTT Japan)<br />

Defense Data Network (USA)<br />

DN1 (Netherlands)<br />

Iberpac (Spain)<br />

Itapac (Italy)<br />

Mexpac (Mexico)<br />

NOPN (Norway)<br />

NPDN (Finland)<br />

PSS (United Kingdom)<br />

Renpac (Brazil)<br />

SITA (France)<br />

Telenet ® (USA)<br />

Telepac (Switzerland)<br />

Telepacp (Portugal)<br />

Transpac (France)<br />

———————————————————————————————————————<br />

1.1.8. Special Network Certification<br />

<strong>X.25</strong> <strong>PSCS</strong> earned the following special network certifications:<br />

• Defense Data Network<br />

• European CTS/WAN<br />

• European NET2<br />

• Federal Information Processing Standards (FIPS) Conformance Tests<br />

• U.S. GOSIP<br />

———————————————————————————————————————<br />

7831 5470–200 1–7


Introduction<br />

1.1.9. Special Capabilities<br />

1–8<br />

In addition to the basic network access capability <strong>X.25</strong> <strong>PSCS</strong> offers, it also supports<br />

some optional capabilities. You can use these capabilities, however, only if the<br />

network to which your <strong>DCP</strong> is connected offers them. These capabilities are listed<br />

below:<br />

• Maximum packet sizes of 16, 32, 64, 128, 256, 512, 1024, 2048, and 4096 octets. You<br />

can configure different sizes for input and output packets.<br />

• Maximum frame sizes of 16, 32, 64, 128, 256, 512, 1024, 2048, and 4096 octets.<br />

• <strong>Packet</strong> window sizes between 1 and 7, enabling up to 7 outstanding<br />

unacknowledged packets.<br />

• Frame window sizes between 1 and 7 for standard communications lines and 1<br />

and 127 for ILM-20 lines.<br />

• Permanent virtual circuits (PVCs), which assure that a transmitting DTE connects<br />

to a receiving DTE. PVCs do not require call setup or clearing procedures.<br />

• Priority virtual circuits, which ensure that traffic on a low priority circuit does not<br />

delay traffic on a higher priority circuit.<br />

• Closed user groups (CUGs), which restrict access to certain DTEs.<br />

• Fast select, which enables a DTE to send a call request packet that contains up to<br />

128 octets of data. The receiving DTE can respond with a call accepted or clear<br />

indication packet that contains 128 octets of data as well.<br />

• Flow control parameter negotiation, which enables a DTE to negotiate a packet<br />

level window size on a per call basis.<br />

• Multilink procedure, which groups links into a single entity. The multilink<br />

procedure improves performance because the bandwidth of the group is larger<br />

than any single link. It also improves reliability because if one link in the group<br />

fails, others may still be available.<br />

• One-way logical channels, which reserve certain channels for incoming traffic and<br />

other channels for outgoing traffic.<br />

• Recognized private operating agencies (RPOAs), which designate the intermediate<br />

carrier (network) through which a virtual circuit connection passes to reach its<br />

destination.<br />

7831 5470–200


• Reverse charging, which enables the following:<br />

– Charging outgoing calls to a receiving DTE<br />

– Refusing incoming calls that specify reverse charging<br />

Introduction<br />

• Throughput class negotiation, which enables negotiated throughput rates with the<br />

network on a per call basis.<br />

• Transit delay, which specifies the maximum amount of time a packet has to reach<br />

its destination.<br />

• D-bit and M-bit implementations, which enable you to specify whether the network<br />

or the receiving DTE provides acknowledgments. The M-bit implementation<br />

enables communicating DTEs to maintain data integrity when the network divides<br />

data blocks into smaller packets.<br />

———————————————————————————————————————<br />

1.1.10. DTE Routing and Routing Precedence<br />

<strong>X.25</strong> <strong>PSCS</strong> previously used three routing methods for incoming call packets: a calling<br />

DTE address match, a protocol identifier match, and the configured default Level 4.<br />

Previous routing precedence could not be altered by the user. The DTE Routing and<br />

Routing Precedence feature provides a method for selecting a Level 4 based on<br />

subaddress. It also allows you to configure the order in which the methods are<br />

applied. The X25ROUTE statement specifies the precedence and routing used by a<br />

given line or network.<br />

———————————————————————————————————————<br />

1.1.11. Minimizing <strong>Packet</strong> Layer Services (PLS) DTEs<br />

<strong>Packet</strong> layer services (PLS) is a software feature included in <strong>X.25</strong> <strong>PSCS</strong> that, in<br />

combination with a host PLS driver, allows data communications between dissimilar<br />

host systems. In earlier releases of <strong>X.25</strong> <strong>PSCS</strong>, PLS required an EU card specifying a<br />

DTE configuration card for every DTE that PLS connected, and one EU/DTE pair for<br />

every line used to connect with PLS. With the release of <strong>X.25</strong> <strong>PSCS</strong> 5R2, you can<br />

eliminate duplicate EU/DTE pairs, increasing the speed of the connection process and<br />

reducing initialization overhead.<br />

———————————————————————————————————————<br />

7831 5470–200 1–9


Introduction<br />

1.1.12. Message Tracing<br />

This feature provides message tracing capabilities in <strong>X.25</strong> <strong>PSCS</strong> using the Network<br />

Management Service (NMS) TRAC command. Trace commands are entered at the NMS<br />

interface console to activate and control <strong>X.25</strong> <strong>PSCS</strong> packet level 2/3 and 3/4 interface<br />

data tracing. Trace information is then logged to the hard disk on the <strong>DCP</strong> for later<br />

retrieval. This information is used for network debugging and software maintenance.<br />

———————————————————————————————————————<br />

1.1.13. 1988 ITU/TSS (CCITT) Compliance<br />

<strong>X.25</strong> <strong>PSCS</strong> is fully compliant with required ITU/TSS (CCITT) 1988 <strong>X.25</strong><br />

recommendations.<br />

———————————————————————————————————————<br />

1.1.14. Coded Character Sets<br />

Internationalization allows terminals to be configured with a coded character set<br />

(CCS). For <strong>X.25</strong> <strong>PSCS</strong>, this includes asynchronous terminals using an X.3 PAD to<br />

connect to the X.29 PAD interface feature, and UNISCOPE ® workstation terminals<br />

connected to a UTS Cluster Controller running UTS <strong>X.25</strong> <strong>PSCS</strong> software. The CCS<br />

value may be configured using the CCS parameter on the PRCSR or TERM<br />

configuration statements. When these terminals open DCA sessions to a host<br />

application ($$OPEN command), the CCS value is encoded into the display zone<br />

parameter field of the INT-1 protocol's READP response HIC string. For more<br />

information, see Section 6.9 of this guide, “TERM — Defining a Terminal.”<br />

———————————————————————————————————————<br />

1.1.15. Dynamic Line Switching<br />

1–10<br />

Using the NMS SWT=ACTN=get/set LINE=line command for dynamic line switching<br />

moves any resilient configured <strong>X.25</strong> trunk to the other Telcon. If the <strong>X.25</strong> trunk is<br />

configured on multiple <strong>X.25</strong> lines (that is, more than one DTE statement is used to<br />

reference different PDNGRP statements), and only one line is switched to the other<br />

Telcon, the entire <strong>X.25</strong> trunk will be moved without regard to the status of the other<br />

<strong>X.25</strong> lines.<br />

———————————————————————————————————————<br />

7831 5470–200


1.2. <strong>X.25</strong> <strong>PSCS</strong> Limitations<br />

<strong>X.25</strong> <strong>PSCS</strong> level 5R2 has the following capacity limitations:<br />

• 300 lines (See Note 1)<br />

• 135 RTC trunks<br />

• 135 DNS trunks<br />

• 570,000 configured virtual circuits<br />

• 5,000 configured DTEs<br />

• 9,890 active virtual circuits<br />

• 820 active X.28/PAD terminals<br />

• 300 PDNGRPs<br />

• 1,900 logical channels for each PDNGRP<br />

• 48 lines for each multilink group<br />

• 8 PDNGRPs specified for multilink<br />

• 16,000 octets of message data in combined (M-bit) packets<br />

• 128 network types (See Note 2)<br />

Introduction<br />

Note: 1. <strong>X.25</strong> <strong>PSCS</strong> supports up to 300 lines. However, <strong>X.25</strong> <strong>PSCS</strong> allows you to<br />

configure up to eight multilink groups. Since each multilink group can<br />

contain up to 48 lines, in a multilink group configuration the limit is<br />

350 lines.<br />

2. A network type is defined by a combination of the NETID specified on a<br />

NETWORK parameter and the global network identifier value specified<br />

on the IDENT parameter of the X25DEF statement.<br />

———————————————————————————————————————<br />

7831 5470–200 1–11


Introduction<br />

1.3. <strong>X.25</strong> <strong>PSCS</strong> Restrictions<br />

1–12<br />

The following are <strong>X.25</strong> <strong>PSCS</strong> restrictions:<br />

• You cannot define the PDN part of a trunk by using both switched virtual circuits<br />

(SVCs) and permanent virtual circuits (PVCs). Each trunk must be defined with<br />

the same kind of virtual circuit.<br />

• <strong>X.25</strong> <strong>PSCS</strong> will not initiate a virtual circuit connection to a UTS 4000 terminal<br />

operating under UTS <strong>X.25</strong>.<br />

• A session to the X.28/PAD may not be established from any UTS 4000 terminal<br />

operating under UTS <strong>X.25</strong> <strong>PSCS</strong>.<br />

• If you define UTS 4000 terminal clusters on a DTE statement, the PDNGRP parent<br />

must be one of the first 16 PDNGRP statements listed in the configuration.<br />

• <strong>X.25</strong> <strong>PSCS</strong> does not support the data assurance feature for a TTY terminal<br />

operating under the X.29 PAD feature or for UTS 4000 terminals operating under<br />

UTS <strong>X.25</strong>.<br />

• <strong>X.25</strong> <strong>PSCS</strong> does not support the OS 2200 control statement for TTY terminals<br />

(@@TTY). This applies only to terminals operating under the X.29 PAD feature.<br />

• You cannot use the BREAK key on SVT-1210 terminals to emulate the<br />

message-wait function offered by UTS. This applies only to terminals operating<br />

under the X.29 PAD feature.<br />

• No terminal using the <strong>X.25</strong> protocol can specify ALOC=YES on the TERM<br />

statement.<br />

• <strong>X.25</strong> <strong>PSCS</strong> does not support the 4 x 1 loadable line module.<br />

———————————————————————————————————————<br />

7831 5470–200


1.4. DCE Network Limitations<br />

The DCE Network feature has the following capacity limits:<br />

• 300 lines for each Telcon<br />

• 1,900 logical channels for each DTE<br />

• 255 closed user groups for each network<br />

• Membership in six closed user groups for each DTE<br />

Introduction<br />

• Nine DTEs for each hunt group (all members of a hunt group must be attached to<br />

the same Telcon)<br />

• 16,000 octets of message data in combined (M-bit) packets from DTEs<br />

• Only one DTE statement can be configured per Level 4 program as an internal<br />

DTE<br />

———————————————————————————————————————<br />

7831 5470–200 1–13


Introduction<br />

1.5. <strong>DCP</strong> Loading Over <strong>X.25</strong> Networks<br />

1–14<br />

Downline loads and upline dumps are now supported across an <strong>X.25</strong> network, using<br />

the Network Load Utility. See the <strong>DCP</strong> <strong>Series</strong> Telcon Network Load Utility<br />

Installation Guide (7436 1601) for further information regarding this product.<br />

———————————————————————————————————————<br />

7831 5470–200


1.6. Migration Issues<br />

Introduction<br />

The following sections provide information for migration between previous releases of<br />

<strong>X.25</strong> <strong>PSCS</strong> and <strong>X.25</strong> release level 5R2x.<br />

———————————————————————————————————————<br />

1.6.1. X25ROUTE Statement<br />

The following sections detail migration issues impacted by the X25ROUTE statement.<br />

———————————————————————————————————————<br />

X.29 PAD/Videotex line indicator option<br />

<strong>X.25</strong> <strong>PSCS</strong> release 5R1 uses a parameter option, OPTIONS=PADVTX, on the PDNGRP<br />

statement to specify whether non-configured incoming calls with the X.29 protocol ID<br />

in the call user data should be routed to the X.29 PAD handler or the Videotex<br />

program product. If you do not use the X25ROUTE statement in your configuration,<br />

you can still use this parameter option as a routing indicator. If you do use the<br />

X25ROUTE statement, this parameter option is disabled; the routing options specified<br />

on the X25ROUTE statement override this parameter option.<br />

———————————————————————————————————————<br />

Default Level 4 program option for incoming call routing<br />

Previous releases of <strong>X.25</strong> <strong>PSCS</strong> support specifying a default Level 4 program to which<br />

incoming calls are routed when the other incoming call criteria have failed. The<br />

LEVEL4 parameter on the DTETYPE statement, when referenced from either a<br />

PDNGRP or X25DEF statement, can be used for specifying the default Level 4<br />

program. If you do not also reference an X25ROUTE statement from either the<br />

PDNGRP or X25DEF statements, you can still use this parameter for specifying a<br />

default Level 4 program. If you do use the X25ROUTE statement, this parameter is<br />

disabled; the routing options on the X5ROUTE statement override this parameter.<br />

———————————————————————————————————————<br />

7831 5470–200 1–15


Introduction<br />

Using DTE statements as filters for incoming calls<br />

1–16<br />

Previous releases of <strong>X.25</strong> <strong>PSCS</strong> allow you to define DTE statements for certain Level 4<br />

programs so that only call packets from those DTEs would be accepted. The Level 4<br />

programs are the X.29 network PAD, or one of the user-written Level 4 programs<br />

implementing the national, international, or user-defined protocols. All four of the<br />

Level 4 program types can be routed based on the protocol ID information contained<br />

in the call user data field of the incoming call packet. However, if at least one DTE<br />

statement is configured for the Level 4 program, then routing based on the protocol ID<br />

becomes disabled and the call is accepted only if its DTE address matches the<br />

configured address. <strong>X.25</strong> <strong>PSCS</strong> automatically rejects incoming calls for the Level 4<br />

program that is not configured.<br />

In <strong>X.25</strong> <strong>PSCS</strong> 5R2, this is no longer automatically available. This capability must be<br />

configured using the X25ROUTE statement. To configure DTE statements for the X.29<br />

network PAD and have all other incoming calls for the X.29 network PAD<br />

automatically rejected, do the following:<br />

• Use DTE statements to define the list of acceptable X.29 network PAD DTEs.<br />

• Define the following X25ROUTE statement:<br />

XRTEPAD X25ROUTE SEARCH=ADDRESS<br />

Reference the statement name from the PDNGRP or X25DEF statement.<br />

Only incoming call packets that are configured with the DTE statements will be<br />

accepted. <strong>X.25</strong> <strong>PSCS</strong> will automatically reject all others.<br />

To accept incoming calls for other Level 4 types in addition to the X.29 network PAD<br />

Level 4, routing is based on protocol ID information. For example, if other Level 4<br />

types are OSITS and TCP-IP Stack program products, define the following X25ROUTE<br />

statement:<br />

XRTEPAD X25ROUTE SEARCH=(ADDRESS,PROTOCOL),;<br />

PROTOCOL=(IPOSI,TPOSI,TPCCITT,IPTCP)<br />

Note that the X.29 network PAD Level 4 type (X29PAD) is not included as one of the<br />

PROTOCOL parameter's values.<br />

———————————————————————————————————————<br />

7831 5470–200


1.6.2. Level 4 Program Definition for SNA/net<br />

Introduction<br />

Previous releases of <strong>X.25</strong> <strong>PSCS</strong> use the parameter option, LEVEL4=PDNQLLC, on the<br />

DTETYPE statement to specify a DTE running the SNA/net Network <strong>Packet</strong>-Switching<br />

Interface (NPSI) interface. This parameter option is no longer used; an incoming call<br />

packet configured for and routed to the LEVEL4 definition is refused by the SNA/net<br />

program product. Instead, use either the TGNPSI or BFNPSI parameter options for<br />

DTEs using the SNA/net NPSI interface. These options specify the transmission group<br />

and boundary function interfaces, respectively. Refer to the <strong>DCP</strong> <strong>Series</strong> SNA/net<br />

Configuration Guide (7831 5629) to determine which interface to use.<br />

———————————————————————————————————————<br />

7831 5470–200 1–17


Section 2<br />

Configuring Standard <strong>X.25</strong> <strong>PSCS</strong><br />

Capabilities<br />

Section 2 describes how to configure standard <strong>X.25</strong> <strong>PSCS</strong> capabilities, that is,<br />

capabilities associated with communication over a public data network (PDN), the<br />

Defense Data Network (DDN), or a private packet network. See Section 3 for<br />

procedures for configuring the DCE Network feature.<br />

Section Topic<br />

2.1<br />

2.1.1<br />

2.1.2<br />

2.1.3<br />

2.2<br />

2.2.1<br />

2.2.2<br />

2.2.3<br />

2.2.4<br />

2.2.5<br />

2.2.6<br />

2.2.7<br />

Configuring Basic Connections to Networks<br />

Configuring a Connection to a PDN<br />

Procedure<br />

Example<br />

Configuring a Connection to the DDN<br />

Procedure<br />

Example<br />

Configuring a Multilink Connection<br />

Procedure<br />

Example<br />

Defining DTEs<br />

Configuring a <strong>DCP</strong> as a DTE<br />

Procedure<br />

Example<br />

Configuring a UTS 4000 Cluster Controller as a DTE<br />

Procedure<br />

Example<br />

Configuring the <strong>Packet</strong> Layer Services (PLS) Interface as a DTE<br />

Procedure<br />

Example<br />

Configuring a U <strong>Series</strong> Running DNS as a DTE<br />

Procedure<br />

Example<br />

Configuring a U <strong>Series</strong> or IS-PC (Running TS/TN) as a DTE<br />

Procedure<br />

Example<br />

Configuring a DTE Running SNA Protocols<br />

Procedure<br />

Example<br />

Configuring DTEs Using Permanent Virtual Circuits<br />

Procedure<br />

Example<br />

continued<br />

7831 5470–200 2–1


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

2–2<br />

Section Topic<br />

2.3 Configuring an X.29 PAD<br />

Procedure<br />

Example<br />

2.4 Configuring an X.28/PAD<br />

Procedure<br />

Example<br />

2.5<br />

2.5.1<br />

2.5.2<br />

2.5.3<br />

2.5.4<br />

2.5.5<br />

2.5.6<br />

2.5.7<br />

2.5.8<br />

Configuring Special <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

Configuring <strong>Packet</strong> Size<br />

Procedure<br />

Example<br />

Configuring <strong>Packet</strong> Level Window Size<br />

Procedure<br />

Example<br />

Configuring Frame Size<br />

Procedure<br />

Example<br />

Configuring a Frame Level Window<br />

Procedure<br />

Example<br />

Configuring Permanent Virtual Circuits<br />

Procedure<br />

Example<br />

Configuring the CALLED and CALLING Options<br />

Procedure<br />

Example<br />

Configuring Partial DTE Addresses<br />

Procedure 1: Configuring Partial DTE Addresses for Outgoing Calls<br />

Procedure 2: Configuring Partial DTE Addresses for Incoming Calls<br />

Procedure 3: Configuring Partial DTE Addresses for Outgoing and<br />

Incoming Calls<br />

Configuring Incoming Call Routing Precedence<br />

Procedure<br />

Examples<br />

———————————————————————————————————————<br />

7831 5470–200


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

2.1 Configuring Basic Connections to Networks<br />

This section consists of three modules that describe how to configure basic<br />

connections to networks. It discusses the following subjects:<br />

• Configuring a connection to a PDN<br />

• Configuring a connection to the DDN<br />

• Configuring a multilink connection<br />

In some instances, these basic connections provide all the configuration information<br />

<strong>X.25</strong> <strong>PSCS</strong> requires. For example, when the <strong>DCP</strong> is connected to a single network and<br />

will communicate with OSI and TCP/IP devices, these simple configurations may be<br />

sufficient. In other instances, however, they simply serve as core configurations upon<br />

which the other configurations described in this section are built.<br />

———————————————————————————————————————<br />

2.1.1 Configuring a Connection to a PDN<br />

This section explains how to define a basic <strong>X.25</strong> <strong>PSCS</strong> configuration (a single <strong>DCP</strong><br />

connection [line] to a single PDN). Figure 2–1 illustrates this configuration.<br />

Figure 2–1. <strong>DCP</strong> Connection Configured to a PDN<br />

———————————————————————————————————————<br />

7831 5470–200 2–3


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

Procedure<br />

2–4<br />

Provide the following configuration statements:<br />

• A PRCSR statement to define the <strong>DCP</strong>.<br />

• An X25DEF statement.<br />

– Specify the NETWORK parameter or ensure that the N1, N2, T1, T2, T3,<br />

L2OPT, and L3OPT parameter values are appropriate for the network to<br />

which the <strong>DCP</strong> is connected.<br />

• A PDNGRP statement to define the <strong>DCP</strong> connection to the network. Specify the<br />

following:<br />

– A reference to a PRCSR statement<br />

– A reference to an X25DEF statement<br />

– A logical channel range and type<br />

• An LCLASS statement that specifies the following:<br />

– <br />

defines a standard <strong>X.25</strong> line module<br />

– A line speed<br />

– <br />

Defines a direct, synchronous, full-duplex line, which the <strong>X.25</strong> protocol<br />

requires.<br />

• A LINE statement that defines the line to the PDN. Specify the following:<br />

– A reference to a PDNGRP statement<br />

– A reference to an LCLASS statement<br />

– A physical address<br />

———————————————————————————————————————<br />

7831 5470–200


Example<br />

Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

The following is an example of a single connection to the Telenet network.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

2.1.2 Configuring a Connection to the DDN<br />

This section explains how to configure a single <strong>DCP</strong> connection to the DDN. Figure<br />

2–2 illustrates this configuration. It differs from the configuration in Section 2.1.1 in<br />

that the X25DEF statement specifies and the PDNGRP statement<br />

specifies a DTE address for the <strong>DCP</strong>, which the DDN requires.<br />

Figure 2–2. <strong>DCP</strong> Connection Configured to the DDN<br />

———————————————————————————————————————<br />

7831 5470–200 2–5


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

Procedure<br />

Example<br />

2–6<br />

Provide the following configuration statements:<br />

• A PRCSR statement to define the <strong>DCP</strong>.<br />

• An X25DEF statement that specifies <br />

• A PDNGRP statement to define the <strong>DCP</strong> connection to the network. Specify the<br />

following:<br />

– A reference to a PRCSR statement<br />

– A reference to an X25DEF statement<br />

– A logical channel range and type<br />

– A DTE address for the <strong>DCP</strong><br />

• An LCLASS statement that specifies the following:<br />

– <br />

defines a standard <strong>X.25</strong> line module<br />

– A line speed<br />

– <br />

Defines a direct, synchronous, full-duplex line, which the <strong>X.25</strong> protocol<br />

requires.<br />

• A LINE statement that defines the line to the DDN. Specify the following:<br />

– A reference to a PDNGRP statement<br />

– A reference to an LCLASS statement<br />

– A physical address<br />

———————————————————————————————————————<br />

The following is an example of a single connection to the DDN.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


2.1.3 Configuring a Multilink Connection<br />

Procedure<br />

Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

This section explains how to configure a multilink connection. The previous<br />

configurations show the usual one-to-one relationship between LINE and PDNGRP<br />

statements. With a multilink configuration, however, up to 48 LINE statements can be<br />

associated with a single PDNGRP statement. In fact, all the lines in the multilink must<br />

reference a single PDNGRP statement. Figure 2–3 illustrates a multilink connection.<br />

Note: Before configuring a multilink connection, make sure that your network<br />

supports it.<br />

Figure 2–3. <strong>DCP</strong> Connection Configured as Multilink<br />

———————————————————————————————————————<br />

Provide the following configuration statements:<br />

• A PRCSR statement to define the <strong>DCP</strong>.<br />

• An X25DEF statement.<br />

– Specify the NETWORK parameter or ensure that the N1, N2, T1, T2, T3,<br />

L2OPT, and L3OPT values are appropriate for the network.<br />

7831 5470–200 2–7


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

Example<br />

2–8<br />

• A PDNGRP statement that specifies the following:<br />

– A reference to a PRCSR statement<br />

– A reference to an X25DEF statement<br />

– A logical channel range and type<br />

– A multilink window size ()<br />

– , which specifies the multilink option for this PDNGRP<br />

• An LCLASS statement that specifies the following:<br />

– which defines a standard <strong>X.25</strong> line module<br />

– A line speed<br />

– <br />

Defines a direct, synchronous, full-duplex line, which the <strong>X.25</strong> protocol<br />

requires.<br />

• A LINE statement for each line associated with this multilink connection. Each<br />

LINE statement must specify the following:<br />

– A reference to the same PDNGRP statement<br />

– A reference to an LCLASS statement<br />

– A physical address<br />

———————————————————————————————————————<br />

The following example defines a multilink connection to a private network. Since the<br />

NETWORK parameter on the X25DEF statement cannot define connections to a<br />

private network, the L2OPT parameter specifies appropriate values for this network.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


2.2 Defining DTEs<br />

Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

This section describes how to define configured DTEs. It builds on the basic network<br />

connections described earlier and does not repeat the steps required to configure a<br />

network connection.<br />

This section describes how to define the following systems as configured DTEs:<br />

• Another <strong>DCP</strong><br />

• A UTS 4000 Cluster Controller<br />

• PLS<br />

• U <strong>Series</strong> system running the DNS protocol<br />

• U <strong>Series</strong> or IS-PC system running the TS/TN protocol<br />

• Systems running the SNA protocols<br />

• PVCs<br />

The following systems can be defined as configured DTEs, but are not required to be<br />

defined as such:<br />

• TCP/IP<br />

• OSI<br />

• X.29 PAD<br />

• Videotex<br />

———————————————————————————————————————<br />

7831 5470–200 2–9


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

2.2.1 Configuring a <strong>DCP</strong> as a DTE<br />

2–10<br />

This section describes how to define a remote <strong>DCP</strong> as a DTE. It builds on the basic<br />

network connections described in Section 2.1.1, “Configuring a Connection to a PDN”<br />

and Section 2.1.3, “Configuring a Multilink Connection.” Since the DDN requires the<br />

TCP/IP protocols, do not use the procedures described in Section 2.1.2, “Configuring a<br />

Connection to the DDN,” with this procedure.<br />

Figure 2–4 illustrates this configuration. Instructions for configuring the idle trunk<br />

capability are provided as well.<br />

Note: <strong>DCP</strong>s must be defined as configured DTEs.<br />

Figure 2–4. <strong>DCP</strong> Configured as a DTE<br />

———————————————————————————————————————<br />

7831 5470–200


Procedure<br />

Provide the following additional configuration statements:<br />

• A PRCSR statement to define the other <strong>DCP</strong>.<br />

• A TRUNK statement.<br />

Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

Although neither the PRCSR nor the TRUNK statements have <strong>X.25</strong> <strong>PSCS</strong> specific<br />

parameters, they are included here for clarity.<br />

• A DTETYPE statement that specifies the following on the LEVEL4 parameter:<br />

– <br />

Specifies PDNTRUNK as the Level 4 program to which <strong>X.25</strong> <strong>PSCS</strong> should<br />

route data received from the DTE that is defined later in this procedure.<br />

– The maximum number of switched virtual circuits this trunk may use. The<br />

default is 1.<br />

– The number of attempts to initially establish, or to reestablish, a virtual circuit<br />

connection that has been cleared because of inactivity. Specify between 0 and<br />

255 attempts. If you do not specify a value or if you specify 0, <strong>X.25</strong> <strong>PSCS</strong><br />

continues to attempt to initially establish or reestablish a circuit until it is<br />

successful.<br />

– The amount of time between attempts to initially establish or reestablish a<br />

virtual circuit connection that has been cleared because of inactivity. Specify<br />

between 0 and 65,535 seconds. If you do not specify a value or if you specify<br />

0, an attempt is made every 60 seconds.<br />

– The amount of time between transmission of network data units (NDUs),<br />

before a circuit is cleared. Specify between 0 and 65,535 seconds. If you do<br />

not specify a value or you specify 0, <strong>X.25</strong> <strong>PSCS</strong> does not automatically clear<br />

the circuit.<br />

– The diagnostic code that <strong>X.25</strong> <strong>PSCS</strong> encodes in clear packets when a trunk<br />

goes into an idle condition. Specify a value between 1 and 255. The default is<br />

168.<br />

Note: You must specify these values in the order listed. See the example<br />

following this procedure for more information.<br />

7831 5470–200 2–11


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

2–12<br />

• A basic connection for the remote <strong>DCP</strong>. See Section 2.1, “Configuring Basic<br />

Connections to Networks,” for information on configuring basic connections to<br />

networks.<br />

• Two DTE statements to define the <strong>DCP</strong>s as DTEs. Specify the following:<br />

– A reference to a PDNGRP statement.<br />

– A reference to a DTETYPE statement.<br />

– A reference to a TRUNK statement. Specify PDN on this parameter as well,<br />

indicating that this is a PDN only trunk.<br />

– A DTE address.<br />

———————————————————————————————————————<br />

7831 5470–200


Example<br />

Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

The following example shows a <strong>DCP</strong>-to-<strong>DCP</strong> trunk configuration. The LEVEL4<br />

parameter on the DTETYPE statement specifies PDNTRUNK. The DTETYPE also<br />

defines a maximum of ten switched virtual circuits for this trunk and the following<br />

values for idle trunk handling:<br />

• 10 attempts to reestablish a virtual circuit that has been cleared<br />

• 90 seconds between attempts to reestablish a virtual circuit that has been cleared<br />

• 90 seconds between transmission of NDUs before a circuit is cleared<br />

• A diagnostic code of 150 to indicate that a trunk is in an idle state<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200 2–13


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

2.2.2 Configuring a UTS 4000 Cluster Controller as a DTE<br />

2–14<br />

This section describes how to define a UTS 4000 Cluster Controller running UTS <strong>X.25</strong><br />

<strong>PSCS</strong> software as a DTE. It builds on the basic network connections described in<br />

Section 2.1.1, “Configuring a Connection to a PDN” and Section 2.1.3, “Configuring a<br />

Multilink Connection.” Since the DDN requires the TCP/IP protocols, do not use the<br />

procedures described in Section 2.1.2, “Configuring a Connection to the DDN,” with<br />

this procedure.<br />

Figure 2–5 illustrates this configuration.<br />

Note: UTS 4000 Cluster Controllers must be defined as DTEs.<br />

Figure 2–5. Cluster Controller Configured as a DTE<br />

———————————————————————————————————————<br />

7831 5470–200


Procedure<br />

Provide the following additional configuration statements:<br />

• A DTETYPE statement that specifies .<br />

Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

• A DTE statement to define the UTS 4000 Cluster Controller as a DTE. Specify the<br />

following:<br />

– A reference to a PDNGRP statement<br />

– A reference to the DTETYPE statement just defined<br />

– A DTE address<br />

• A GROUP statement to function as the CLSTR statement's parent.<br />

• A CLSTR statement. Specify the following:<br />

– A reference to a GROUP statement<br />

– A reference to the DTE statement just defined<br />

• A TERM statement for each workstation screen supported on the UTS 4000<br />

Cluster Controller. Specify the following:<br />

– A reference to the CLSTR statement just defined<br />

– A terminal type, either UTS20W or UTS40W<br />

– A terminal address<br />

———————————————————————————————————————<br />

7831 5470–200 2–15


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

Example<br />

2–16<br />

The following example shows a UTS 4000 Cluster Controller configured as a DTE.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

2.2.3 Configuring the <strong>Packet</strong> Layer Services (PLS) Interface as a<br />

DTE<br />

This section describes how to define foreign hosts using the <strong>Packet</strong> Layer Services<br />

(PLS) host interface as a DTE. It builds on the basic network connections described in<br />

Section 2.1.1, “Configuring a Connection to a PDN” and Section 2.1.3, “Configuring a<br />

Multilink Connection.” Since the DDN requires the TCP/IP protocols, do not use the<br />

procedures described in Section 2.1.2, “Configuring a Connection to the DDN,” with<br />

this procedure.<br />

Figure 2–6 illustrates this configuration.<br />

Note: Foreign hosts that use the PLS interface must be defined as DTEs.<br />

Figure 2–6. PLS Interface Configured as a DTE<br />

———————————————————————————————————————<br />

7831 5470–200 2–17


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

Procedure<br />

Example<br />

2–18<br />

Provide the following additional configuration statements:<br />

• An XEU statement that references a NETADR statement which defines an<br />

OS 2200 host network address.<br />

• A DTETYPE statement that specifies the PLS host interface as a layer 4 program<br />

with the LEVEL4=PLS parameter option.<br />

• A DTE statement to define the foreign host as DTE. Specify the following:<br />

– A reference to the PDNGRP statement<br />

– A reference to the DTETYPE statement just defined<br />

– The DTE address of the foreign host<br />

• An EU statement that references a PRCSR statement and specifies the following:<br />

– The PLS host interface as a transport service user<br />

– The DTE statement just defined<br />

– The XEU statement just defined<br />

———————————————————————————————————————<br />

The following example shows a PDN connection to a foreign host using the PLS host<br />

interface.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

2.2.4 Configuring a U <strong>Series</strong> Running DNS as a DTE<br />

This section describes how to define a remote U <strong>Series</strong> system running the DNS<br />

protocol as a DTE. It builds on the basic network connections described in Section<br />

2.1.1, “Configuring a Connection to a PDN” and Section 2.1.3, “Configuring a Multilink<br />

Connection.” Since the DDN requires the TCP/IP protocols, do not use the procedures<br />

described in Section 2.1.2, “Configuring a Connection to the DDN,” with this<br />

procedure.<br />

Figure 2–7 illustrates this configuration. Instructions for configuring the new idle trunk<br />

capability are provided as well.<br />

Note: U <strong>Series</strong> systems running DNS must be defined as configured DTEs.<br />

Figure 2–7. U <strong>Series</strong> (DNS) Configured as a DTE<br />

———————————————————————————————————————<br />

7831 5470–200 2–19


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

Procedure<br />

Example<br />

2–20<br />

Provide the following additional configuration statements:<br />

• A TRUNK statement.<br />

Although this statement does not have <strong>X.25</strong> <strong>PSCS</strong> specific parameters, it is included<br />

here for clarity.<br />

• A DTETYPE statement that specifies the following on the LEVEL4 parameter:<br />

– PDNTRUNK<br />

– The maximum number of switched virtual circuits for this trunk. The default is<br />

one.<br />

• A DTE statement to define the remote U <strong>Series</strong> as a DTE. Specify the following:<br />

– A reference to a PDNGRP statement.<br />

– A reference to a DTETYPE statement.<br />

– A reference to a TRUNK statement. Specify PDN on this parameter as well,<br />

indicating that this is a PDN only trunk.<br />

– A DTE address.<br />

———————————————————————————————————————<br />

The following example shows a U <strong>Series</strong> running DNS as a DTE. The LEVEL4<br />

parameter on the DTETYPE statement specifies PDNTRUNK. The DTETYPE also<br />

defines a maximum of ten switched virtual circuits for this trunk.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

2.2.5 Configuring a U <strong>Series</strong> or IS-PC (Running TS/TN) as a DTE<br />

This section describes how to define a remote U <strong>Series</strong> system running the TS/TN<br />

protocol as a DTE, or a PC running IS-PC with the TS/TN protocol. It builds on the<br />

basic network connections described in Section 2.1.1, “Configuring a Connection to a<br />

PDN” and Section 2.1.3, “Configuring a Multilink Connection.” Since the DDN requires<br />

the TCP/IP protocols, do not use the procedures described in Section 2.1.2,<br />

“Configuring a Connection to the DDN,” with this procedure.<br />

Figure 2–8 illustrates this configuration.<br />

Note: U <strong>Series</strong> systems and IS-PC systems running TS/TN must be defined as<br />

configured DTEs.<br />

Figure 2–8. U <strong>Series</strong> or IS-PC Configured as a DTE<br />

———————————————————————————————————————<br />

7831 5470–200 2–21


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

Procedure<br />

Example<br />

2–22<br />

Provide the following additional configuration statements:<br />

• A DCATS statement that references a PRCSR statement.<br />

DCATS statements do not include <strong>X.25</strong> <strong>PSCS</strong> specific parameters. This statement<br />

is provided for clarity.<br />

• A DTETYPE statement that specifies <br />

• A DTE statement to define the U <strong>Series</strong> or IS-PC as a DTE. Specify the following:<br />

– A reference to a PDNGRP statement<br />

– A reference to the DTETYPE statement just defined<br />

– A DTE address<br />

– A reference to the DCATS statement just defined<br />

———————————————————————————————————————<br />

The following example shows a PDN connection to a U <strong>Series</strong> or IS-PC system.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

2.2.6 Configuring a DTE Running SNA Protocols<br />

This section describes how to define a system running SNA protocols as a DTE. It<br />

builds on the basic network connections described in Section 2.1.1, “Configuring a<br />

Connection to a PDN” and Section 2.1.3, “Configuring a Multilink Connection.” Since<br />

the DDN requires the TCP/IP protocols, do not use the procedures described in<br />

Section 2.1.2, “Configuring a Connection to the DDN,” with this procedure.<br />

Figure 2–9 illustrates this configuration.<br />

Note: 1. Systems running the SNA protocols must be defined as configured DTEs.<br />

2. The SNA/net program product must be installed for this configuration.<br />

Figure 2–9. SNA Protocol Configured as a DTE<br />

———————————————————————————————————————<br />

7831 5470–200 2–23


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

Procedure<br />

Example<br />

2–24<br />

Provide the following additional configuration statements:<br />

• A DTETYPE statement that specifies .<br />

• A DTE statement to define the remote system as a DTE. Specify the following:<br />

– A reference to a PDNGRP statement<br />

– A reference to the DTETYPE statement just defined<br />

– A DTE address<br />

Note: Refer to the <strong>DCP</strong> <strong>Series</strong> SNA/net Configuration Guide (7831 5629) for<br />

additional configuration statements required by SNA/net.<br />

———————————————————————————————————————<br />

The following example configures a PU T2.0 device running the SNA protocols as a<br />

DTE.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

2.2.7 Configuring DTEs Using Permanent Virtual Circuits<br />

This section describes how to configure DTEs that use permanent virtual circuits<br />

(PVCs). DTEs that use PVCs are supported by <strong>X.25</strong> <strong>PSCS</strong> for the following layer 4<br />

programs: another <strong>DCP</strong>, systems running the <strong>Packet</strong> Layer Services host interface, and<br />

systems running the SNA/net protocols.<br />

It builds on the basic network connections described in Section 2.1.1, “Configuring a<br />

Connection to a PDN” and Section 2.1.3, “Configuring a Multilink Connection.” Since<br />

the DDN requires the TCP/IP protocols, do not use the procedures described in<br />

Section 2.1.2, “Configuring a Connection to the DDN,” with this procedure.<br />

Figure 2–10 illustrates this configuration.<br />

Figure 2–10. DTEs Configured with Permanent Virtual Circuits<br />

———————————————————————————————————————<br />

7831 5470–200 2–25


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

Procedure<br />

Example<br />

2–26<br />

Provide the following additional configuration statements:<br />

• A DTETYPE statement that specifies the layer 4 program being used by the DTE<br />

with the LEVEL4 parameter.<br />

• A DTE statement to define the DTE using PVCs. Specify the following:<br />

– A reference to a PDNGRP statement<br />

– A reference to the DTETYPE statement just defined<br />

– The range of logical channel numbers associated with the DTE using PVCs<br />

———————————————————————————————————————<br />

The following example shows a PDN connection to a DTE using PVCs.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


2.3 Configuring an X.29 PAD<br />

Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

This section describes how to configure the X.29 PAD feature, which enables terminals<br />

attached to a foreign or network packet assembler/disassembler (PAD) to access the<br />

<strong>DCP</strong> and communicate with an OS 2200 host. It builds on the basic network<br />

connections described in Section 2.1.1, “Configuring a Connection to a PDN” and<br />

Section 2.1.3, “Configuring a Multilink Connection.” Since the DDN requires the TCP/IP<br />

TELNET protocol for terminal access, do not use the procedures described in Section<br />

2.1.2, “Configuring a Connection to the DDN,” with this procedure.<br />

Figure 2–11 illustrates this configuration.<br />

Figure 2–11. X.29 PAD Configured to a <strong>DCP</strong><br />

———————————————————————————————————————<br />

7831 5470–200 2–27


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

Procedure<br />

Example<br />

2–28<br />

Provide the following configuration statements:<br />

• A PDNPAD statement to define the X.3 operating characteristics.<br />

See the discussion on the PDNPAD statement in Section 6, “<strong>X.25</strong> <strong>PSCS</strong><br />

Configuration Statements,” for information on X.3 operating parameters.<br />

• TERM statements to define the terminals that will access the X.29 PAD. Specify<br />

the following:<br />

– A reference to the PDNPAD statement just defined.<br />

– A terminal type on the TYPE parameter. Specify TTY, UTS10B, UTS10C, or<br />

DCT500.<br />

Note: You can define the terminals attached to the foreign or network PAD as<br />

configured DTEs. However, this limits X.29 PAD access to configured DTEs<br />

only. Calls from other DTEs are cleared. To configure DTEs, provide a DTE<br />

statement that references PDNGRP and DTETYPE statements and specifies<br />

the DTE address of the calling PAD.<br />

The X25ROUTE statement can also be used to define subaddresses so that<br />

incoming calls from an X.29 PAD can be routed to either the X.29 PAD<br />

handler or Videotex product handler.<br />

———————————————————————————————————————<br />

The following example shows an X.29 PAD configuration that does not define DTEs.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


2.4 Configuring an X.28/PAD<br />

Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

This section describes how to configure the X.28/PAD, which provides access from<br />

asynchronous and synchronous terminals attached to the <strong>DCP</strong> to foreign hosts across<br />

packet networks. It builds on the basic network connections described in Section<br />

2.1.1, “Configuring a Connection to a PDN” and Section 2.1.3, “Configuring a Multilink<br />

Connection.” Since the DDN requires the TCP/IP TELNET protocol for terminal access,<br />

do not use the procedures described in Section 2.1.2, “Configuring a Connection to the<br />

DDN,” with this procedure.<br />

Figure 2–12 illustrates this configuration.<br />

Figure 2–12. X.28/PAD Configured to X.29 Host<br />

———————————————————————————————————————<br />

7831 5470–200 2–29


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

Procedure<br />

2–30<br />

Provide the following additional statements:<br />

• For asynchronous terminals (only), specify at least two EU statements, one for the<br />

terminal type and the other for the data protocol. For the terminal type statement,<br />

specify the following on the EU statement:<br />

– A reference to a PRCSR statement<br />

– One of the following terminal types on the TYPE parameter:<br />

for VT terminals (VT, SVT)<br />

for TTY terminals (TTY, DCT500, UTS10C)<br />

For the data protocol, specify the following on the second EU statement:<br />

– A reference to a PRCSR statement<br />

– One of the following data presentation protocols on the TYPE parameter:<br />

for the INT-1 protocol<br />

for a character-mode protocol<br />

When configuring for all types of asynchronous terminals, you may have to specify<br />

all four types of EU statements.<br />

• An EU statement to define the <strong>DCP</strong> as a PAD for asynchronous terminals and an<br />

EU statement for synchronous terminals. Specify the following:<br />

– A reference to a PRCSR statement.<br />

– .<br />

– Either a network mnemonic or a reference to an X25DEF statement on the<br />

NETWORK parameter. You can find the correct mnemonic in the discussion<br />

on the EU statement in Section 6, “<strong>X.25</strong> <strong>PSCS</strong> Configuration Statements.”<br />

– For asynchronous terminals, specify the EUPRCSR parameter to reference a<br />

PRCSR statement and specify .<br />

7831 5470–200


Example<br />

Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

• An XEU for the asynchronous terminals and an XEU for the synchronous<br />

terminals that will use the X.28/PAD. Specify the following:<br />

– For asynchronous terminals:<br />

<br />

A reference on the DESTSSU parameter to the EU statement that defines the<br />

asynchronous X.28 PAD interface.<br />

– For synchronous terminals, specify a reference on the DESTSSU parameter to<br />

the EU statement that defines the synchronous X.28/PAD interface.<br />

• Standard LCLASS, LINE, and TERM statements for definition of terminals and the<br />

lines that connect them to the <strong>DCP</strong>.<br />

• Optionally, to enable X.28/PAD users to make calls by specifying a DTE statement<br />

name rather than a DTE address, define X.29 hosts as configured DTEs. To do<br />

this, provide standard DTE statements and a DTETYPE statement that specifies<br />

.<br />

———————————————————————————————————————<br />

The following example shows an X.28/PAD configured for asynchronous and<br />

synchronous terminal use.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

7831 5470–200 2–31


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

2–32<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

2.5 Configuring Special <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

This section describes how to configure optional features. Optional features are built<br />

on the configurations described in Section 2.1, “Configuring Basic Connections to<br />

Networks,” any of which can form the basic network connection.<br />

———————————————————————————————————————<br />

2.5.1 Configuring <strong>Packet</strong> Size<br />

Procedure<br />

Example<br />

This section describes how to configure the maximum size input and output packets<br />

for a DTE. <strong>X.25</strong> <strong>PSCS</strong> supports the following sizes: 16, 32, 64, 128, 256, 512, 1024, 2048,<br />

and 4096 octets.<br />

———————————————————————————————————————<br />

On the DTETYPE statement, specify the size of input packets and the size of output<br />

packets:<br />

<br />

———————————————————————————————————————<br />

The following example shows a DTE configured for input packets of 128 octets and<br />

output packets of 256 octets.<br />

<br />

———————————————————————————————————————<br />

2.5.2 Configuring <strong>Packet</strong> Level Window Size<br />

Procedure<br />

This section describes how to configure a DTE packet level window size, which is the<br />

number of packets that can be transmitted without acknowledgment. <strong>X.25</strong> <strong>PSCS</strong><br />

supports packet level windows between 1 and 7 unacknowledged packets.<br />

———————————————————————————————————————<br />

On the DTETYPE statement, specify the size of the input and output windows:<br />

<br />

———————————————————————————————————————<br />

7831 5470–200 2–33


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

Example<br />

The following example shows a DTE configured for an input window of two<br />

outstanding packets and an output window of five outstanding packets.<br />

<br />

———————————————————————————————————————<br />

2.5.3 Configuring Frame Size<br />

Procedure<br />

Example<br />

2–34<br />

This section describes how to configure the maximum size of a frame's information<br />

field. <strong>X.25</strong> <strong>PSCS</strong> supports the following frame sizes: 16, 32, 64, 128, 256, 512, 1024,<br />

2048, and 4096 octets.<br />

———————————————————————————————————————<br />

On the X25DEF statement, specify .<br />

———————————————————————————————————————<br />

The following example shows a configuration specifying a frame size of 256 octets.<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


2.5.4 Configuring a Frame Level Window<br />

Procedure<br />

Example<br />

Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

This section describes how to configure the frame level window, which defines the<br />

maximum number of frames that can be sent or received without acknowledgment.<br />

<strong>X.25</strong> <strong>PSCS</strong> supports a frame level window between 1 and 7 unacknowledged frames<br />

on standard line modules and, optionally, between 1 and 127 unacknowledged frames<br />

on ILM-20 lines.<br />

———————————————————————————————————————<br />

On the X25DEF statement, specify the following:<br />

• The number of outstanding frames to allow on the L2WINDOW parameter<br />

• if the configuration is for an ILM-20 line and you want the extended<br />

window size<br />

———————————————————————————————————————<br />

The following example shows a configuration specifying a frame level window of five<br />

octets.<br />

<br />

———————————————————————————————————————<br />

7831 5470–200 2–35


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

2.5.5 Configuring Permanent Virtual Circuits<br />

Procedure<br />

Example<br />

2–36<br />

This section shows you how to configure permanent virtual circuits.<br />

———————————————————————————————————————<br />

• On the PDNGRP statement, specify the following:<br />

– The first logical channel<br />

– The last logical channel<br />

– <br />

This specifies that these logical channels form permanent virtual circuits.<br />

• On the DTE statement, specify the following:<br />

– The first logical channel. This must fall within the range of logical channels<br />

specified on the PDNGRP statement.<br />

– The last logical channel. This must fall within the range of logical channels<br />

specified on the PDNGRP statement.<br />

———————————————————————————————————————<br />

The following example shows DTEs configured for permanent virtual circuits.<br />

<br />

<br />

<br />

<br />

<br />

<br />

Note: Ensure that the ranges defined on the parameter do not overlap other<br />

DTE definitions.<br />

———————————————————————————————————————<br />

7831 5470–200


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

2.5.6 Configuring the CALLED and CALLING Options<br />

Procedure<br />

Example<br />

This section explains how to configure the and options, which enable<br />

you to instruct <strong>X.25</strong> <strong>PSCS</strong> to process a DTE statement only on incoming calls ()<br />

or on outgoing calls ().<br />

———————————————————————————————————————<br />

On the DTE statement, specify one of the following:<br />

• <br />

This specifies that <strong>X.25</strong> <strong>PSCS</strong> processes the DTE statement on outgoing calls only.<br />

• <br />

This specifies that <strong>X.25</strong> <strong>PSCS</strong> processes the DTE statement on incoming calls only.<br />

———————————————————————————————————————<br />

The following example specifies a DTE statement processed on incoming calls only.<br />

Since the PDNTRUNK LEVEL4 specified on the associated DTETYPE statement must<br />

function as a configured DTE, and <strong>X.25</strong> <strong>PSCS</strong> will not process this DTE statement on<br />

outgoing calls, PDNTRUNK cannot initiate calls. It can, however, receive calls, since<br />

the DTE statement will be processed on incoming calls.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200 2–37


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

2.5.7 Configuring Partial DTE Addresses<br />

This section explains how to configure partial DTE addresses, which means <strong>X.25</strong> <strong>PSCS</strong><br />

uses only the partial address to make routing decisions, enabling you to define many<br />

DTEs with the same DTE statement.<br />

This section provides three procedures:<br />

• Configuring DTE partial addresses for routing outgoing calls<br />

• Configuring DTE partial addresses for incoming calls<br />

• Configuring DTE partial addresses for incoming and outgoing calls<br />

———————————————————————————————————————<br />

Procedure 1: Configuring partial DTE addresses for outgoing calls<br />

On the DTE statement, specify the following:<br />

• <br />

Specifies that the DTE address defined on this statement is a partial address.<br />

• A partial DTE address<br />

Enclose this address in single quotation marks. If you are routing based on<br />

network type, for example, this address would consist of only the data network<br />

identifier code (DNIC) portion.<br />

———————————————————————————————————————<br />

Procedure 2: Configuring partial DTE addresses for incoming calls<br />

2–38<br />

On the DTE statement, specify the following:<br />

• <br />

Specifies that the DTE address defined on this statement is a partial address and<br />

that <strong>X.25</strong> <strong>PSCS</strong> processes this DTE statement only on incoming calls.<br />

• A partial DTE address<br />

Enclose this address in single quotation marks.<br />

———————————————————————————————————————<br />

7831 5470–200


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

Procedure 3: Configuring partial DTE addresses for outgoing and incoming<br />

calls<br />

On the DTE statement, specify the following:<br />

• <br />

Specifies that the DTE address defined on this statement is a partial address and<br />

that <strong>X.25</strong> <strong>PSCS</strong> processes this DTE statement on both incoming and outgoing calls.<br />

• A partial DTE address<br />

Enclose this address in single quotation marks.<br />

Example 1<br />

Example 1 specifies the abbreviated address option for outgoing calls. The partial DTE<br />

address is a DNIC, which enables the DTE statement to define every DTE on the<br />

network.<br />

<br />

<br />

Example 2<br />

Example 2 specifies the abbreviated address option for incoming calls. The partial<br />

DTE address is a DNIC, which enables the DTE statement to define every DTE on the<br />

network. The option means that <strong>X.25</strong> <strong>PSCS</strong> processes this DTE statement only<br />

on incoming calls.<br />

<br />

<br />

Example 3<br />

Example 3 specifies the abbreviated address option for incoming and outgoing calls.<br />

The partial DTE address is a DNIC, which enables the DTE statement to define every<br />

DTE on the network. The and options together means that <strong>X.25</strong> <strong>PSCS</strong><br />

processes this DTE statement on both incoming and outgoing calls.<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200 2–39


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

2–40<br />

Figure 2–13 illustrates this configuration.<br />

Figure 2–13. Configuring Partial DTE Addresses for Outgoing and Incoming Calls<br />

———————————————————————————————————————<br />

7831 5470–200


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

2.5.8 Configuring Incoming Call Routing Precedence<br />

Procedure<br />

This section explains how to configure incoming call packet routing precedence with<br />

the X25ROUTE statement. When an incoming call is received from a network, <strong>X.25</strong><br />

<strong>PSCS</strong> allows you to select which incoming call packet fields to use for routing<br />

purposes. You can also specify the selection order. The available incoming call packet<br />

fields include:<br />

• Calling DTE address<br />

• Protocol ID information in the call user data field<br />

• Address digits appended to the called DTE address (subaddress digits)<br />

You can also route all incoming call packets to a single layer 4 program regardless of<br />

the incoming call packet contents.<br />

If none of the routing methods selected directs the call to a layer 4 program, then <strong>X.25</strong><br />

<strong>PSCS</strong> directs the call back to the network.<br />

———————————————————————————————————————<br />

Add an X25ROUTE statement to specify the order that incoming call packet contents<br />

are examined by <strong>X.25</strong> <strong>PSCS</strong>. On the SEARCH parameter, specify one or more of the<br />

following parameters in any order:<br />

• Specify the ADDRESS option if you want to route the call based on matching the<br />

incoming call packet's calling DTE address with an address configured on a DTE<br />

statement. If an address match occurs, the call is routed to the layer 4 program<br />

identified on the LEVEL4 parameter of the DTETYPE statement referenced by the<br />

DTE statement.<br />

• Specify the PROTOCOL option if you want to route the call based on protocol ID<br />

information in the incoming call packet's call user data field. Not all layer 4<br />

programs available to <strong>X.25</strong> <strong>PSCS</strong> are routed by this method; only a select list are<br />

supported (see Note 1). You must specify the layer 4 programs on the X25ROUTE<br />

PROTOCOL parameter.<br />

• Specify the SUBADR option of you want to route the call based on the subaddress<br />

digits in the called DTE address field. You must use the X25ROUTE SUBADR<br />

parameter to define subaddress digits for a layer 4 program. Only a select list of<br />

layer 4 programs are supported.<br />

7831 5470–200 2–41


Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

Examples<br />

2–42<br />

• Specify the LEVEL4 option if you want all incoming call packets to be routed to a<br />

single layer 4 program. Not all layer 4 programs available to <strong>X.25</strong> <strong>PSCS</strong> are<br />

supported.<br />

Note: 1. Only a select list of layer 4 programs are used for the PROTOCOL,<br />

SUBADR, and LEVEL4 parameter options. They include: IPOSI, TPOSI,<br />

TPCCITT, IPTCP, X29PAD, PDNPID, PDNIPID, PDNUPID, and<br />

VIDEOTEX. These are the names defined for the DTETYPE statement's<br />

LEVEL4 parameter. Other layer 4 programs must be configured and<br />

routed using DTE statements, making them unavailable for these routing<br />

options.<br />

2. Because the LEVEL4 parameter option instructs a call to be routed to a<br />

specific layer 4 program regardless of the incoming call packet contents,<br />

once you specify the LEVEL4 option on a SEARCH parameter, any<br />

subsequently specified parameter options are unusable. Therefore, when<br />

specifying the LEVEL4 option, ensure that it is the last option selected.<br />

Reference the X25ROUTE statement from either a PDNGRP or X25DEF statement. If<br />

you want to define the routing method for only a specific network connection (line),<br />

specify the X25ROUTE on the PDNGRP; if you want to use the routing method for all<br />

network connections, specify it on the X25DEF statement.<br />

———————————————————————————————————————<br />

Example 1<br />

Example 1 shows an OSITS product interface implementation requiring limited access,<br />

allowing only a predefined list of DTE addresses to use the interface. Any incoming<br />

call received from a DTE that is not listed requires special handling by another layer 4<br />

interface.<br />

• Provide an X25ROUTE statement that first routes incoming call packets based on<br />

their calling DTE addresses. If no match occurs, the call is routed to a user-written<br />

layer 4 interface for handling the unwarranted call packet.<br />

• Provide a DTETYPE statement with a LEVEL4=TPOSI parameter option for the<br />

OSITS transport protocol.<br />

• Provide a DTE statement for all DTEs that are authorized to use the OSITS<br />

transport protocol interface.<br />

Note: This routing configuration disables the more commonly used protocol ID<br />

method for routing to the OSITS product.<br />

7831 5470–200


Example 2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Example 2 shows incoming call routing for DTEs switching layer 4 programs (or<br />

protocols) on a per call basis between OSITS and a user-written layer 4 program.<br />

Because configured DTE addresses can only be associated with a single layer 4<br />

program, the address-only routing method will not work. This example shows how<br />

both the X.29/PAD interface and the Videotex program product can be supported on a<br />

single <strong>X.25</strong> line.<br />

• Provide an X25ROUTE statement that routes calls to Videotex or a user-written<br />

layer 4 program based on subaddress digits in the called DTE address. If no<br />

subaddress digit match occurs, however, use the call packet's protocol ID<br />

information for routing.<br />

This example assumes the packet network supports subaddressing and that the DTEs<br />

attached to the network are capable of appending subaddress digits on a per call<br />

basis. If no match occurs based on the subaddress digits, the protocol ID is used for<br />

routing.<br />

Note: Do not specify subaddress digits that match the last digits of the local or<br />

called DTE addresses attached to <strong>X.25</strong> <strong>PSCS</strong>.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200 2–43


Section 3<br />

Configuring a DCE Network<br />

This section explains how to plan and configure the DCE Network feature. The tasks<br />

you perform to configure a DCE network require a reorientation for users that<br />

configure <strong>PSCS</strong> to access packet networks. Previously, you configured <strong>DCP</strong>s to<br />

function as DTEs, requesting and using network services. With DCE Network, you<br />

configure <strong>DCP</strong>s to become the packet network, providing network access and services<br />

for other systems functioning as DTEs.<br />

Although DCE Network uses a Telcon network for routing between DCEs, it does not<br />

require special Telcon configuration. Telcon considerations, therefore, are not covered<br />

in this section. See the <strong>DCP</strong> <strong>Series</strong> Telcon Configuration Guide (7831 5678) for<br />

information on configuring the Telcon network.<br />

Section Topic<br />

3.1<br />

3.1.1<br />

3.1.2<br />

3.1.3<br />

3.2<br />

3.2.1<br />

3.2.2<br />

3.2.3<br />

3.2.4<br />

3.2.5<br />

Planning the Network<br />

Drawing the Network Map<br />

Rules for Creating Network Addresses<br />

Selecting Statements<br />

Configuring the DCE Network<br />

Configuring a One-Node DCE Network<br />

Procedure<br />

Example<br />

Adding a Node and DTEs to a DCE Network<br />

Procedure<br />

Example<br />

Configuring an Internal DTE<br />

Procedure<br />

Example<br />

Configuring an Internal DTE for U <strong>Series</strong> or IS-PC DTEs Running with the<br />

TS/TN Protocol<br />

Procedure<br />

Example<br />

Configuring an X.75 Interface to Another Network<br />

Procedure<br />

Example<br />

continued<br />

7831 5470–200 3–1


Configuring a DCE Network<br />

3–2<br />

Section Topic<br />

3.3<br />

3.3.1<br />

3.3.2<br />

3.3.3<br />

3.3.4<br />

3.3.5<br />

3.3.6<br />

3.3.7<br />

3.3.8<br />

Configuring Special DCE Network Capabilities<br />

Configuring a Closed User Group<br />

Procedure<br />

Example<br />

Configuring Priority Virtual Circuits<br />

Procedure<br />

Example<br />

Configuring Reverse Charging<br />

Procedure<br />

Example<br />

Configuring Flow Control Negotiation<br />

Procedure<br />

Example<br />

Configuring DTE Hunt Groups<br />

Procedure<br />

Example<br />

Configuring DTE Subaddresses<br />

Procedure<br />

Example<br />

Configuring an ILM-20 Connection to a DTE<br />

Procedure<br />

Example<br />

Configuring a Multilink Protocol Connection<br />

Procedure<br />

Example<br />

———————————————————————————————————————<br />

7831 5470–200


3.1 Planning the Network<br />

Configuring a DCE Network<br />

This section explains how to plan a DCE network, which requires you to perform the<br />

following tasks:<br />

• Draw a network map<br />

• Determine DTE addresses<br />

• Select the statements you need to configure the network<br />

———————————————————————————————————————<br />

3.1.1 Drawing a Network Map<br />

This section explains how to create a map, or picture, of the network, which should<br />

include the following:<br />

• <strong>DCP</strong>s functioning as routing nodes. Although neither <strong>X.25</strong> <strong>PSCS</strong> nor DCE Network<br />

software will be installed on these <strong>DCP</strong>s, you may find it helpful to include them<br />

in your map.<br />

• <strong>DCP</strong>s functioning as DCEs.<br />

• <strong>DCP</strong>s serving as DCEs and gateways to other packet networks.<br />

• DTEs, both internal and external.<br />

– An internal DTE is a Level 4 program that routes data to an attached<br />

OS 2200 system. Not all LEVEL4 interfaces are supported. For example, the<br />

program may be the OSITS program product for routing data to an attached<br />

OS 2200 system.<br />

– An external DTE is directly attached (DAD) to the <strong>DCP</strong> without an intervening<br />

packet network (see Section 3.3.6).<br />

Note: The DCE Network feature does not support connections between two internal<br />

DTEs. Only external/external and external/internal connections are<br />

supported.<br />

———————————————————————————————————————<br />

7831 5470–200 3–3


Configuring a DCE Network<br />

3–4<br />

Figure 3–1 provides an example of a simple network map.<br />

Figure 3–1. DCE Network Map<br />

———————————————————————————————————————<br />

7831 5470–200


3.1.2 Rules for Creating Network Addresses<br />

Configuring a DCE Network<br />

This section explains how to create addresses. As the system or network<br />

administrator, you are responsible for assigning addresses to the following:<br />

• The network itself<br />

• Individual nodes<br />

• Individual DTEs<br />

Together these addresses uniquely identify the network, a specific DCE node, and a<br />

specific DTE. This is similar to the way that an area code, prefix, and extension<br />

identify a specific telephone. This section explains how to create addresses; see<br />

Section 3.1.3, “Selecting Statements,” for a description of the statements used to assign<br />

these addresses.<br />

A complete network address can be 6 to 14 digits long and consists of the following<br />

parts:<br />

• A data network identifier code (DNIC), which identifies the network. The ITU/TSS<br />

assigns DNICs to all public data networks (PDNs). You can find these assignments<br />

in ITU/TSS Recommendation X.121. Since you are creating a DNIC for a private<br />

network, you may choose any four-digit number. If, however, your network<br />

provides a gateway to public data networks, do not choose a number that the<br />

ITU/TSS has already assigned.<br />

• A DCE node number, which consists of one to four digits. Assign these numbers<br />

to DCE nodes only. Routing nodes do not require this number. The number of<br />

digits used depends on the number of DCE nodes in the network. If your network<br />

will never have more than nine nodes, a single digit scheme is sufficient. For<br />

larger networks, two-, three-, and even four-digit numbers may be required. For<br />

clarity, choose a consistent and meaningful numbering scheme.<br />

• A specific DTE identifier, which consists of one to six digits.<br />

———————————————————————————————————————<br />

7831 5470–200 3–5


Configuring a DCE Network<br />

3–6<br />

Figure 3–2 describes DTE address components.<br />

1111 0001 2100<br />

Figure 3–2. Example of a DTE Address<br />

Note: 1. If you configure DTE hunt groups, the last digit of the DTE identifier has<br />

special significance. See Section 3.3.5, “Configuring DTE Hunt Groups”<br />

discussed later in this section for more information.<br />

2. If you plan on using subaddresses, do not use all 14 digits to specify a<br />

standard address. See Section 3.3.6, “Configuring DTE Subaddresses”<br />

discussed later in this section for more information.<br />

———————————————————————————————————————<br />

7831 5470–200


Figure 3–3 illustrates address component relationships.<br />

Configuring a DCE Network<br />

• The DNIC is 9999. This number, which must be exactly four digits, forms the first<br />

part of all DTE addresses.<br />

• <strong>DCP</strong> 1 has a DCE node number of 01. <strong>DCP</strong> 2 has no DCE node number; it does<br />

not function as a DCE. The other DCEs in the network have two-digit DCE node<br />

numbers. Each DTE attached to <strong>DCP</strong> 1 will have a DNIC of 9999 and a DCE node<br />

number of 01 as the first six digits of its DTE address.<br />

• DTE A has a DTE address of 999901001. The last three digits provide the DTE<br />

identifier. Although DTE A and DTE C both use 001 as DTE identifiers, their DCE<br />

node numbers are different, so messages intended for one will not be routed to<br />

the other.<br />

Figure 3–3. DCE Network Address Relationships<br />

7831 5470–200 3–7


Configuring a DCE Network<br />

3.1.3 Selecting Statements<br />

3–8<br />

This section describes the DCE Network configuration statement requirements,<br />

including information on the statements that carry addressing information. The<br />

following are the statements used to configure a DCE Network:<br />

• EU statements. Use one for each <strong>DCP</strong> that functions as a DCE. Specify<br />

TYPE=<strong>DCP</strong>NET and the DNIC and DCE node identifier portion of a DTE address<br />

on this statement.<br />

• An XEU statement for each EU statement (except in one-node DCE networks,<br />

where XEU statements are not required).<br />

• X25NET statements.<br />

– Each DCE node requires an X25NET statement for every other DCE node in<br />

the network to which it routes calls. For example, if the network has three<br />

DCE nodes, each node requires two X25NET statements, one for each of the<br />

other DCEs. DCE networks with only one node do not require X25NET<br />

statements. In addition, each node requires an X25NET statement for each<br />

X.75 gateway to a PDN.<br />

• A PDNGRP statement for each line configured.<br />

– Specify OPTIONS=DAD<br />

– If you configure the multilink capability, more than one LINE statement<br />

references a single PDNGRP statement.<br />

• A DTE statement for each internal and directly attached DTE (DAD). This<br />

statement's DTEADR parameter requires a complete DTE address. DTEs directly<br />

attached to the DCE network must be configured DTEs. Nonconfigured DTEs are<br />

not supported.<br />

• A LINE statement for each physical line.<br />

• At least one DTETYPE statement that specifies LEVEL4=PDNNET.<br />

7831 5470–200


• At least one X25DEF statement that specifies:<br />

– NETWORK=<strong>PSCS</strong>NET<br />

– DTX=YES (optional, but recommended)<br />

Configuring a DCE Network<br />

The NETWORK parameter specifying <strong>PSCS</strong>NET is not required. You may select<br />

any NETWORK parameter option that is compatible with the directly attached<br />

DTE (DAD). See Table 6–3 for a list of available NETWORK parameter names. See<br />

Table 6–4 for a description of how each network is defined regarding other<br />

X25DEF statement parameters.<br />

Note: <strong>X.25</strong> <strong>PSCS</strong> supports a point-to-point <strong>X.25</strong> connection between a <strong>DCP</strong> and a<br />

DTE configuration, where the calls are routed to a <strong>DCP</strong> by the calling DTE<br />

address, which is specified on the DTEADR parameter of the DTE statement.<br />

By using the DAD option on the PDNGRP statement, the DCE Network<br />

feature routes calls based on the called DTE address, which is specified on<br />

the DTEADR parameter.<br />

———————————————————————————————————————<br />

7831 5470–200 3–9


Configuring a DCE Network<br />

3.2 Configuring the DCE Network<br />

The following procedures describe DCE network configuration. To provide focus to<br />

the discussion, optional parameters are not used and Telcon-specific statements<br />

(except the PRCSR statements) and parameters are not described.<br />

———————————————————————————————————————<br />

3.2.1 Configuring a One-Node DCE Network<br />

3–10<br />

This section explains how to configure a basic DCE network, consisting of a single<br />

<strong>DCP</strong> functioning as a DCE and two attached DTEs. Figure 3–4 illustrates this<br />

configuration.<br />

Figure 3–4. One-Node DCE Network<br />

———————————————————————————————————————<br />

7831 5470–200


Procedure<br />

Provide the following statements:<br />

• A PRCSR statement to define the <strong>DCP</strong>.<br />

• A DTETYPE statement that specifies LEVEL4=PDNNET.<br />

• An X25DEF statement that specifies the following:<br />

– NETWORK=<strong>PSCS</strong>NET<br />

– DTX=YES<br />

Configuring a DCE Network<br />

The NETWORK parameter specifying <strong>PSCS</strong>NET is not required. You may select<br />

any NETWORK parameter option that is compatible with the directly attached<br />

DTE (DAD). See Table 6–3 for a list of available NETWORK parameter names. See<br />

Table 6–4 for a description of how each network is defined regarding other<br />

X25DEF statement parameters.<br />

• An LCLASS statement that specifies the following:<br />

– LPH=X25PKT<br />

X25PKT defines a standard <strong>X.25</strong> line. To use an ILM-20, see Section 3.3.7,<br />

“Configuring an ILM-20 Connection to a DTE,” which is presented later in this<br />

section.<br />

– A line speed<br />

– OPTIONS=(DIR,SYFD)<br />

DCE software supports direct lines only, and <strong>X.25</strong> is a synchronous, full-duplex<br />

protocol.<br />

• An EU statement that specifies the following:<br />

– A reference to a PRCSR statement.<br />

– TYPE=<strong>DCP</strong>NET<br />

– A DCENODE number (DCENODE=`dstadd'), which consists of the DNIC and<br />

DCE node number portions of a full DTE address. Enclose this number in<br />

single quotation marks.<br />

7831 5470–200 3–11


Configuring a DCE Network<br />

Example<br />

3–12<br />

• A PDNGRP statement for each line. On the PDNGRP, specify the following:<br />

– A reference to the X25DEF statement.<br />

– A logical channel range and type. Do not specify permanent virtual circuits.<br />

DCE Network does not support them.<br />

– OPTIONS=DAD<br />

• A LINE statement for each DTE.<br />

– Each LINE statement must reference a different PDNGRP statement unless<br />

you configure multilink.<br />

– Each LINE statement must reference an LCLASS statement, although many<br />

LINE statements can reference the same LCLASS statement.<br />

• A DTE statement for each DTE you configure. Specify the following:<br />

– A reference to a PDNGRP and a DTETYPE statement.<br />

– A complete DTE address on the DTEADR parameter. Enclose this address in<br />

single quotation marks.<br />

Note: Because this network consists of a single node, X25NET and XEU statements<br />

are not required.<br />

———————————————————————————————————————<br />

The following is an example of a configuration for a one-node network with two<br />

attached DTEs.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


3.2.2 Adding a Node and DTEs to a DCE Network<br />

Configuring a DCE Network<br />

This section describes the additional statements required to add a <strong>DCP</strong> with two DTEs to<br />

the previous configuration, using the Telcon proprietary protocol DTP. Figure 3–5<br />

illustrates this configuration.<br />

Figure 3–5. Two-Node DCE Network<br />

———————————————————————————————————————<br />

7831 5470–200 3–13


Configuring a DCE Network<br />

Procedure<br />

3–14<br />

Provide the following additional statements:<br />

• A PRCSR statement.<br />

• An EU statement associated with the new <strong>DCP</strong>. Specify the following:<br />

– A reference to the new PRCSR statement.<br />

– TYPE=<strong>DCP</strong>NET<br />

– A DCENODE number (DCENODE=`dstadd'), which consists of the DNIC and<br />

DCE node number portions of a full DTE address. Enclose this number in single<br />

quotation marks.<br />

• XEU statements, paired with each EU statement. Specify the following:<br />

– The associated PRCSR statement on the DS parameter.<br />

– The name of the paired EU statement on the DESTTSU parameter. Enclose this<br />

name in single quotation marks.<br />

• Two X25NET statements.<br />

– Associate each statement with one of the <strong>DCP</strong>s through the PRCSR parameter.<br />

– Each statement must include a DESTID parameter that specifies the DCE node<br />

number of the other <strong>DCP</strong>. Enclose this number in single quotation marks.<br />

– Each statement must specify an XEU parameter that references the EU<br />

associated with the other <strong>DCP</strong>.<br />

• Two PDNGRP statements, one for each line connecting the new DCE to its DTEs.<br />

Specify the following on these statements:<br />

– A reference to the X25DEF statement.<br />

– A logical channel range and type. Do not specify permanent virtual circuits. DCE<br />

Network does not support them.<br />

– OPTIONS=DAD<br />

• Two LINE statements, one for each of the new DTEs.<br />

– Each LINE statement must reference a different PDNGRP statement unless you<br />

configure multilink.<br />

– Each LINE statement must reference an LCLASS statement.<br />

– Each LINE statement must specify a line address.<br />

7831 5470–200


Example<br />

Configuring a DCE Network<br />

• Two DTE statements, one for each new DTE. Specify the following on each<br />

statement:<br />

– A reference to a PDNGRP and a DTETYPE statement.<br />

– A complete DTE address on the DTEADR parameter. Enclose this address in<br />

single quotation marks.<br />

———————————————————————————————————————<br />

The following is an example of a two-node network with two DTEs attached to each<br />

node. It builds on the example of a one-node network discussed previously.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200 3–15


Configuring a DCE Network<br />

3.2.3 Configuring an Internal DTE<br />

3–16<br />

This section describes the additional statements required to configure an internal DTE<br />

on the two-node network configured in Section 3.2.2. A configured DTE is one of the<br />

standard Level 4 programs specified on the DTETYPE statement.<br />

Note: Not all Level 4 programs support being configured as internal DTEs.<br />

The following example shows the communication capability between any of the<br />

external DADs and the internal Level 4 program, where the Level 4 program provides<br />

an interface to an OS 2200 host. Figure 3–6 illustrates this configuration.<br />

DTE Address = 9999002001<br />

DTE<br />

DTE<br />

DTEDCE3<br />

DCE Node<br />

# 9999002<br />

DCE Node<br />

# 9999001<br />

DTEDCE1<br />

DTE Address = 9999001001<br />

PRC2<br />

OSITS<br />

<strong>DCP</strong><br />

DTE Address = 9999002002<br />

PRC2<br />

PRC1<br />

DTE<br />

DTE<br />

DTEDCE4<br />

Internal DTE Address = 9999001003<br />

OS 2200<br />

DTEDCE2<br />

DTE Address = 9999001002<br />

Figure 3–6. DCE Network Configured with an Internal DTE<br />

DTEDCE5<br />

007XL200.CDR<br />

———————————————————————————————————————<br />

7831 5470–200


Procedure<br />

Configuring a DCE Network<br />

Provide the following additional statements for defining an internal DTE:<br />

• A DTETYPE statement that identifies the Level 4 program. The following is a list<br />

of Level 4 programs that can be configured as internal DTEs:<br />

– IPOSI, which specifies the OSITS internet protocol component of the OSITS<br />

program product. Use this Level 4 program for connectionless network<br />

service.<br />

– TPOSI, which specifies the OSITS transport service of the OSITS program<br />

product. Use this Level 4 program for connection-oriented network service.<br />

– TPCCITT, which specifies the ITU/TSS defined OSITS transport service<br />

component of the OSITS program product.<br />

– IPTCP, which specifies the TCP–IP Stack internet protocol.<br />

– PDNX28, which specifies the X.28/PAD-to-X.29 host pairing.<br />

– PDNDXA, which specifies an <strong>X.25</strong> connected PC or U <strong>Series</strong> system running<br />

DCA software. If you specify this LEVEL4, specify the DCATS parameter on<br />

the associated DTE statements.<br />

– PDNNPID, which specifies a local implementation of network protocol.<br />

– PDNIPID, which specifies a local implementation of an international protocol.<br />

– PDNUPID, which specifies a local implementation of a user-defined protocol.<br />

– VIDEOTEX, which specifies the VIDEOTEX program product.<br />

– TGNPSI, which specifies a transmission group connection (SNA/net).<br />

– BFNPSI, which specifies a boundary function connection (SNA/net).<br />

– PLS, which specifies the packet layer services host interface software.<br />

– CORPNET, which specifies the CORP/net program product.<br />

7831 5470–200 3–17


Configuring a DCE Network<br />

Example<br />

3–18<br />

• A DTE statement that specifies the following:<br />

– A reference to a PDNGRP statement. This PDNGRP statement must have the<br />

parameter option OPTIONS=DAD specified.<br />

– A reference to the DTETYPE statement just defined.<br />

– A DTE address. This address should conform to the DCE Network<br />

conventions. Enclose it in single quotation marks.<br />

Note: 1. PDNTRUNK, PDNUNIS, X29PAD, and AIR/net cannot be configured as<br />

internal DTEs.<br />

2. PLS, and the TGNPSI and BFNPSI Level 4 programs, can only be used on<br />

a single node. Routing to or from these internal DTEs to external DTEs<br />

cannot be performed across more than one node.<br />

3. Only one DTE statement can be configured per Level 4 program as an<br />

internal DTE.<br />

———————————————————————————————————————<br />

The following is an example of a two-node network with two DTEs attached to each<br />

node and an internal DTE. It builds on the example in Section 3.2.2. The internal DTE<br />

is TPOSI, which identifies the OSITS transport service of the OSITS program product.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

7831 5470–200


Configuring a DCE Network<br />

———————————————————————————————————————<br />

7831 5470–200 3–19


Configuring a DCE Network<br />

3.2.4 Configuring an Internal DTE for U <strong>Series</strong> or IS-PC DTEs<br />

Running with the TS/TN Protocol<br />

3–20<br />

This section describes the additional statements required to configure an internal DTE<br />

for U <strong>Series</strong> or IS-PC DTEs running with the TS/TN protocol on the two-node network<br />

configured in Section 3.2.2. U <strong>Series</strong> or IS-PC DTEs running with the TS/TN protocol<br />

require DTE statements. These DTE statements must reference unique DCATS<br />

statements.<br />

The following example shows communication capability between any of the external<br />

DADs and the internal Level 4 program, where the Level 4 program provides an<br />

interface to an OS 2200 host. Figure 3–7 illustrates this configuration.<br />

DTE A ddress = 9 999002001<br />

DTE<br />

DTE<br />

D TE D C E 3<br />

D C E N o d e<br />

# 9 9 9 9 0 0 2<br />

D C E N o d e<br />

# 9 9 9 9 0 0 1<br />

D TE D C E 1<br />

DTE A ddress = 9 999001001<br />

PRC2<br />

TS / TN<br />

<strong>DCP</strong><br />

DTE A ddress = 9 999002002<br />

PR C 2<br />

PR C 1<br />

DTE<br />

DTE<br />

D TE D C E 4<br />

Internal D TE A ddress = 9 999001003<br />

O S 2 2 0 0<br />

D TE D C E 2<br />

DTE A ddress = 9 999001002<br />

D TE D C E 5<br />

065XL200.CDR<br />

Figure 3–7. DCE Network Configured with Internal DTE for U <strong>Series</strong> or IS-PC DTEs<br />

(with TS/TN Protocol)<br />

———————————————————————————————————————<br />

7831 5470–200


Procedure<br />

Provide the following additional statements:<br />

Configuring a DCE Network<br />

• A DCATS statement for each external DTE. A DCATS statement references a<br />

PRCSR statement. Each external DTE must reference a unique DCATS statement,<br />

regardless of the Telcon processor. To ensure this uniqueness, duplicate each<br />

DCATS statement definition for both Telcon processors.<br />

• A SESSN statement for each external DTE on the Telcon processor connected to<br />

the OS 2200 host. Each SESSN statement references the unique DCATS statement<br />

defined for each external DTE. The SESSN statements also reference a common<br />

DCATS statement which is defined for the OS 2200 host. The sets of logical<br />

subchannel numbers must be coordinated with those defined on the OS 2200 host,<br />

and on the U <strong>Series</strong> or IS-PC software.<br />

• A DTETYPE statement for the internal DTE that specifies LEVEL4=PDNDXA.<br />

• A DTE statement for each node for the internal DTE that specifies the following:<br />

– A reference to a PDNGRP statement. This PDNGRP statement must have the<br />

parameter option OPTIONS=DAD specified.<br />

– A reference to the DTETYPE statement just defined.<br />

– A DTE address. This address should conform to the DCE Network<br />

conventions. Enclose it in single quotation marks.<br />

– A reference to a unique DCATS statement just defined.<br />

———————————————————————————————————————<br />

7831 5470–200 3–21


Configuring a DCE Network<br />

3–22<br />

Example<br />

The following is an example of a two-node network with two DTEs attached to each<br />

node and an internal DTE. It builds on the example in Section 3.2.2. The internal DTE<br />

is PDNDXA, which identifies the TS/TN protocol interface for U <strong>Series</strong> systems<br />

running IS-6000 software, or Unisys personal workstations running IS-PC software.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

7831 5470–200


Configuring a DCE Network<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200 3–23


Configuring a DCE Network<br />

3.2.5 Configuring an X.75 Interface to Another Network<br />

3–24<br />

This section describes the additional statements and parameters required to add an<br />

X.75 interface to the two-node network discussed in Section 3.2.2. Figure 3–8<br />

illustrates this network. Configuring this interface enables communication with DTEs<br />

on another network. Calls originating on the DCE network can always be connected,<br />

but calls from DTEs on the other network can be connected only if the other network<br />

specifies the DCE network DNIC in the called DTE address field of call request<br />

packets. This requires the other network to recognize the DCE network as another<br />

network, such as in an X.75 gateway interface. This capability is usually not offered by<br />

PDNs.<br />

Figure 3–8. DCE Network Configured with an X.75 Interface<br />

———————————————————————————————————————<br />

7831 5470–200


Procedure<br />

Provide the following additional statements and parameters:<br />

Configuring a DCE Network<br />

• An X25DEF statement to define the <strong>DCP</strong> connection to the other network. The<br />

example specifies the Telenet network.<br />

• An X25NET statement that specifies the following:<br />

– A reference to the PRCSR statement that defines the gateway <strong>DCP</strong>.<br />

– The DNIC of the other network. Specify this DNIC on the DNICID parameter.<br />

– The XEU of the gateway <strong>DCP</strong>.<br />

• A PDNGRP statement that defines the connection to the other network and<br />

specifies the following:<br />

– A reference to a PRCSR statement that defines the gateway <strong>DCP</strong>.<br />

– A reference to the X25DEF statement just specified.<br />

– A logical channel range and type.<br />

– OPTIONS=X75<br />

This statement should not specify OPTIONS=DAD.<br />

• A LINE statement that specifies the following:<br />

– A reference to a PDNGRP and an LCLASS statement.<br />

– A physical address.<br />

• A DTE statement.<br />

This statement provides <strong>X.25</strong> <strong>PSCS</strong> with the routing information it requires to<br />

determine the correct network on which to place a call. It is required because the<br />

<strong>DCP</strong> is connected to more than one packet network. See Appendix B for more<br />

information on routing.<br />

Specify the following:<br />

– A reference to the PDNGRP statement just defined.<br />

– A DTE address. If this is a partial address, specify OPTIONS=ABBRVADR as<br />

well.<br />

– A reference to a DTETYPE statement that specifies LEVEL4=PDNNET.<br />

———————————————————————————————————————<br />

7831 5470–200 3–25


Configuring a DCE Network<br />

Example<br />

3–26<br />

The following example is similar to the one presented in Section 3.2.2, “Adding a Node<br />

and DTEs to a DCE Network,” except it adds an X.75 interface to the Telenet network.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


Configuring a DCE Network<br />

3.3 Configuring Special DCE Network Capabilities<br />

The following sections describe how to configure special DCE network capabilities.<br />

———————————————————————————————————————<br />

3.3.1 Configuring a Closed User Group<br />

This section explains how to configure the network to provide support for DTEs to<br />

join closed user groups (CUGs). A CUG is a security arrangement that enables you to<br />

restrict access to a DTE to CUG members only. The following rules apply to CUG<br />

configurations:<br />

• DCE networks support up to 255 CUGs.<br />

• An individual DTE can belong to up to six CUGs.<br />

• Any DTE can belong to any CUG.<br />

• CUG membership is limited to DTEs attached to the DCE network. DTEs attached<br />

to other networks cannot be part of a DCE network CUG.<br />

• You can configure a DTE to restrict incoming and outgoing calls to CUG members<br />

only, or permit DTEs outside of the group to call or be called by members.<br />

• You assign CUG membership on a DTE-by-DTE basis using the DCECUG<br />

parameter on the DTE statement.<br />

———————————————————————————————————————<br />

7831 5470–200 3–27


Configuring a DCE Network<br />

Procedure<br />

Example<br />

3–28<br />

Provide a DTE statement that specifies the following:<br />

• A reference to a PDNGRP statement.<br />

• A reference to a DTETYPE statement.<br />

• A DTE address. This address should conform to the DCE network conventions.<br />

Enclose it in single quotation marks.<br />

• The CUG options you want associated with this DTE (on the DCECUG parameter).<br />

The following are CUG options:<br />

– ALLOWI specifies that a DTE may accept calls originating outside its closed<br />

user group.<br />

– ALLOWO specifies that a DTE may make calls to devices outside its closed<br />

user group.<br />

– ALLOWIO specifies that a DTE may make and receive calls to and from<br />

devices outside its closed user group.<br />

– CLOSED specifies that a DTE may not make or receive calls to or from DTEs<br />

outside the closed user group.<br />

• The number of the CUG or CUGs to which this DTE is assigned.<br />

———————————————————————————————————————<br />

The following example uses DTE statements to assign four DTEs to membership<br />

among two different CUGs. The first two DTEs, DTEDCE1 and DTEDCE2, each belong<br />

to two different CUGs. The last two DTEs, DTEDCE3 and DTEDCE4, each belong to<br />

only one CUG. Both DTEDCE1 and DTEDCE2 can make calls to DTEDCE3 and<br />

DTEDCE4. Both DTEDCE3 and DTEDCE4 can make calls to DTEDCE1 and<br />

DTEDCE2. Neither DTEDCE3 or DTEDCE4 can call each other. Because all CUGs are<br />

closed, none of the DTEs can make calls outside of their CUGs.<br />

7831 5470–200


Configuring a DCE Network<br />

When DTEDCE1 makes a call to DTEDCE4, for example, it must encode the CUG<br />

facility code. The facility parameter must be a 2. This is the index of the DTEDCE4<br />

CUG number (4) configured on the DCECUG parameter. When either DTEDCE3 or<br />

DTEDCE4 make a call, they must always encode a CUG facility parameter of 1. That is<br />

the only valid index value. Any other index value causes the DCE Network feature to<br />

clear the call attempt.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200 3–29


Configuring a DCE Network<br />

3.3.2 Configuring Priority Virtual Circuits<br />

Procedure<br />

Example<br />

3–30<br />

This section explains how to configure the network to support a DTE's request for<br />

priority virtual circuits. Based on Annex G of the 1988 version of ITU/TSS<br />

Recommendation <strong>X.25</strong> (Bluebook), a DTE can request a virtual circuit priority on a<br />

per-call basis. The ITU/TSS specified facility marker and priority are encoded in the<br />

DTE's call request packet. If a DTE requests a priority call on a line that does not<br />

support the feature, the call is cleared, indicating that priority circuits are not<br />

available. The DCE network supports priorities between 0 (lowest) and 3 (highest). If<br />

a call requests a priority higher than 3, the call is accepted and a priority of 3 is used.<br />

———————————————————————————————————————<br />

Provide a PDNGRP statement that specifies the following:<br />

• A reference to PRCSR and X25DEF statements.<br />

• A logical channel range and type. Do not specify permanent virtual circuits. DCE<br />

Network does not support them.<br />

• OPTIONS=(DAD,HIPRI)<br />

– DAD specifies that the associated DTE is a directly attached DTE (DAD).<br />

– HIPRI specifies that the DCE-to-DTE connection defined by the PDNGRP<br />

supports priority virtual circuits.<br />

———————————————————————————————————————<br />

The following is an example of a DCE-to-DTE connection configured to support<br />

priority circuits.<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


3.3.3 Configuring Reverse Charging<br />

Procedure<br />

Example<br />

Configuring a DCE Network<br />

This section explains how to configure a DCE so that a directly attached DTE is never<br />

charged for a call. Charges are always incurred by the other DTE, regardless of which<br />

DTE initiated the call.<br />

Note: If two DTEs are both configured for reverse charging, they cannot<br />

communicate with each other.<br />

———————————————————————————————————————<br />

Provide a DTE statement that specifies the following:<br />

• A reference to a PDNGRP statement.<br />

• A reference to a DTETYPE statement.<br />

• A DTE address. This address should conform to the DCE Network conventions.<br />

Enclose it in single quotation marks.<br />

• OPTIONS=NOCHG<br />

———————————————————————————————————————<br />

The following is an example of a DCE configured to support reverse charging. The<br />

DTE defined by DTEDCE1 will never be charged for a call.<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200 3–31


Configuring a DCE Network<br />

3.3.4 Configuring Flow Control Negotiation<br />

Procedure<br />

Example<br />

3–32<br />

This section explains how to configure a DCE for flow control negotiation. If this<br />

option is configured, the DCE will encode all call packets to a directly attached DTE<br />

(DAD) with the flow control negotiation facility. This enables the DAD to determine<br />

packet and window size on a per call basis. If the DTETYPE statement does not define<br />

a packet and window size, the defaults become the maximum size. The default for<br />

packet size is 128 octets. The default window size is 2. The default output sizes are the<br />

input sizes.<br />

———————————————————————————————————————<br />

Provide a DTE statement that specifies the following:<br />

• A reference to a PDNGRP statement.<br />

• A reference to a DTETYPE statement.<br />

• A DTE address. This address should conform to the DCE network conventions.<br />

Enclose it in single quotation marks.<br />

• OPTIONS=FLOWC<br />

———————————————————————————————————————<br />

The following is an example of a DCE configured for flow control negotiation.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


3.3.5 Configuring DTE Hunt Groups<br />

Procedure<br />

Configuring a DCE Network<br />

This section explains how to configure DTE hunt groups. A hunt group is a collection<br />

of DTEs with a common DTE address. Hunt groups enable load sharing because <strong>X.25</strong><br />

<strong>PSCS</strong> can route calls to the least busy DTE in the group. DTEs defined as hunt group<br />

members can still be accessed individually, however.<br />

———————————————————————————————————————<br />

• Define directly attached connections.<br />

• Provide a dummy DTE statement. While this statement does not define a DTE, it<br />

does define the hunt group address. You must specify the following:<br />

– A reference to a PDNGRP statement, which must be the same PDNGRP<br />

statement referenced that the first real DTE statement references.<br />

– A reference to a DTETYPE statement.<br />

– A DTE address on the DTEADR parameter. This address consists of the<br />

following:<br />

A data network identification code (DNIC)<br />

A DCE node identifier<br />

A DTE identifier whose last digit is zero<br />

– OPTIONS=HGROUP<br />

• Provide up to nine additional DTE statements, each of which must conform to the<br />

following configuration requirements:<br />

– Each must specify a reference to a PDNGRP and a DTETYPE statement.<br />

– Each DTE address specified on a DTEADR parameter must be identical to the<br />

address of the DTE that preceded it, except for the last digit, which must be<br />

incremented by one. Consequently, the address of the first DTE that follows<br />

the dummy must end in a one. The address of the second DTE must end in a<br />

two, and so on.<br />

– Each must specify OPTIONS=HGROUP.<br />

———————————————————————————————————————<br />

7831 5470–200 3–33


Configuring a DCE Network<br />

Example<br />

3–34<br />

The following example shows you how to configure a hunt group consisting of three<br />

DTEs. The first DTE statement is the dummy. The three that follow define real DTEs.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

Figure 3–9 illustrates this configuration.<br />

Figure 3–9. Configuring DTE Hunt Groups<br />

———————————————————————————————————————<br />

7831 5470–200


3.3.6 Configuring DTE Subaddresses<br />

Procedure<br />

Example<br />

Configuring a DCE Network<br />

This section explains how to configure DTE subaddresses. This capability enables you<br />

to append additional address digits to the called DTE address portion of call packets.<br />

<strong>X.25</strong> <strong>PSCS</strong> ignores the additional digits when routing the call to the called DTE. The<br />

DTE's software provides interpretation.<br />

Typically, this capability is used for routing, either when more than one physical<br />

device is attached to a single multiplexed line or when more than one software entity<br />

can be the destination of a single DTE's incoming packets.<br />

To implement DTE subaddressing, assign a fourth field to a complete DTE address,<br />

which normally consists of a DNIC, a DCE node number, and a DTE identifier. The<br />

fourth field consists of the subaddressing digits.<br />

———————————————————————————————————————<br />

Provide a DTE statement that specifies the following:<br />

• A reference to a PDNGRP statement.<br />

• A reference to a DTETYPE statement.<br />

• A DTE address. This address should not include the subaddressing digits. Enclose<br />

the address in single quotation marks.<br />

• OPTIONS=ABBRVADR<br />

Note: Do not specify the subaddressing digits in configuration. <strong>X.25</strong> <strong>PSCS</strong> only<br />

needs to know that it is to ignore all digits beyond those specified on the<br />

DTEADR parameter.<br />

———————————————————————————————————————<br />

The following example configures a DTE that specifies subaddressing. Since the<br />

address contains ten digits, up to four digits are available for subaddressing.<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200 3–35


Configuring a DCE Network<br />

3–36<br />

Figure 3–10 illustrates this configuration.<br />

Figure 3–10. Configuring DTE Subaddresses<br />

———————————————————————————————————————<br />

7831 5470–200


3.3.7 Configuring an ILM-20 Connection to a DTE<br />

Procedure<br />

Example<br />

Configuring a DCE Network<br />

This section explains how to configure an ILM-20 connection to a DTE.<br />

———————————————————————————————————————<br />

Provide an LCLASS statement that specifies the following:<br />

• LPH=(ILML,`<strong>PSCS</strong>HDLC')<br />

– ILML is required for the ILM Platform to initialize this line.<br />

– <strong>PSCS</strong>HDLC is the name of the <strong>DCP</strong> file that holds <strong>X.25</strong> <strong>PSCS</strong> preregistration<br />

information. This name is required. Enclose it in single quotation marks.<br />

• The line speed <br />

The ILM-20 supports speeds of up to two mbps. The combined speed of all lines<br />

connected to a single ILM-20 cannot exceed two mbps.<br />

• OPTIONS=(DIR,SYFD)<br />

– The ILM LAPB implementation supports direct lines only<br />

– <strong>X.25</strong> is a synchronous, full-duplex protocol<br />

———————————————————————————————————————<br />

The following is an example of an LCLASS statement used to define an ILM-20 line for<br />

<strong>X.25</strong> <strong>PSCS</strong> DCE Network.<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200 3–37


Configuring a DCE Network<br />

3.3.8 Configuring a Multilink Protocol Connection<br />

Procedure<br />

3–38<br />

This section explains how to configure a DCE to support a multilink protocol<br />

connection. Because a multilink connection groups many lines under a single DTE<br />

address, it provides greater throughput than a single line. Typically, there is a<br />

one-to-one relationship between LINE and PDNGRP statements. With multilink, up to<br />

48 lines (LINE statements) are associated with a single PDNGRP statement.<br />

Configuring multilink requires that all lines in the multilink reference the same<br />

PDNGRP statement, and the DTE be configured for multilink as well. Each <strong>DCP</strong> can<br />

be configured for up to eight multilink PDNGRPs.<br />

———————————————————————————————————————<br />

Provide the following configuration statements:<br />

• A PDNGRP statement that specifies the following:<br />

– A multilink window size (MLPW=window)<br />

The window size defines the maximum number of unacknowledged frames<br />

that can be outstanding.<br />

– OPTIONS=(DAD,MLP)<br />

DAD is required for all DCE Network PDNGRP statements. It defines a<br />

directly attached DTE (DAD).<br />

MLP specifies the multilink option for this PDNGRP.<br />

• An LCLASS statement that specifies the following:<br />

– LPH=X25PKT for a standard <strong>X.25</strong> line module or LPH=(ILML,`<strong>PSCS</strong>HDLC')<br />

for an ILM-20<br />

– A line speed<br />

– OPTIONS=(DIR,SYFD)<br />

• A LINE statement for each line associated with this multilink connection:<br />

– Each LINE statement must reference a single PDNGRP statement.<br />

– Up to 48 LINE statements can reference the same PDNGRP statement.<br />

• A DTE statement that specifies the following:<br />

– A reference to the PDNGRP statement previously defined.<br />

– A reference to a DTETYPE statement.<br />

– A reference to a DTE address.<br />

———————————————————————————————————————<br />

7831 5470–200


Example<br />

Configuring a DCE Network<br />

The following example defines a multilink connection using a standard <strong>X.25</strong> line<br />

module.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

Figure 3–11 illustrates this configuration.<br />

Figure 3–11. Configuring a Multilink Connection<br />

———————————————————————————————————————<br />

7831 5470–200 3–39


Section 4<br />

Configuration Examples<br />

Section 4 consists of configuration examples related to <strong>X.25</strong> <strong>PSCS</strong>. Each example<br />

consists of the following:<br />

• A brief introduction describing the configuration<br />

• An overview illustration showing the hardware connected by the configuration<br />

• Configuration listings, showing the configuration statements used in the example<br />

configuration<br />

• An illustration showing relationships of pertinent statements<br />

Section Topic<br />

4.1 <strong>DCP</strong>-to-<strong>DCP</strong> Trunk<br />

CMS configuration example<br />

Telcon configuration example<br />

4.2 <strong>DCP</strong>-to-<strong>DCP</strong> Multilink Trunk<br />

CMS configuration example<br />

Telcon configuration example<br />

4.3 <strong>DCP</strong>-to-<strong>DCP</strong> Mixed Trunk<br />

CMS configuration example<br />

Telcon configuration example<br />

4.4 <strong>DCP</strong>-to-UTS 4000 Cluster Controller<br />

CMS configuration example<br />

Telcon configuration example<br />

4.5 <strong>DCP</strong>-to-U <strong>Series</strong> or IS-PC (TS/TN)<br />

CMS configuration example<br />

Telcon configuration example<br />

continued<br />

7831 5470–200 4–1


Configuration Examples<br />

4–2<br />

Section Topic<br />

4.6 X.28/PAD<br />

Telcon configuration example<br />

4.7 X.29 PAD with Nonconfigured DTEs<br />

CMS configuration example<br />

Telcon configuration example<br />

4.8 X.29 PAD with Configured DTEs and X25ROUTE Statement<br />

CMS configuration example<br />

Telcon configuration example<br />

4.9 <strong>DCP</strong>-to-Remote Host Using PLS<br />

CMS configuration example<br />

Telcon configuration example<br />

4.10 Two-Node DCE Network<br />

CMS configuration example<br />

Telcon configuration example<br />

———————————————————————————————————————<br />

7831 5470–200


4.1 <strong>DCP</strong>-to-<strong>DCP</strong> Trunk<br />

Configuration Examples<br />

The following example configures a PDN trunk connection between two <strong>DCP</strong>s. Figure<br />

4–1 illustrates this configuration.<br />

Figure 4–1. <strong>DCP</strong>-to-<strong>DCP</strong> Trunk Configuration<br />

———————————————————————————————————————<br />

7831 5470–200 4–3


Configuration Examples<br />

CMS configuration example<br />

4–4<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


Telcon configuration example<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Configuration Examples<br />

7831 5470–200 4–5


Configuration Examples<br />

4–6<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

7831 5470–200


Configuration Examples<br />

———————————————————————————————————————<br />

Figure 4–2 shows the statement relationships for this configuration.<br />

Figure 4–2. PDN Trunk (Statements)<br />

———————————————————————————————————————<br />

7831 5470–200 4–7


Configuration Examples<br />

4.2 <strong>DCP</strong>-to-<strong>DCP</strong> Multilink Trunk<br />

4–8<br />

The following example configures a multilink trunk. Figure 4–3 illustrates this<br />

configuration.<br />

Figure 4–3. <strong>DCP</strong>-to-<strong>DCP</strong> Multilink Trunk Configuration<br />

———————————————————————————————————————<br />

7831 5470–200


CMS configuration example<br />

Configuration Examples<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200 4–9


Configuration Examples<br />

Telcon configuration example<br />

4–10<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

7831 5470–200


Configuration Examples<br />

7831 5470–200 4–11


Configuration Examples<br />

4–12<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


Figure 4–4 shows statement relationships for this configuration.<br />

Figure 4–4. Multilink Trunk (Statements)<br />

Configuration Examples<br />

———————————————————————————————————————<br />

7831 5470–200 4–13


Configuration Examples<br />

4.3 <strong>DCP</strong>-to-<strong>DCP</strong> Mixed Trunk<br />

4–14<br />

The following example shows two <strong>DCP</strong>s connected by a UDLC line and a PDN trunk.<br />

Figure 4–5 illustrates this configuration.<br />

Figure 4–5. <strong>DCP</strong>-to-<strong>DCP</strong> Mixed Trunk Configuration<br />

———————————————————————————————————————<br />

7831 5470–200


CMS configuration example<br />

Configuration Examples<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200 4–15


Configuration Examples<br />

Telcon configuration example<br />

4–16<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

7831 5470–200


Configuration Examples<br />

7831 5470–200 4–17


Configuration Examples<br />

4–18<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

Figure 4–6 shows statement relationships for this configuration.<br />

Figure 4–6. <strong>DCP</strong>-to-<strong>DCP</strong> Mixed Trunk (Statements)<br />

———————————————————————————————————————<br />

7831 5470–200


4.4 <strong>DCP</strong>-to-UTS 4000 Cluster Controller<br />

Configuration Examples<br />

The following example configures a connection between a <strong>DCP</strong> and a UTS 4000<br />

Cluster Controller with six workstation terminals.<br />

Figure 4–7 illustrates this configuration.<br />

Figure 4–7. <strong>DCP</strong>-to-UTS 4000 Cluster Controller Configuration<br />

———————————————————————————————————————<br />

7831 5470–200 4–19


Configuration Examples<br />

CMS configuration example<br />

4–20<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


Telcon configuration example<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Configuration Examples<br />

7831 5470–200 4–21


Configuration Examples<br />

4–22<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


Figure 4–8 illustrates the statement relationships for this configuration.<br />

Configuration Examples<br />

Figure 4–8. <strong>DCP</strong>-to-UTS Cluster Controller (Statements)<br />

———————————————————————————————————————<br />

7831 5470–200 4–23


Configuration Examples<br />

4.5 <strong>DCP</strong>-to-U <strong>Series</strong> or IS-PC (TS/TN)<br />

4–24<br />

The following example shows a <strong>DCP</strong> connected to a remote DCA termination system,<br />

which can be either a U <strong>Series</strong> system or a personal computer running Information<br />

Services software. Two PDN lines connect the <strong>DCP</strong> to the PDN, providing additional<br />

throughput.<br />

Figure 4–9 illustrates this configuration.<br />

Figure 4–9. <strong>DCP</strong>-to-U <strong>Series</strong> or IS-PC (TS/TN) Configuration<br />

———————————————————————————————————————<br />

7831 5470–200


CMS configuration example<br />

Configuration Examples<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200 4–25


Configuration Examples<br />

Telcon configuration example<br />

4–26<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

7831 5470–200


Configuration Examples<br />

———————————————————————————————————————<br />

7831 5470–200 4–27


Configuration Examples<br />

4–28<br />

Figure 4–10 shows statement relationships for this configuration.<br />

Figure 4–10. <strong>DCP</strong>-to-U <strong>Series</strong> or IS-PC (Statements)<br />

———————————————————————————————————————<br />

7831 5470–200


4.6 X.28/PAD<br />

Configuration Examples<br />

The following example shows asynchronous and synchronous terminals using the<br />

X.28/PAD feature of <strong>X.25</strong> <strong>PSCS</strong> to communicate with an X.29 host.<br />

Figure 4–11 shows a simple network map.<br />

Figure 4–11. X.28/PAD Connection to X.29 Host<br />

———————————————————————————————————————<br />

7831 5470–200 4–29


Configuration Examples<br />

Telcon configuration example<br />

4–30<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

7831 5470–200


Configuration Examples<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

7831 5470–200 4–31


Configuration Examples<br />

4–32<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

Figure 4–12 shows statement relationships for this configuration.<br />

Figure 4–12. X.28/PAD Statements (DNS)<br />

———————————————————————————————————————<br />

7831 5470–200


4.7 X.29 PAD with Nonconfigured DTEs<br />

Configuration Examples<br />

The following example shows asynchronous terminals using the X.29 PAD feature of<br />

<strong>X.25</strong> <strong>PSCS</strong> to communicate with an OS 2200 host.<br />

Figure 4–13 illustrates this configuration.<br />

Figure 4–13. X.29 PAD Connection to OS 2200 Host (Nonconfigured DTEs)<br />

———————————————————————————————————————<br />

7831 5470–200 4–33


Configuration Examples<br />

CMS configuration example<br />

4–34<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


Telcon configuration example<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Configuration Examples<br />

7831 5470–200 4–35


Configuration Examples<br />

4–36<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


Figure 4–14 shows statement relationships for this configuration.<br />

Configuration Examples<br />

Figure 4–14. X.29 PAD with Nonconfigured DTEs (Statements)<br />

———————————————————————————————————————<br />

7831 5470–200 4–37


Configuration Examples<br />

4.8 X.29 PAD with Configured DTEs and<br />

X25ROUTE Statement<br />

4–38<br />

The following example shows asynchronous terminals using an X.29 PAD<br />

configuration to communicate with an OS 2200 host. DTE and X25ROUTE statements<br />

are used so that only calls from these DTEs are accepted. All other calls are rejected.<br />

Figure 4–15 illustrates this configuration.<br />

Figure 4–15. X.29 PAD Connection to OS 2200 Host (Configured DTEs)<br />

———————————————————————————————————————<br />

7831 5470–200


CMS configuration example<br />

Configuration Examples<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200 4–39


Configuration Examples<br />

Telcon configuration example<br />

4–40<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

7831 5470–200


Configuration Examples<br />

———————————————————————————————————————<br />

7831 5470–200 4–41


Configuration Examples<br />

4–42<br />

Figure 4–16 shows statement relationships for this configuration.<br />

Figure 4–16. X.29 PAD with Configured DTEs (Statements)<br />

———————————————————————————————————————<br />

7831 5470–200


4.9 <strong>DCP</strong>-to-Remote Host Using PLS<br />

Configuration Examples<br />

The following example shows a PLS configuration, which enables an OS 2200<br />

application to use <strong>X.25</strong> <strong>PSCS</strong> services to access a remote host.<br />

Figure 4–17 shows a simple network map.<br />

Figure 4–17. <strong>DCP</strong>-to-Host Configuration Using PLS<br />

———————————————————————————————————————<br />

7831 5470–200 4–43


Configuration Examples<br />

CMS configuration example<br />

4–44<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


Telcon configuration example<br />

Configuration Examples<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

7831 5470–200 4–45


Configuration Examples<br />

4–46<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


Figure 4–18 shows statement relationships for this configuration.<br />

Figure 4–18. <strong>DCP</strong>-to-Host Using PLS (Statements)<br />

Configuration Examples<br />

———————————————————————————————————————<br />

7831 5470–200 4–47


Configuration Examples<br />

4.10 Two-Node DCE Network<br />

4–48<br />

The following example configures a two-node DCE network with an X.75 interface to<br />

the Telenet network. Figure 4–19 shows a simple network map for this configuration.<br />

Figure 4–19. DCE Network Configuration with an X.75 Interface (DNS)<br />

———————————————————————————————————————<br />

DTE<br />

7831 5470–200


CMS configuration example<br />

Configuration Examples<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200 4–49


Configuration Examples<br />

Telcon configuration example<br />

4–50<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

7831 5470–200


Configuration Examples<br />

7831 5470–200 4–51


Configuration Examples<br />

4–52<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


Figure 4–20 shows the statement relationships for this configuration.<br />

Figure 4–20. DCE Network (Statements)<br />

Configuration Examples<br />

———————————————————————————————————————<br />

7831 5470–200 4–53


Section 5<br />

Using Network Management Services<br />

(NMS)<br />

This section describes how to use Network Management Services (NMS) to monitor<br />

and control <strong>X.25</strong> <strong>PSCS</strong> facilities. NMS services have been extended to include facilities<br />

that use <strong>X.25</strong> <strong>PSCS</strong>. This section supplements information provided in the <strong>DCP</strong> <strong>Series</strong><br />

Telcon Operations Reference Manual (7831 5728). It covers only those additional NMS<br />

capabilities provided to manage <strong>PSCS</strong> related facilities.<br />

NMS changes include enhancements to the DOWN, LIST, STAT, TRAC, and UP<br />

commands and the addition of the RECORD and SWITCH commands. Other NMS<br />

commands also monitor and control <strong>X.25</strong> <strong>PSCS</strong> facilities, but do not have <strong>PSCS</strong><br />

specific parameters and are not described here. These commands include the CNFG,<br />

ITLN, MOVE, STOP, and STTH commands. You cannot use the STRT and STOP<br />

commands on PDN lines.<br />

Section Topic<br />

5.1 NMS Command Authority Levels<br />

5.2 DOWN — Deactivating a Facility<br />

Format<br />

Parameters<br />

5.3 LIST — Displaying Line Activity<br />

Format<br />

Parameters<br />

5.4 RECORD — Controlling DCE Network Statistics Gathering<br />

Format<br />

Parameters<br />

continued<br />

7831 5470–200 5–1


Using Network Management Services (NMS)<br />

5–2<br />

Section Topic<br />

5.5<br />

5.5.1<br />

5.5.2<br />

5.5.3<br />

STAT — Displaying Status<br />

Format<br />

Parameters<br />

STAT LINE Display<br />

STAT PDTE Display<br />

STAT PTRK Display<br />

5.6 SWITCH — Rerouting Call <strong>Packet</strong>s<br />

Format<br />

Parameters<br />

5.7<br />

5.7.1<br />

5.7.2<br />

TRAC — Message Tracing<br />

TRAC SNAP X25<br />

Format<br />

Parameters<br />

Examples<br />

TRAC SNAP DCEF<br />

Format<br />

Parameters<br />

5.8 UP — Activating a Facility<br />

Format<br />

Parameters<br />

——————————————————————————————————————<br />

7831 5470–200


Using Network Management Services (NMS)<br />

5.1 NMS Command Authority Levels<br />

Telcon requires certain authorization levels to issue NMS commands on facilities<br />

defined for <strong>X.25</strong> <strong>PSCS</strong>. These levels are listed below.<br />

Command Facility Authority<br />

DOWN DTE Node<br />

DOWN Trunk Node<br />

DOWN Line Regional<br />

DOWN Terminal Regional<br />

LIST Line Privileged<br />

RECORD N/A None<br />

STAT DTE None<br />

STAT Trunk None<br />

STAT Line None<br />

STAT Terminal None<br />

SWITCH DTE None<br />

TRAC N/A Privileged<br />

UP DTE Node<br />

UP Trunk Node<br />

UP Line Regional<br />

UP Terminal Regional<br />

——————————————————————————————————————<br />

7831 5470–200 5–3


DOWN<br />

5.2 DOWN — Deactivating a Facility<br />

Format<br />

The NMS DOWN command has been enhanced for <strong>X.25</strong> <strong>PSCS</strong> to deactivate <strong>X.25</strong> lines,<br />

terminals, DTEs, and trunks.<br />

——————————————————————————————————————<br />

DOWN<br />

Parameters<br />

5–4<br />

<strong>DCP</strong> name/netadd<br />

,LINE name/number<br />

,TERM name<br />

,PDTE name/address<br />

,PTRK name<br />

——————————————————————————————————————<br />

<strong>DCP</strong>=name/netadd<br />

The <strong>DCP</strong> associated with the facility that is to be deactivated. Refer to the <strong>DCP</strong> by a PRCSR<br />

statement name or by a DNS node address. This address has the following parts:<br />

• The subdomain number. The range is 1–65,535, and the default is the local subdomain<br />

number.<br />

• The super cluster number. The range is 1–255, and the default is the local super cluster<br />

number.<br />

• The simple cluster number. The range is 1–255, and the default is the local simple cluster<br />

number.<br />

• The node number. The range is 1–4,095.<br />

If you do not specify this parameter, NMS executes the command on the <strong>DCP</strong> to which your<br />

terminal is connected.<br />

LINE=name/number<br />

The <strong>X.25</strong> line to deactivate. Refer to this line either by the name or port number specified on a<br />

LINE statement.<br />

7831 5470–200


TERM=name<br />

A terminal to deactivate. Refer to this terminal by the name that identifies it on a TERM<br />

statement.<br />

PDTE=name/address<br />

DOWN<br />

A DTE to deactivate. Refer to this DTE either by the name or address that identifies it on a DTE<br />

statement. You can use the DOWN command on either a configured or nonconfigured DTE.<br />

However, you can deactivate a nonconfigured DTE only if it has established a virtual circuit<br />

connection to the <strong>DCP</strong>. This connection is then aborted. However, this does not prevent the<br />

nonconfigured DTE from establishing another connection.<br />

PTRK=name<br />

A trunk to deactivate. Refer to this trunk by the name on a TRUNK statement. Specifying this<br />

parameter deactivates the <strong>X.25</strong> portion of the trunk only.<br />

——————————————————————————————————————<br />

7831 5470–200 5–5


LIST<br />

5.3 LIST — Displaying Line Activity<br />

Format<br />

Parameters<br />

5–6<br />

The NMS LIST command has been enhanced for <strong>X.25</strong> <strong>PSCS</strong> to provide status<br />

information on <strong>X.25</strong> lines.<br />

——————————————————————————————————————<br />

LIST [<strong>DCP</strong>=name/netadd][,LINE=name/number][,NAME=name/n]<br />

——————————————————————————————————————<br />

<strong>DCP</strong>=name/netadd<br />

The <strong>DCP</strong> associated with the facility that is to be deactivated. Refer to the <strong>DCP</strong> by a PRCSR<br />

statement name or by a DNS node address. This address has the following parts:<br />

• The subdomain number. The range is 1–65,535, and the default is the local subdomain<br />

number.<br />

• The super cluster number. The range is 1–255, and the default is the local super cluster<br />

number.<br />

• The simple cluster number. The range is 1–255, and the default is the local simple cluster<br />

number.<br />

• The node number. The range is 1–4,095.<br />

If you do not specify this parameter, NMS executes the command on the <strong>DCP</strong> to which your<br />

terminal is connected.<br />

LINE=name/number<br />

The <strong>X.25</strong> line on which you want status information. You can refer to this line either by the name<br />

or port number that identifies it in configuration. If you do not specify this parameter, a list of all<br />

active lines on this <strong>DCP</strong> appears.<br />

NAME=name/n<br />

name Any configured <strong>X.25</strong> facility.<br />

n The symbol table entry (STE) index of any configured facility.<br />

The command displays a response similar in format to Telcon configured facilities.<br />

——————————————————————————————————————<br />

7831 5470–200


Figure 5–1 is an example of LIST LINE command output.<br />

Figure 5–1. LIST LINE Command Output<br />

1. Specifies that the protocol handler software for this line is <strong>X.25</strong> <strong>PSCS</strong>.<br />

LIST<br />

2. Specifies the PDNGRP associated with this line. The number identified is the DTE<br />

address configured in the PDNGRP statement.<br />

3. Specifies the number of active switched virtual circuits (SVCs) and the maximum<br />

number configured for this line.<br />

4. Specifies the number of active permanent virtual circuits (PVCs) and the<br />

maximum number configured for this line.<br />

5. Specifies the active logical channels for this line.<br />

6. Specifies the virtual circuit types. In this display, all are switched virtual circuits.<br />

7831 5470–200 5–7


LIST<br />

5–8<br />

7. Specifies that these circuits are in a data transfer state. States include the<br />

following:<br />

State Description<br />

CALL REQ <strong>PSCS</strong> sent a call request packet to the network or DTE device.<br />

CALL IND <strong>PSCS</strong> received an incoming call packet from the network or DTE device.<br />

DATA TRANS The circuit is in a data transfer state.<br />

CLEAR REQ <strong>PSCS</strong> sent a clear request packet to the network or DTE device.<br />

CLEAR IND <strong>PSCS</strong> received a clear indication packet from the network or DTE device.<br />

RESET REQ <strong>PSCS</strong> sent a reset request packet to the network or DTE device.<br />

RESET IND <strong>PSCS</strong> received a reset indication packet from the network or DTE device.<br />

CALL COLL <strong>PSCS</strong> sent a call request packet and has received an incoming call packet<br />

from the network or DTE device (call collision).<br />

READY A permanent virtual circuit that was formerly in a data transfer state, but is<br />

now out of order.<br />

8. Specifies the Level 4 program. Refer to the discussion of the DTETYPE statement<br />

in Section 6, “Using <strong>X.25</strong> <strong>PSCS</strong> Configuration Statements.”<br />

9. Identifies the DTEs communicating over virtual circuits. If no name is present, the<br />

connection is using a nonconfigured circuit.<br />

10. Identifies the addresses of the DTEs using the virtual circuits.<br />

11. Specifies all active terminals on the line. <strong>PSCS</strong> identifies only terminals attached to<br />

a UTS 4000 Cluster Controller or configured to use the X.29 PAD feature.<br />

——————————————————————————————————————<br />

7831 5470–200


5.4 RECORD — Controlling DCE Network<br />

Statistics Gathering<br />

Format<br />

Parameters<br />

RECORD<br />

The NMS RECORD command enables you to control statistics collection for DCE<br />

networks. Statistics are collected for any virtual circuit connection; however, the DCE<br />

Network feature must be configured to use this command. The statistics collected are<br />

reported through the Telcon CENLOG mechanism. (See the <strong>DCP</strong> <strong>Series</strong> Telcon<br />

Message Manual [7436 0728].) A Class 7/Event 1 CENLOG is generated when a virtual<br />

circuit connection is formed or cleared, and whenever the number of data packets<br />

specified on the LOG parameter has occurred.<br />

——————————————————————————————————————<br />

RECORD<br />

<strong>DCP</strong> name/netadd<br />

,SET ON/OFF<br />

,LOG num<br />

,STAT YES<br />

——————————————————————————————————————<br />

<strong>DCP</strong>=name/netadd<br />

The <strong>DCP</strong> associated with the facility that is to be deactivated. Refer to the <strong>DCP</strong> by a PRCSR<br />

statement name or by a DNS node address. This address has the following parts:<br />

• The subdomain number. The range is 1–65,535, and the default is the local subdomain<br />

number.<br />

• The super cluster number. The range is 1–255, and the default is the local super cluster<br />

number.<br />

• The simple cluster number. The range is 1–255, and the default is the local simple cluster<br />

number.<br />

• The node number. The range is 1–4,095.<br />

If you do not specify this parameter, NMS executes the command on the <strong>DCP</strong> to which your<br />

terminal is connected.<br />

SET=ON|OFF<br />

Starts or stops statistics collection.<br />

7831 5470–200 5–9


RECORD<br />

5–10<br />

LOG=num<br />

The number of data packets between periods of statistic collection.<br />

STAT=YES<br />

Displays statistics collection attributes on the console screen. This display tells you if statistics<br />

collection is on or off and provides the logging frequency number.<br />

——————————————————————————————————————<br />

7831 5470–200


5.5 STAT — Displaying Status<br />

Format<br />

The NMS STAT command has been enhanced to provide status reports on lines<br />

connected to PDNs and <strong>X.25</strong> DTEs and trunks.<br />

STAT<br />

——————————————————————————————————————<br />

STAT<br />

Parameters<br />

<strong>DCP</strong> name/netadd<br />

,LINE name/number<br />

,PDTE name/address<br />

,PTRK name<br />

,TERM name<br />

——————————————————————————————————————<br />

<strong>DCP</strong>=name/netadd<br />

The <strong>DCP</strong> associated with the facility that is to be deactivated. Refer to the <strong>DCP</strong> by a PRCSR<br />

statement name or by a DNS node address. This address has the following parts:<br />

• The subdomain number. The range is 1–65,535, and the default is the local subdomain<br />

number.<br />

• The super cluster number. The range is 1–255, and the default is the local super cluster<br />

number.<br />

• The simple cluster number. The range is 1–255, and the default is the local simple cluster<br />

number.<br />

• The node number. The range is 1–4,095.<br />

If you do not specify this parameter, NMS executes the command on the <strong>DCP</strong> to which your<br />

terminal is connected.<br />

LINE=name/number<br />

A line on which to display status information.<br />

7831 5470–200 5–11


STAT<br />

5–12<br />

PDTE=name/address<br />

A DTE on which to display status information. You can refer to this DTE either by the name or<br />

address that identifies it on a DTE statement.<br />

PTRK=name<br />

A trunk on which to display status. Refer to this trunk by the name that identifies it on a TRUNK<br />

statement.<br />

TERM=name<br />

A terminal to display status information. Refer to this terminal by the name that identifies it on a<br />

TERM statement. X.29 PAD terminals referencing PDNPAD statements and UTS 4000 Cluster<br />

Controller terminals running UTS <strong>X.25</strong> software are types known by <strong>X.25</strong> <strong>PSCS</strong>. The status<br />

information format is the same as other terminal types supported by Telcon.<br />

——————————————————————————————————————<br />

7831 5470–200


5.5.1 STAT LINE Display<br />

STAT<br />

Figure 5–2 is an example of STAT LINE command output for a standard <strong>X.25</strong> line.<br />

Most fields within the display are the same as for a Telcon line. If you request status<br />

for an ILM-20 line, standard output for a Telcon line appears.<br />

Figure 5–2. STAT LINE Display<br />

1. Specifies that the Data Set Ready signal is present. If DISCONNECTED is<br />

indicated, the Data Set Ready signal is off.<br />

2. Specifies that the protocol handler software for this line is <strong>X.25</strong> <strong>PSCS</strong>.<br />

3. Specifies DTE or DCE, depending on the DTX parameter on the X25DEF<br />

statement.<br />

4. Specifies all active terminals on the line. <strong>PSCS</strong> identifies only terminals attached to<br />

a UTS 4000 Cluster Controller or configured to use the X.29 PAD feature.<br />

7831 5470–200 5–13


STAT<br />

5–14<br />

5. Specifies that the Level 2 software has established a link level connection with its<br />

peer.<br />

6. Indicates that this line is configured for the Datapac network by the X25DEF<br />

statement.<br />

7. Identifies the following information:<br />

• Number of active switched virtual circuits<br />

• Total number of switched virtual circuits configured by the PDNGRP<br />

statement<br />

• Number of active permanent virtual circuits<br />

• Total number of permanent virtual circuits configured by the PDNGRP<br />

statement<br />

——————————————————————————————————————<br />

7831 5470–200


5.5.2 STAT PDTE Display<br />

Figure 5–3 is an example of STAT PDTE command output.<br />

1. This DTE is enabled.<br />

Figure 5–3. STAT PDTE Display<br />

2. This DTE is associated with the third (0003) PDNGRP statement listed in<br />

configuration.<br />

3. This DTE maintains two logical channels.<br />

STAT<br />

4. PLS is the Level 4 program that uses logical channel 0050. Refer to the discussion<br />

of the DTETYPE statement in Section 6, “Using <strong>X.25</strong> <strong>PSCS</strong> Configuration<br />

Statements.”<br />

7831 5470–200 5–15


STAT<br />

5–16<br />

5. The logical channel is in the data transfer state. Other data states include:<br />

State Description<br />

CALL REQ <strong>PSCS</strong> sent a call request packet to the network or DTE device.<br />

CALL IND <strong>PSCS</strong> received an incoming call packet from the network or DTE device.<br />

DATA TRANS The circuit is in the data transfer state.<br />

CLEAR REQ <strong>PSCS</strong> sent a clear request packet to the network or DTE device.<br />

CLEAR IND <strong>PSCS</strong> received a clear indication packet from the network or DTE<br />

device.<br />

RESET REQ <strong>PSCS</strong> sent a reset request packet to the network or DTE device.<br />

RESET IND <strong>PSCS</strong> received a reset indication packet from the network or DTE<br />

device.<br />

CALL COLL <strong>PSCS</strong> sent a call request packet and has received an incoming call<br />

packet from the network or DTE device (call collision).<br />

READY A permanent virtual circuit that was formerly in a data transfer state, but<br />

has since become out of order.<br />

BEING ACTIVATED <strong>PSCS</strong> is processing a virtual circuit establishment. PDNTRUNK (<strong>DCP</strong>-to-<br />

<strong>DCP</strong>) layer 4 program only.<br />

ACTIVE The logical channel is in a data transfer state. PDNTRUNK (<strong>DCP</strong>-to-<strong>DCP</strong>)<br />

layer 4 program only.<br />

BEING DEACTIVATED <strong>PSCS</strong> is processing a virtual circuit disconnection. PDNTRUNK (<strong>DCP</strong>-to-<br />

<strong>DCP</strong>) layer 4 program only.<br />

NO. OF TRANSPORT<br />

CONNECTIONS=nnnn<br />

NO. OF LOGICAL<br />

SUBCHANNELS=nnnn<br />

PDNUNIS (UTS 4000 Cluster Controller) layer 4 program only. The<br />

virtual circuit is in the data transfer state and nnnn transport connections<br />

are running over the logical channel.<br />

PDNDXA (U <strong>Series</strong> or PC systems running IS software). The virtual circuit<br />

is in the data transfer state and nnnn logical subchannels are running<br />

over the logical channel.<br />

——————————————————————————————————————<br />

7831 5470–200


5.5.3 STAT PTRK Display<br />

Figure 5–4 is an example of STAT PTRK command output.<br />

Figure 5–4. STAT PTRK Display<br />

STAT<br />

7831 5470–200 5–17


STAT<br />

5–18<br />

1. Specifies that one or more virtual circuits are in the data state. Other possible<br />

states include:<br />

State Description<br />

IDLE The idle trunk circuit timer has expired and all virtual circuits have been<br />

cleared. The higher level entity, such as DNS, perceives the trunk connection<br />

as up.<br />

ENABLED<br />

AND UP<br />

The trunk is not marked down in configuration and <strong>X.25</strong> <strong>PSCS</strong> is attempting to<br />

establish a virtual circuit connection with a peer. The higher level entity, such<br />

as DNS, perceives the trunk connection as up.<br />

DOWN The trunk is marked down in configuration. No virtual circuit connections are<br />

up.<br />

ENABLED<br />

BUT DOWN<br />

INACTIVE<br />

AND DOWN<br />

Although the trunk connection is not marked down in configuration, <strong>X.25</strong> <strong>PSCS</strong><br />

is making repeated attempts to make a virtual circuit connection with a peer.<br />

The higher level entity perceives the trunk connection as down.<br />

The trunk connection is not marked down in configuration. Virtual circuit<br />

connections have not been established with a peer and <strong>X.25</strong> <strong>PSCS</strong> is not<br />

attempting to establish any connections. The higher level entity perceives the<br />

trunk connection as down.<br />

2. This trunk is associated with the eleventh PDNGRP statement listed in the<br />

configuration.<br />

3. This trunk maintains three logical channels.<br />

4. This trunk is the LEVEL4 protocol using logical channel 0001. This protocol always<br />

controls <strong>X.25</strong> trunk connections.<br />

5. The logical channel is in the data transfer state. States include:<br />

State Description<br />

BEING ACTIVATED The logical channel is processing a virtual circuit establishment.<br />

ACTIVE The logical channel is in the data transfer state.<br />

BEING DEACTIVATED The logical channel is processing a virtual circuit disconnection.<br />

——————————————————————————————————————<br />

7831 5470–200


5.6 SWITCH — Rerouting Call <strong>Packet</strong>s<br />

Format<br />

SWITCH<br />

The NMS SWITCH command provides three functions related to rerouting calls on<br />

DCE networks:<br />

• Activates call switching, enabling you to direct packet calls intended for one DTE<br />

to another DTE.<br />

• Enables you to deactivate call switching.<br />

• Displays call switching status on the console screen. This status display lists all<br />

the addresses of DTEs using call switching.<br />

——————————————————————————————————————<br />

SWITCH<br />

Parameters<br />

<strong>DCP</strong> name/netadd<br />

name1/name2<br />

,DTE<br />

address1/address2<br />

name1<br />

,CANCEL<br />

address1<br />

,STAT YES<br />

ON<br />

,SET<br />

OFF<br />

——————————————————————————————————————<br />

<strong>DCP</strong>=name/netadd<br />

The <strong>DCP</strong> that is to issue the SWITCH command. Refer to the <strong>DCP</strong> by a PRCSR statement name<br />

or by a DNS node address. This address has the following parts:<br />

• The subdomain number. The range is 1–65,535, and the default is the local subdomain<br />

number.<br />

• The super cluster number. The range is 1–255, and the default is the local super cluster<br />

number.<br />

• The simple cluster number. The range is 1–255, and the default is the local simple cluster<br />

number.<br />

• The node number. The range is 1–4,095.<br />

If you do not specify this parameter, NMS executes the command on the <strong>DCP</strong> to which your<br />

terminal is connected.<br />

7831 5470–200 5–19


SWITCH<br />

5–20<br />

DTE=name1/name2<br />

address1/address2<br />

CANCEL=name1<br />

address1<br />

STAT=YES<br />

SET=ON|OFF<br />

name1/name2<br />

The names of DTE statements. Messages intended for name1 are routed to<br />

name2. Using names to switch DTEs must be limited to the same Telcon<br />

processor. You must specify DTE addresses when switching calls across<br />

different Telcon processors (nodes).<br />

address1/address2<br />

DTE addresses. Messages intended for address1 are routed to address2.<br />

name1 Cancels call switching for the DTE identified by this name. The name is the<br />

label on a DTE statement. Issue this command only on DTEs whose calls have<br />

been switched.<br />

address1 Cancels call switching for the DTE identified by this address. Issue this<br />

command only on DTEs whose calls have been switched.<br />

ALL Cancels call switching for all DTEs on this <strong>DCP</strong>.<br />

Displays call switching status for a <strong>DCP</strong> on the console screen.<br />

Indicates that call switching is activated or deactivated.<br />

——————————————————————————————————————<br />

7831 5470–200


5.7 TRAC — Message Tracing<br />

TRAC<br />

The NMS TRAC command has been enhanced for <strong>X.25</strong> <strong>PSCS</strong> to pass trace information<br />

to the <strong>PSCS</strong> trace process.<br />

——————————————————————————————————————<br />

5.7.1 TRAC SNAP X25<br />

Format<br />

The TRAC SNAP X25 command is used to pass <strong>X.25</strong> <strong>PSCS</strong> trace information to the<br />

<strong>X.25</strong> <strong>PSCS</strong> trace process.<br />

——————————————————————————————————————<br />

<br />

<br />

Parameters<br />

<br />

——————————————————————————————————————<br />

SNAP=X25<br />

Activates the tracing mechanism.<br />

TYPE={H,M|L}<br />

Specifies the tracing option:<br />

H The interface to trace<br />

M The item to trace<br />

L Catalogue, open, and close the trace file<br />

If type M or H level of tracing is specified before a <strong>DCP</strong>OS file has been catalogued using type L,<br />

then the size of the file defaults to 256 blocks. If both H and M are selected, the trace bits you<br />

enabled with the DATA parameter apply to both the interface to trace and the items to trace.<br />

If you specify either M or H, you must also reenter the TRAC command for the other TYPE<br />

option.<br />

7831 5470–200 5–21


TRAC<br />

5–22<br />

FAC=name<br />

Identifies the name of any referenced X25DEF statement for <strong>PSCS</strong>.<br />

DATA=number<br />

Specifies the trace bits enabled. You must always specify a four-digit number.<br />

Note: 1. There must be a packet exchange or a layer 3/4 platform primitive<br />

exchange to activate the values entered by the TRAC command. An<br />

exchange must take place each time the command is issued. To force an<br />

exchange, issue an NMS down/up command.<br />

2. Tracing does not become active until the interfaces (parameter TYPE=H)<br />

and items (parameter TYPE=M) have been specified using either one or<br />

two TRAC commands containing non-zero DATA parameter values.<br />

DATA Fields for the Interface to Trace (H Parameter Type)<br />

DATA Interface Description ID<br />

0001<br />

0002<br />

0004<br />

0008<br />

0010<br />

0020<br />

0040<br />

0080<br />

0100<br />

*<br />

*<br />

*<br />

*<br />

*<br />

PDNL3 to PDNPP<br />

PDNL3 to PDNCALL<br />

PDNL3 to a level 4<br />

PDNCALL to PDNL3<br />

PDNCALL to a level 4<br />

PDNPP to PDNL3<br />

A level 4 to PDNL3<br />

A level 4 to PDNCALL<br />

Trace facilities<br />

Trace of an error event<br />

Debug reference<br />

CENLOG reference<br />

NMS event<br />

Time expiration<br />

L3L2<br />

L3PC<br />

L3L4<br />

PCL3<br />

PCL4<br />

L2L3<br />

L4L3<br />

L4PC<br />

FAxx<br />

ERnn<br />

DEBG<br />

CNLG<br />

NMS<br />

TIMR<br />

* If a trace is activated, these interfaces are automatically traced and<br />

cannot be selected.<br />

7831 5470–200


DATA Fields for the Items to Trace (M Parameter Type)<br />

DATA Item Description ID<br />

0001<br />

0002<br />

0004<br />

0008<br />

**<br />

Register trace<br />

MCT<br />

Message buffer<br />

ZV$ virtual circuit table<br />

XR$ route table<br />

REGS<br />

MCT<br />

MSG<br />

ZV$T<br />

XR$T<br />

** If a trace is activated, this item is automatically traced at the PDNL3<br />

to PDNCALL (ID=L3PC) interface.<br />

DATA Fields for the L Parameter Type<br />

DATA File Description<br />

0000<br />

size<br />

The cataloged <strong>DCP</strong>OS trace files are:<br />

X25*ZZ$PDNL3<br />

X25*ZZ$PDNPC<br />

where:<br />

ZZ = Telcon node id (AZ$NODEID)<br />

Close trace file<br />

Catalogue trace file of size given in blocks<br />

TRAC<br />

——————————————————————————————————————<br />

7831 5470–200 5–23


TRAC<br />

Examples<br />

5–24<br />

The following examples detail how to use the TRAC command in <strong>X.25</strong> <strong>PSCS</strong>.<br />

Examples 1 and 2 set all interfaces and all items to be traced. Example 3 explains how<br />

to select specific interfaces and items to trace using the TRAC command.<br />

The CENLOG message indicates that the SNAP processor has received<br />

the command and has set the appropriate values in <strong>X.25</strong> <strong>PSCS</strong>. It does not mean that<br />

the trace itself has been turned on. <strong>X.25</strong> <strong>PSCS</strong> does not activate a trace until one of<br />

the following <strong>X.25</strong> CENLOG messages displays on the NMS console:<br />

CENLOG Message Meaning<br />

Trace file size is activated.<br />

Interfaces to be traced are activated.<br />

Items to be traced are activated.<br />

Example 1<br />

Example 1 sets all interfaces and all traceable items with the default file size. Under<br />

normal system conditions, all interfaces and all items are traced. A trace does not end<br />

when the catalog trace file is full; the information at the beginning of the file is<br />

overwritten. Only the last 256 blocks of trace data (the catalogued length of the trace<br />

file) is present in a trace that exceeds the file size.<br />

<br />

or<br />

<br />

The file size defaults to 256 blocks since TYPE=L was not entered. TYPE=HM sets the<br />

interface and the items to be traced. DATA=number sets all locations and all items to<br />

be traced. NDEF2 is the name of an X25DEF statement in the configuration.<br />

Two CENLOG messages display when the trace is activated: <br />

and . The <strong>X.25</strong> line must be active, with<br />

packets received either from the network or from a level 4, for the CENLOG messages<br />

to be received.<br />

Note: There must be a packet exchange or a layer 3/4 platform primitive exchange<br />

to activate the values entered by the TRAC command. An exchange must take<br />

place each time the command is issued. To force an exchange, issue an NMS<br />

down/up command.<br />

7831 5470–200


Example 2<br />

Example 2 sets the file size to 600 blocks, with all interfaces and all traceable items<br />

traced.<br />

<br />

or<br />

<br />

TRAC<br />

The <strong>X.25</strong> line must be active. The CENLOG message <br />

displays when the catalog command is completed. The TRAC command<br />

setting the interface and the items to be traced can then be entered (see Example 1).<br />

Note: There must be a packet exchange or a layer 3/4 platform primitive exchange<br />

to activate the values entered by the TRAC command. An exchange must take<br />

place each time the command is issued. To force an exchange, issue an NMS<br />

down/up command.<br />

Example 3<br />

Example 3 details how the TRAC command traces a specific interface or combination<br />

of interfaces, as well as how the TRAC command is set to trace specific information at<br />

each interface. The DATA field for the TYPE=H parameter is used to trace interfaces;<br />

the DATA field for the TYPE=M parameter is used for identifying specific items to be<br />

traced.<br />

To set the file size to 600 blocks, to trace a specific interface (PDNL3 to PDNPP and<br />

PDNPP to PDNL3), and to trace specific items (registers and the ZV$ table), the<br />

following commands must be issued:<br />

<br />

or<br />

<br />

The <strong>X.25</strong> line must be active.<br />

Note: There must be a packet exchange or a layer 3/4 platform primitive exchange<br />

to activate the values entered by the TRAC command. An exchange must take<br />

place each time the command is issued. To force an exchange, issue an NMS<br />

down/up command.<br />

7831 5470–200 5–25


TRAC<br />

5–26<br />

The CENLOG message displays when the<br />

catalog command has been completed. The TRAC command setting the interface can<br />

then be entered:<br />

<br />

or<br />

<br />

This command sets the interfaces to be traced (1 = PDNL3 to PDNPP and<br />

20 = PDNPP to PDNL3). The CENLOG message <br />

displays when the interface command has been set. The TRAC command setting the<br />

specific items to be traced (1 = registers and 80 = the ZV$ table) can then be entered:<br />

<br />

or<br />

<br />

The CENLOG message displays when the TRAC<br />

command tracing specific items has been set. The trace is now active.<br />

To terminate a trace, enter the following:<br />

<br />

or<br />

<br />

The CENLOG message displays when the termination is<br />

completed. The <strong>X.25</strong> line must be active for the termination command to take effect.<br />

Note: There must be a packet exchange or a layer 3/4 platform primitive exchange<br />

to activate the values entered by the TRAC command. An exchange must take<br />

place each time the command is issued. To force an exchange, issue an NMS<br />

down/up command.<br />

——————————————————————————————————————<br />

7831 5470–200


5.7.2 TRAC SNAP DCEF<br />

Format<br />

The TRAC SNAP DCEF command is used to pass DCE Network feature trace<br />

information to the <strong>X.25</strong> <strong>PSCS</strong> trace process.<br />

TRAC<br />

——————————————————————————————————————<br />

<br />

or<br />

Parameters<br />

<br />

——————————————————————————————————————<br />

SNAP=DCEF<br />

Activates the tracing mechanism.<br />

FAC=name<br />

The name of the EU statement for DCE feature.<br />

DATA=number<br />

The trace bits enabled, or used to stop tracing. You must always specify a four-digit number.<br />

Note: There must be a packet exchange or a layer 3/4 platform primitive exchange<br />

to activate the values entered by the TRAC command. An exchange must take<br />

place each time the command is issued. To force an exchange, issue an NMS<br />

down/up command.<br />

7831 5470–200 5–27


TRAC<br />

5–28<br />

Interface, Item, File Data Options<br />

DATA Description ID<br />

0000<br />

0001<br />

0002<br />

0004<br />

0008<br />

0010<br />

0020<br />

0040<br />

0080<br />

0100<br />

0200<br />

0400<br />

0800<br />

1000<br />

2000<br />

Stop tracing and close the trace file<br />

Connection table entries (DC$)<br />

Configuration table entries (DF$)<br />

Input messages from DTP<br />

Output messages to DTP<br />

Registers<br />

Work area (OW$)<br />

Input messages from PDNL3<br />

Output messages from PDNL3<br />

Input packets from PDNL3<br />

Output packets to PDNL3<br />

Input messages from layer 4<br />

Input packets from layer 4<br />

Output messages to layer 4<br />

Output packets to layer 4<br />

The cataloged trace file is X25*ZZ$PDNET<br />

where:<br />

ZZ = Telcon node id (AZ$NODEID)<br />

The size of each trace file cataloged is 256 blocks (256 bytes per block).<br />

N/A<br />

CONN<br />

CNFG<br />

DTPI<br />

DTPO<br />

REGS<br />

WORK<br />

PDBI<br />

PDBO<br />

PDPI<br />

PDPO<br />

L4BI<br />

L4PI<br />

L4BO<br />

L4PO<br />

——————————————————————————————————————<br />

7831 5470–200


5.8 UP — Activating a Facility<br />

Format<br />

The NMS UP command has been enhanced to activate an <strong>X.25</strong> DTE, trunk, line, or<br />

terminal.<br />

——————————————————————————————————————<br />

UP<br />

Parameters<br />

<strong>DCP</strong> name/netadd<br />

,LINE name<br />

,TERM name<br />

,PDTE name/address<br />

,PTRK name<br />

——————————————————————————————————————<br />

<strong>DCP</strong>=name/netadd<br />

The <strong>DCP</strong> associated with the facility that is to be deactivated. Refer to the <strong>DCP</strong> by a PRCSR<br />

statement name or by a DNS node address. This address has the following parts:<br />

• The subdomain number. The range is 1–65,535, and the default is the local subdomain<br />

number.<br />

• The super cluster number. The range is 1–255, and the default is the local super cluster<br />

number.<br />

• The simple cluster number. The range is 1–255, and the default is the local simple cluster<br />

number.<br />

• The node number. The range is 1–4,095.<br />

If you do not specify this parameter, NMS executes the command on the <strong>DCP</strong> to which your<br />

terminal is connected.<br />

LINE=name<br />

A line named in the configuration statement to activate.<br />

7831 5470–200 5–29<br />

UP


UP<br />

5–30<br />

TERM=name<br />

A terminal to activate. Refer to this terminal by the name that identifies it on a TERM statement.<br />

PDTE=name/address<br />

A DTE to deactivate. Refer to this DTE either by the name or address that identifies it on a DTE<br />

statement.<br />

PTRK=name<br />

A trunk to activate. Refer to this trunk by the name on a TRUNK statement. Specifying this<br />

parameter activates the <strong>X.25</strong> portion of the trunk only.<br />

——————————————————————————————————————<br />

7831 5470–200


Section 6<br />

Using <strong>X.25</strong> <strong>PSCS</strong> Configuration<br />

Statements<br />

This section describes the configuration statements necessary to configure <strong>X.25</strong> <strong>PSCS</strong>.<br />

It provides information on standard Telcon statements that have been modified for<br />

<strong>PSCS</strong> and on statements created especially for <strong>PSCS</strong>. Descriptions of modified<br />

statements focus entirely on parameters that affect <strong>X.25</strong> <strong>PSCS</strong> configuration.<br />

Section Topic<br />

6.1 CLSTR — Defining UTS Terminal Clusters<br />

Format<br />

Parameters<br />

Example<br />

6.2<br />

6.2.1<br />

6.2.2<br />

6.3<br />

6.3.1<br />

6.3.2<br />

DTE — Defining Data Terminal Equipment<br />

DTEs on PDNs, the DDN, or Private Networks<br />

Format<br />

Parameters<br />

Examples<br />

DTEs on DCE Networks<br />

Format<br />

Parameters<br />

Examples<br />

DTETYPE — Defining DTE Communication Attributes<br />

DTETYPEs for Standard <strong>Packet</strong> Networks<br />

Format<br />

Parameters<br />

Examples<br />

DTETYPEs for DCE Networks<br />

Format<br />

Parameters<br />

Example<br />

Online configuration differences<br />

continued<br />

7831 5470–200 6–1


Using <strong>X.25</strong> Configuration Statements<br />

6–2<br />

Section Topic<br />

6.4<br />

6.4.1<br />

6.4.2<br />

6.4.3<br />

6.5<br />

6.5.1<br />

6.5.2<br />

EU — Defining <strong>X.25</strong> <strong>PSCS</strong> End Users<br />

EUs for X.28/PAD End Users<br />

Format<br />

Parameters<br />

Examples<br />

EUs for PLS End Users<br />

Format<br />

Parameters<br />

Example<br />

EUs for DCE Network<br />

Format<br />

Parameters<br />

Example<br />

LCLASS — Defining Line Characteristics<br />

LCLASS for Standard <strong>Communications</strong> Lines<br />

Format<br />

Parameters<br />

Example<br />

LCLASS for ILM-20 Lines<br />

Format<br />

Parameters<br />

Example<br />

6.6 LINE — Defining Physical <strong>Communications</strong> Lines<br />

Format<br />

Parameters<br />

Examples<br />

6.7<br />

6.7.1<br />

6.7.2<br />

6.7.3<br />

PDNGRP — Defining a Network Connection<br />

PDNGRPs for PDNs and Private <strong>Packet</strong> Networks<br />

Format<br />

Parameters<br />

Examples<br />

PDNGRPs for the DDN<br />

Format<br />

Parameters<br />

Examples<br />

PDNGRPs for DCE Networks<br />

Format<br />

Parameters<br />

Examples<br />

continued<br />

7831 5470–200


Section Topic<br />

Using <strong>X.25</strong> <strong>PSCS</strong> Configuration Statements<br />

6.8 PDNPAD — Defining Operational Parameters for a PAD<br />

Format<br />

Parameters<br />

Examples<br />

6.9<br />

6.9.1<br />

6.9.2<br />

TERM — Defining a Terminal<br />

Terminals Using the UTS 4000 Cluster Controller<br />

Format<br />

Parameters<br />

Example<br />

Terminals Using the X.29 PAD<br />

Format<br />

Parameters<br />

Example<br />

6.10 X25DEF — Defining Network Characteristics<br />

Format<br />

Parameters<br />

Examples<br />

Online configuration differences<br />

6.11 X25NET — Defining DCE Network Routes<br />

Format<br />

Parameters<br />

Examples<br />

6.12 X25ROUTE — Specifying Routing Precedence<br />

Format<br />

Parameters<br />

Example<br />

Online configuration differences<br />

———————————————————————————————————————<br />

7831 5470–200 6–3


CLSTR<br />

6.1. CLSTR — Defining UTS Terminal Clusters<br />

Format<br />

Parameters<br />

Example<br />

6–4<br />

The CLSTR statement defines UTS 4000 terminal clusters. It is a standard Telcon<br />

statement that has been modified for <strong>X.25</strong> <strong>PSCS</strong>, enabling you to define UTS 4000<br />

terminal clusters as DTEs. Each UTS 4000 requires a CLSTR statement.<br />

———————————————————————————————————————<br />

<br />

———————————————————————————————————————<br />

GROUP=parnt<br />

Specifies a GROUP statement. Although <strong>X.25</strong> <strong>PSCS</strong> does not reference the GROUP parameter,<br />

Telcon requires it. To satisfy this requirement, reference any valid GROUP statement that does<br />

not reference a LINE statement.<br />

DTE=dte<br />

Specifies a DTE statement. This parameter is required for UTS 4000 Cluster Controllers that will<br />

function as remote DTEs.<br />

———————————————————————————————————————<br />

In the following example, a UTS 4000 Cluster Controller is defined as a DTE.<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


6.2. DTE — Defining Data Terminal Equipment<br />

DTE<br />

The DTE statement defines data terminal equipment (DTE) that is either attached to a<br />

network or directly attached to a <strong>DCP</strong>. A DTE is a computer or terminal that<br />

communicates directly with a network switch, called data circuit-terminating<br />

equipment (DCE). A single computer can function as one or several DTEs, since it can<br />

be connected to different networks simultaneously or have multiple connections to the<br />

same network.<br />

<strong>X.25</strong> <strong>PSCS</strong> enables communications with two types of DTEs: configured and<br />

nonconfigured. A configured DTE is one defined in the <strong>DCP</strong> configuration file. You<br />

can define up to 5000 DTEs in your <strong>DCP</strong> configuration file. The following devices must<br />

be defined as configured DTEs:<br />

• Other <strong>DCP</strong>s or U <strong>Series</strong> systems running the DNS protocol<br />

• Devices using the DCE Network feature<br />

• UTS 4000 Cluster Controllers<br />

• Unisys workstations or U <strong>Series</strong> running DCA protocols<br />

• Devices requiring permanent virtual circuits<br />

• Foreign systems running SNA applications<br />

• DTEs using the packet layer services (PLS) interface<br />

U <strong>Series</strong> systems and foreign systems running TCP/IP or OSI applications can function<br />

as configured or nonconfigured DTEs. The advantage of configuring DTEs is that you<br />

can use them to filter incoming call packets and control their routing. In conjunction<br />

with the X25ROUTE statement, you can configure <strong>X.25</strong> <strong>PSCS</strong> to only accept incoming<br />

calls from DTEs that are configured. This provides a filtering mechanism that requires<br />

no layer 4 program action. The incoming call is routed to the configured layer 4<br />

program specified on the LEVEL4 parameter of the associated DTETYPE statement.<br />

The disadvantage of configured DTEs is that more overhead is incurred during<br />

incoming call packet processing, and during the one-time initialization of <strong>X.25</strong> <strong>PSCS</strong>.<br />

Section 6.2.1 explains how to use the DTE statement in PDN, the DDN, and private<br />

packet network environments. Section 6.2.2 explains how to use the statement in a<br />

DCE Network environment. A single <strong>DCP</strong> can function in both environments<br />

simultaneously. In addition, this discussion includes information on online<br />

configuration, which explains how to implement online changes to the DTE statement.<br />

———————————————————————————————————————<br />

7831 5470–200 6–5


DTE<br />

6.2.1. DTEs on PDNs, the DDN, or Private Networks<br />

Format<br />

Parameters<br />

6–6<br />

This section explains how to use the DTE statement to configure a <strong>DCP</strong> — acting as a<br />

DTE itself — to communicate with other DTEs attached to PDNs, private packet<br />

networks, or the DDN.<br />

———————————————————————————————————————<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

DTETYPE=dname<br />

A DTETYPE statement. A DTE must reference a DTETYPE statement to identify a LEVEL4<br />

protocol implementation, define maximum packet and window sizes, and define connection retry<br />

parameter values.<br />

PDNGRP=parnt<br />

A PDNGRP statement. A DTE must reference a PDNGRP statement to identify logical channel<br />

ranges and virtual circuit types for connections with this DTE, and to identify network operating<br />

characteristics.<br />

DTEADR='addr'<br />

The address of the remote DTE. You must specify an address for switched virtual circuits or if<br />

the layer 4 program is <strong>Packet</strong> Layer Services (PLS). A DTE must have an address and the<br />

address must be unique unless you specify the FIXED option. The DTE address is assigned by<br />

the network, can be a maximum of 15 digits, and must be enclosed in apostrophes.<br />

TRUNK=(tname[,type])<br />

tname A TRUNK statement. Use this parameter when the remote DTE is another <strong>DCP</strong> or a<br />

U <strong>Series</strong> system running DNS. If you reference a TRUNK statement here, specify<br />

LEVEL4=PDNTRUNK on the associated DTETYPE statement.<br />

type The kind of trunk. Use MIXED if this trunk consists of a UDLC and PDN connections.<br />

Use PDN if it consists of PDN connections only. PDN is the default.<br />

7831 5470–200


DCATS=sname<br />

A DCATS statement. Use this parameter when the remote DTE is a Unisys workstation or<br />

U <strong>Series</strong> system running DCA protocols. If you reference a DCATS statement here, specify a<br />

LEVEL4=PDNDXA on the associated DTETYPE statement.<br />

PERMVC=(flc,llc)<br />

Specifies that the DTE uses permanent virtual circuits.<br />

DTE<br />

flc Specifies the first logical channel of a permanent virtual circuit. This number must fall<br />

within the range of channel numbers specified on the VCGRP parameter of the PDNGRP<br />

statement, and it must be equal to or less than the value specified for the last logical<br />

channel.<br />

llc Specifies the last logical channel of a permanent virtual circuit. This number must fall<br />

within the range of channel numbers specified on the VCGRP parameter of the PDNGRP<br />

statement, and it must be equal to or greater than the value specified for the first<br />

logical channel.<br />

Ensure that the ranges specified for one PERMVC parameter do not overlap the ranges specified<br />

for other PERMVC parameters of DTE statements having the same PDNGRP parent.<br />

OPTIONS=(opt1,opt2, ...)<br />

Specifies the options allowed for this DTE.<br />

Options:<br />

ABBRVADR Specifies that the DTE address is abbreviated, that is, partially specified, starting<br />

with the most significant address digits. Using this option enables you to configure<br />

many DTEs with the same DTE statement. This option is available for both<br />

outgoing and incoming calls. On outgoing calls, <strong>X.25</strong> <strong>PSCS</strong> uses the partial<br />

address to determine the correct line on which to place a call request. On<br />

incoming calls, <strong>X.25</strong> <strong>PSCS</strong> uses it to determine the correct Level 4 program to<br />

which to route calls. Do not use this option when the LEVEL4 parameter on the<br />

associated DTETYPE statement is PDNTRUNK, PDNUNIS, PDNX28, PLS, or<br />

PDNDXA, or when this DTE statement defines permanent virtual circuits. By default,<br />

this option is only used during outgoing call processing. If you want to use it for<br />

incoming calls only, specify the CALLING option. If you want to use it for both<br />

outgoing and incoming calls, specify CALLED and CALLING. For more information,<br />

see "Configuring Partial DTE Addresses" in Section 2.<br />

7831 5470–200 6–7


DTE<br />

6–8<br />

CALLED Specifies that <strong>X.25</strong> <strong>PSCS</strong> processes this DTE statement on outgoing calls only.<br />

This DTE statement is ignored during incoming call processing. For more<br />

information, see "Configuring the CALLED and CALLING Options" in Section 2.<br />

CALLING Specifies that <strong>X.25</strong> <strong>PSCS</strong> processes this DTE statement on incoming calls only.<br />

This DTE statement will be ignored during outgoing call processing. For more<br />

information, see "Configuring the CALLED and CALLING Options" in Section 2.<br />

Unless using the ABBRVADR option, selecting both the CALLED and CALLING<br />

options has the same effect as selecting neither.<br />

FASTSL Specifies the fast select feature for calls to this DTE, enabling call request packets<br />

and clear indication packets to carry up to 128 octets of user data. If you do not<br />

specify this option, the following occurs:<br />

• Call request packets are limited to 16 octets of user data.<br />

• If a Level 4 program requests an outgoing fast select facility, <strong>X.25</strong> <strong>PSCS</strong><br />

sends the user data after the call has been established.<br />

• If a Level 4 program requests the fast select with restricted response option<br />

for a call request, <strong>X.25</strong> <strong>PSCS</strong> accepts the subsequent call connected packet.<br />

FIXED Specifies that calls to and from this DTE must go through the PDNGRP (network<br />

connection) specified. If you do not specify this option, calls to this DTE are routed<br />

through the least busy PDNGRP (line) and calls from this DTE are accepted on any<br />

available line.<br />

FLOWC Specifies that call request packets to this DTE require that the flow control<br />

negotiation facility be encoded and that the level 3 window and packet sizes<br />

specified on the associated DTETYPE statement serve as the desired facility<br />

values. This ensures that <strong>X.25</strong> <strong>PSCS</strong> and the network node agree to the flow<br />

control values being used for virtual circuit connections. If you do not specify this<br />

option, the level 3 window and packet sizes default to the values specified on the<br />

associated DTETYPE statement (it is assumed that the network is using these<br />

values for virtual circuits to this DTE).<br />

RPOA Specifies that call request packets to this DTE be encoded with the RPOA facility<br />

option. Use this option with the RPOA parameter on this DTE statement.<br />

RRVCHG Specifies that calls to this DTE request reverse charging.<br />

RVCHG Specifies that <strong>X.25</strong> <strong>PSCS</strong> accept calls from this DTE requesting reverse charging.<br />

If you do not specify this option and an incoming call packet is encoded for a<br />

reverse charging facility, <strong>X.25</strong> <strong>PSCS</strong> automatically clears the call.<br />

THRUCLAS Specifies that call request packets to this DTE use the throughput class<br />

assignment facility option. Use this option with the THRUCLAS parameter on the<br />

associated DTETYPE statement.<br />

TRANDLY Specifies that call request packets to this DTE encode the facility code for the<br />

transit delay selection. Use this parameter in conjunction with the TRDELAY<br />

parameter on this DTE statement and option 31 on the L3OPT parameter of the<br />

associated X25DEF statement.<br />

7831 5470–200


RPOA=dnic<br />

Specifies the data network identification code number (DNIC) that is encoded in the optional<br />

RPOA facility field. This identifies an intermediate network through which the connection passes<br />

before reaching this DTE. The number must be specified as four hexadecimal digits (X'nnnn').<br />

Use this parameter with the OPTIONS=RPOA parameter.<br />

TRDELAY=tran<br />

Specifies the transit delay time. Specify a time between 1 and 65,535 milliseconds. Use this<br />

parameter with the OPTIONS=TRANDLY parameter on this statement and option 31 on the<br />

L3OPT parameter of the associated X25DEF statement.<br />

CUG=(YES|NO,'cugn')<br />

YES|NO Specifies whether the DTE is a member of a closed user group (CUG).<br />

'cugn' Specifies a two-digit CUG number, which defines the group to which the DTE belongs.<br />

Enclose this number in single quotation marks. See your site administrator for this<br />

number. If the default is selected, the CUG number is not included.<br />

Default<br />

NO is the default.<br />

STATUS=DOWN|UP<br />

Default<br />

Specifies the state in which the DTE is configured, up or down.<br />

UP is the default.<br />

DTE<br />

———————————————————————————————————————<br />

7831 5470–200 6–9


DTE<br />

Examples<br />

6–10<br />

Example 1<br />

Example 1 defines a PDN trunk, that is a <strong>DCP</strong>-to-<strong>DCP</strong> connection across a PDN. The<br />

remote <strong>DCP</strong> functions as a DTE. The DTE statement references a TRUNK statement<br />

on the TRUNK parameter, which also specifies PDN. The associated DTETYPE<br />

statement specifies LEVEL4=PDNTRUNK.<br />

<br />

<br />

Example 2<br />

<br />

<br />

<br />

<br />

<br />

Example 2 is similar to Example 1, except it defines a mixed trunk. That is, it defines<br />

both a PDN and a UDLC connection, which means the TRUNK parameter specifies<br />

MIXED.<br />

<br />

<br />

Example 3<br />

<br />

<br />

<br />

<br />

<br />

Example 3 defines another <strong>DCP</strong>-to-<strong>DCP</strong> trunk, this time specifying permanent virtual<br />

circuits. The logical channel numbers defined on the PERMVC parameter must fall<br />

within the range specified on the VCGRP parameter of the associated PDNGRP<br />

statement.<br />

<br />

<br />

<br />

Example 4<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Example 4 defines a <strong>DCP</strong>-to-U <strong>Series</strong> system connection. The U <strong>Series</strong> system is<br />

running DCA protocols, so the DTE statement references a DCATS statement. The<br />

associated DTETYPE statement specifies LEVEL4=PDNDXA. It also specifies that calls<br />

from this DTE requesting reverse charging be accepted and assigns this DTE to a<br />

closed user group.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


6.2.2. DTEs on DCE Networks<br />

Format<br />

Parameters<br />

DTE<br />

This subsection explains how to use the DTE statement to configure the DCE network<br />

for communications with directly attached DTEs (DADs).<br />

———————————————————————————————————————<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

DTEADR='addr'<br />

Specifies a DTE address. You must assign an address to each DTE. The addresses assigned<br />

must conform to the following rules:<br />

• Addresses must be 6 to 15 digits.<br />

• The first four digits specify the data network interchange code (DNIC), which identifies the<br />

network to which a called DTE is attached. The ITU/TSS has assigned DNICs for all public<br />

data networks and published these assignments in ITU/TSS Recommendation X.121. You<br />

can assign any four–digit number to the DCE network as long as it has not been assigned to<br />

a PDN to which one of the DCE Network <strong>DCP</strong>s is attached. This number appears on the<br />

DNICID parameter of the X25NET statement.<br />

• The next one to four digits specify the DCE node number. DTEs configured on the same<br />

<strong>DCP</strong> must have a common node number. This number appears on the DESTID parameter of<br />

the X25NET statement.<br />

• If you are not configuring a DTE for a hunt group, use the remaining digits to define a DTE<br />

identifier. You can use the same DTE identifier for DTEs on different DCEs, since the DCE<br />

node number portion of the address will make the complete address unique. If you provide a<br />

hunt group address here, you must define the DTE as part of a hunt group by specifying<br />

OPTIONS=HGROUP. For more information on assigning hunt group addresses, see<br />

"Configuring DTE Hunt Groups" in Section 3.<br />

DTETYPE=dname<br />

Specifies a DTETYPE statement. A DTE statement must reference a DTETYPE statement to<br />

define a LEVEL4 protocol and specify maximum packet and window sizes. To use the DCE<br />

Network feature, the DTETYPE referenced must specify LEVEL4=PDNNET. To specify an internal<br />

DTE, use one of the Level 4 programs listed in the DTETYPE statement description covered later<br />

in this section.<br />

7831 5470–200 6–11


DTE<br />

6–12<br />

PDNGRP=parnt<br />

Specifies a PDNGRP statement. A DTE statement must reference a PDNGRP statement to identify<br />

logical channel ranges and virtual circuit types for connections with this DTE. For DCE Network<br />

configurations, the referenced PDNGRP must specify OPTIONS=DAD.<br />

DCATS=sname<br />

Specifies a DCATS statement. Use this parameter when the DTE is a Unisys workstation or U<br />

<strong>Series</strong> system running DCA protocols. See Section 3.2.4, "Configuring an Internal DTE for U<br />

<strong>Series</strong> or IS–PC DTEs Running with the TS/TN Protocol."<br />

OPTIONS=(opt1,opt2,...)<br />

Specifies the options allowed for this DAD.<br />

Options:<br />

ABBRVADR Specifies that the DTE address is abbreviated, that is, partially specified, starting<br />

with the most significant address digits. Using this option enables you to configure<br />

subaddressing facilities, enabling a DTE to pass additional address digits.<br />

ACKDATA Specifies end-to-end data assurance for this DTE on all its connections to peer<br />

DTEs. DTEs may obtain data assurance on a per call basis by setting the D-bit in<br />

call request or call accept packets.<br />

FASTSLA Specifies that this DTE accepts call requests with the fast select facility present. If<br />

you do not specify this option, call requests destined for this DTE with the fast<br />

select facility are cleared by the DCE Network feature.<br />

FLOWC Specifies that call request packets to this DTE require that the flow control<br />

negotiation facility be encoded and that the level 3 window and packet sizes<br />

specified on the associated DTETYPE statement serve as the initial maximum<br />

facility values. The DAD may subsequently negotiate lower values. If you do not<br />

specify this option, the level 3 window and packet sizes default to the values<br />

specified on the associated DTETYPE statement.<br />

HGROUP Specifies that this DTE is a member of a hunt group. If you configure this feature,<br />

the DTEADR parameter must follow the addressing conventions for hunt groups.<br />

For more information on configuring hunt groups, see "Configuring DTE Hunt<br />

Groups" in Section 3.<br />

NOCHG Specifies that this DTE does not accept reverse charges on calls destined for this<br />

DTE and requests reverse charging on all calls it initiates.<br />

7831 5470–200


Examples<br />

DCECUG=(opt,a[,b][,c][,d])<br />

DTE<br />

Defines this DTE as a member of a closed user group (CUG) and specifies CUG related options:<br />

ALLOWI Specifies that this DTE accepts calls originating outside its closed user group.<br />

ALLOWO Specifies that this DTE makes calls to devices outside its closed user group.<br />

ALLOWIO Specifies that this DTE makes and receives calls to and from devices outside its<br />

closed user group.<br />

CLOSED Specifies that this DTE does not make or receive calls to or from DTEs outside the<br />

closed user group.<br />

STATUS=DOWN|UP<br />

Specifies the state in which the DTE is configured, up or down.<br />

Default<br />

UP is the default.<br />

———————————————————————————————————————<br />

Example 1<br />

Example 1 defines a DTE connection to a DCE network. There are no special<br />

parameters on the DTE statement, but the associated DTETYPE statement specifies<br />

LEVEL4=PDNNET.<br />

<br />

<br />

Example 2<br />

<br />

<br />

<br />

<br />

Example 2 is similar to Example 1 except it specifies that the DTE is a member of<br />

three closed user groups and that the DTE will not accept calls from or make calls to<br />

devices outside the CUG.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

7831 5470–200 6–13


DTE<br />

Example 3<br />

Example 3 is similar to Example 2 except it specifies the fast select option.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

Online configuration differences<br />

6–14<br />

1. Online configuration changes to DTEADR, CUG, RPOA, OPTIONS, and PDNGRP parameters<br />

take effect after issuing the DOWN PDTE and then UP PDTE commands. Online configuration<br />

changes to the DCECUG parameter take effect immediately.<br />

2. In most cases, online changes to the DTETYPE parameter take effect after issuing the DOWN<br />

PDTE and UP PDTE commands. However, when you change to or from a DTETYPE statement<br />

that specifies a UTS 4000 or TRUNK in the LEVEL4 parameter, you must restart Telcon<br />

before the change takes effect.<br />

3. To free a DTE from association with a CUG, specify DCECUG=NONE.<br />

4. All other online changes take effect only after you restart Telcon.<br />

5. To clear all options, enter the command: OPTIONS=NONE.<br />

6. To remove a DTE from being configured for permanent virtual circuits, enter PERMVC=NONE.<br />

7. To remove the DTE address defined for a DTE, enter DTEADR=NONE.<br />

———————————————————————————————————————<br />

7831 5470–200


6.3. DTETYPE — Defining DTE Communication<br />

Attributes<br />

DTETYPE<br />

The DTETYPE statement defines certain communication attributes between the <strong>DCP</strong><br />

and a DTE or network. Specifically, it defines the following:<br />

• The Level 4 program on the <strong>DCP</strong> to which calls from a DTE are routed<br />

• The maximum number of switched virtual circuits (SVCs) assigned to a<br />

<strong>DCP</strong>-to-<strong>DCP</strong> or a <strong>DCP</strong>-to-U <strong>Series</strong> system (running DNS) trunk<br />

• Connection retry parameters<br />

• The maximum size of input and output packets<br />

• The maximum number of unacknowledged packets that can be outstanding<br />

• The throughput class assignment facility code that the <strong>DCP</strong> includes in call request<br />

packets sent to a DTE<br />

Both the network and the Level 4 program can adjust these values dynamically.<br />

DTETYPEs do not reference other statements but are referenced by DTE, PDNGRP,<br />

and X25DEF statements.<br />

———————————————————————————————————————<br />

7831 5470–200 6–15


DTETYPE<br />

6.3.1. DTETYPEs for Standard <strong>Packet</strong> Networks<br />

Format<br />

Parameters<br />

6–16<br />

This section explains how to use the DTETYPE statement to configure the <strong>DCP</strong> for<br />

attachment to a PDN, the DDN, or a private packet network.<br />

———————————————————————————————————————<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

LEVEL4=(type[,mxsvc,ncalls,tcalls,tidle,diag])<br />

type Specifies the Level 4 program to which <strong>X.25</strong> <strong>PSCS</strong> routes incoming calls based on the<br />

call packet's calling DTE address. This parameter is required when a DTE statement<br />

references the DTETYPE. It is not required when a PDNGRP or X25DEF statement<br />

references the DTETYPE to define flow control parameters. The following are valid Level<br />

4 programs:<br />

IPOSI Specifies the OSITS internet protocol component of the OSITS program<br />

product, which must be installed to use this option. Use this option for<br />

connectionless-network service.<br />

TPOSI Specifies the OSITS transport service of the OSITS program product, which<br />

must be installed to use this option. Use this option for connection-oriented<br />

network service.<br />

TPCCITT<br />

Specifies the ITU/TSS-defined OSITS transport service component of the<br />

OSITS program product, which must be installed to use this option.<br />

IPTCP Specifies the TCP-IP Stack internet protocol. The TCP-IP Stack program<br />

product must be installed to use this option.<br />

PDNTRUNK<br />

Specifies <strong>DCP</strong>-to-<strong>DCP</strong> or <strong>DCP</strong>-to-U <strong>Series</strong> system (running DNS) trunk pairing. If<br />

you specify this Level 4 program, specify the TRUNK parameter on the<br />

associated DTE statement.<br />

PDNUNIS<br />

Specifies UTS 4000 cluster-to-<strong>DCP</strong> pairing.<br />

7831 5470–200


X29PAD<br />

Specifies an X.29 network PAD-to-<strong>DCP</strong> pairing.<br />

PDNX28<br />

Specifies the X.28/PAD-to-X.29 host pairing.<br />

DTETYPE<br />

PDNDXA<br />

Specifies an <strong>X.25</strong> connected PC or U <strong>Series</strong> system running DCA software. If<br />

you specify this Level 4 program, specify the DCATS parameter on the<br />

associated DTE statements.<br />

PDNNPID<br />

Specifies a local implementation of a network protocol.<br />

PDNIPID<br />

Specifies a local implementation of an international protocol.<br />

PDNUPID<br />

Specifies a local implementation of a user-defined protocol.<br />

PLS Specifies the packet layer services (PLS) host interface software.<br />

VIDEOTEX<br />

Specifies the Videotex program product, which must be installed to use this<br />

option.<br />

AIRNET Specifies the AIR/net program product, which must be installed to use this<br />

option.<br />

TGNPSI Specifies the Transmission Group NPSI Connection interface for the SNA/net<br />

program product, which must be installed to use this option.<br />

BFNPSI Specifies the Boundary Function NPSI Connection interface for the SNA/net<br />

program product, which must be installed to use this option.<br />

CORPNET<br />

Specifies the CORP/net program product, which must be installed to use this<br />

option. Use this option to connect UTS and Poll Select terminals attached to<br />

the <strong>DCP</strong> to the A <strong>Series</strong> and to connect terminals attached to the A <strong>Series</strong> to<br />

the OS 2200.<br />

mxsvc An option when you specify LEVEL4=PDNTRUNK. It specifies the maximum number of<br />

switched virtual circuits a trunk uses. The default is 1. The range is between 1 and the<br />

maximum specified in the SVC parameter on the associated PDNGRP statement.<br />

7831 5470–200 6–17


DTETYPE<br />

6–18<br />

The following four parameter options are available when you specify LEVEL4=PDNTRUNK and you<br />

want to use the Idle Trunk Circuit feature. This feature allows you to control how long inactive<br />

trunk circuits remain connected, and minimize the overhead incurred when establishing or<br />

reestablishing the trunk circuit connections.<br />

ncalls Specifies how many attempts to make to reestablish a virtual circuit connection that has<br />

been cleared because of inactivity. Specify between 0 and 255 attempts. If you do not<br />

specify a value or if you specify 0, <strong>X.25</strong> <strong>PSCS</strong> will attempt to reestablish a circuit until<br />

successful.<br />

tcalls Specifies the amount of time between attempts to reestablish a virtual circuit<br />

connection that has been cleared because of inactivity. Specify between 0 and 65,535<br />

seconds. If you do not specify a value or if you specify 0, 60 seconds is used.<br />

tidle Specifies the amount of time between transmission of network data units (NDUs) before<br />

a circuit is cleared. Specify between 0 and 65,535 seconds. If you do not specify a<br />

value or if you specify 0, <strong>X.25</strong> <strong>PSCS</strong> does not automatically shut down the circuit.<br />

diag Specifies a diagnostic code that indicates that a trunk is in an idle state. When the peer<br />

trunk implementation on the remote <strong>DCP</strong> or U <strong>Series</strong> system (running DNS) enters an<br />

idle state, it should encode this value in a clear or reset packet, indicating an idle state,<br />

not an unrecoverable error. Specify a value from 1 to 255. The default is 136.<br />

You can use the following two options when you specify LEVEL4=PDNDXA and you want to<br />

minimize error recovery overhead whenever the DTE is a Unisys PC running IS–PC software (DCA<br />

over TS/TN). When a virtual circuit connection is abnormally terminated by the Unisys PC, <strong>X.25</strong><br />

<strong>PSCS</strong> attempts to reestablish the virtual circuit connection according to these option settings.<br />

Note that the AUTORC=YES parameter option must be specified on the DCATS statement<br />

referenced by this DTE and on the DCATS statement defined for the OS 2200 host.<br />

ncalls Specifies how many attempts to make to reestablish a virtual circuit connection that has<br />

been abnormally cleared by a Unisys PC running the IS–PC (DCA) software. Specify<br />

between 0 and 65,535 attempts. If you do not specify a value or if you specify 0, <strong>X.25</strong><br />

<strong>PSCS</strong> attempts to reestablish a circuit until successful.<br />

tcalls Specifies the time interval in seconds before <strong>X.25</strong> <strong>PSCS</strong> attempts to reestablish a<br />

connection to the Unisys PC. Specify between 0 and 30 seconds. If you do not specify<br />

a value or if you specify 0, 30 seconds is used.<br />

7831 5470–200


PAKSIZ=(ipps[,opps])<br />

DTETYPE<br />

Specifies the size of input and output packets. These values represent the maximum number of<br />

octets per packet used on this <strong>DCP</strong>'s connection to the PDN. Make sure that the network<br />

supports the size you specify. <strong>X.25</strong> <strong>PSCS</strong> supports the following sizes: 16, 32, 64, 128, 256,<br />

512, 1024, 2048, and 4096.<br />

Default<br />

The default input size is 128 octets. The default output size is the value specified for the<br />

input size.<br />

WINSIZ=(ipws[,opws])<br />

Specifies the input and output packet level window for this <strong>DCP</strong>'s connection to a PDN.<br />

Default<br />

The default input size is 2 and the range is between 1 and 7. The default output size is the<br />

value specified for the input size.<br />

THRUCLAS=tclas<br />

Specifies the throughput class assignment facility code that is encoded in call request<br />

packets for DTEs associated with this DTETYPE statement. The permissible values are listed<br />

in Table 6–1.<br />

If you specify a THRUCLAS parameter value, that value will also be used to negotiate<br />

(downward) any throughput class facility value received in an incoming network call packet.<br />

———————————————————————————————————————<br />

7831 5470–200 6–19


DTETYPE<br />

6–20<br />

Table 6–1. Throughput Class Assignment Facility Codes<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10 (Default)<br />

11<br />

12<br />

13<br />

Code Rate (bps)<br />

75<br />

150<br />

300<br />

600<br />

1,200<br />

2,400<br />

4,800<br />

9,600<br />

19,200<br />

48,000<br />

64,000<br />

———————————————————————————————————————<br />

7831 5470–200


Examples<br />

Example 1<br />

DTETYPE<br />

Example 1 defines a PDN trunk, that is, a <strong>DCP</strong>-to-<strong>DCP</strong> connection. It could also be a<br />

<strong>DCP</strong>-to-U <strong>Series</strong> system connection if the U <strong>Series</strong> system is running DNS. The<br />

DTETYPE statement specifies LEVEL4=PDNTRUNK and the associated DTE<br />

statement references a TRUNK statement on the TRUNK parameter.<br />

<br />

<br />

Example 2<br />

<br />

<br />

<br />

<br />

<br />

Example 2 is similar to Example 1, except it specifies that the trunk can have a<br />

maximum of ten active virtual circuits.<br />

<br />

<br />

Example 3<br />

<br />

<br />

<br />

<br />

<br />

Example 3 is similar to Example 2, except it specifies the ncalls and tidle values as<br />

well. It specifies that 20 attempts should be made to reestablish a cleared circuit and<br />

that 100 seconds must pass between transmissions of network data units (NDUs)<br />

before a circuit is cleared. Since the tcalls value is not specified, commas reserve its<br />

place.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

7831 5470–200 6–21


DTETYPE<br />

6–22<br />

Example 4<br />

Example 4 defines a <strong>DCP</strong>-to-U <strong>Series</strong> system connection. The U <strong>Series</strong> system is<br />

running DCA protocols, so the DTETYPE statement specifies LEVEL4=PDNDXA. The<br />

associated DTE statement references a DCATS statement.<br />

<br />

<br />

Example 5<br />

<br />

<br />

<br />

<br />

<br />

Example 5 defines a UTS 4000 Cluster Controller as a DTE. The DTETYPE specifies<br />

LEVEL4=PDNUNIS, maximum input and output packet sizes of 256 octets, and a<br />

window size of 4.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


6.3.2. DTETYPEs for DCE Networks<br />

Format<br />

Parameters<br />

This section explains how to use the DTETYPE statement in a DCE network.<br />

DTETYPE<br />

———————————————————————————————————————<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

LEVEL4=PDNNET<br />

Specifies PDNNET as the LEVEL4 protocol type. You must specify PDNNET on this parameter. To<br />

specify internal DTEs on a DCE network, use the Level 4 programs defined for DTETYPEs for<br />

standard packet networks.<br />

PAKSIZ=(ipps[,opps])<br />

Specifies the maximum size of input and output packets for this DTE-DCE connection. The DCE<br />

network supports the following sizes: 16, 32, 64, 128, 256, 512, 1,024, 2,048, and 4,096<br />

octets.<br />

Default<br />

The default input size is 128 octets. The default output size is the input size.<br />

WINSIZ=(ipws[,opws])<br />

Specifies the input and output packet level window for DTE-DCE connection.<br />

Default<br />

The default is input window is 2 and the range is between 1 and 7. The default output size is<br />

the input size.<br />

———————————————————————————————————————<br />

7831 5470–200 6–23


DTETYPE<br />

Example<br />

The following example defines a DCE Network DTE. The DTETYPE statement<br />

specifies LEVEL4=PDNNET.<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

Online configuration differences<br />

6–24<br />

1. When a DTETYPE statement specifies a UTS 4000 or PDNTRUNK Level 4 program, you must<br />

restart Telcon for online configuration changes to take effect. In all other cases, simply issue<br />

the NMS DOWN PDTE and then the UP PDTE commands.<br />

2. If the facility changed is referenced from a PDNGRP or X25DEF statement, first issue the<br />

NMS DOWN LINE and then UP LINE commands on the line connecting the facility to a PDN.<br />

3. If you delete a DTETYPE statement from configuration, you must delete all DTE statements<br />

that reference it or modify the DTE statements to reference another DTETYPE statement.<br />

———————————————————————————————————————<br />

7831 5470–200


6.4. EU — Defining <strong>X.25</strong> <strong>PSCS</strong> End Users<br />

EUs are standard Telcon statements that have been modified for <strong>X.25</strong> <strong>PSCS</strong>. They<br />

define programs that process data received from terminals and other programs. You<br />

use a separate statement to configure each end user program for each processor in the<br />

network. This discussion has been divided into three formats, corresponding to the<br />

three ways <strong>X.25</strong> <strong>PSCS</strong> uses the statement. These are:<br />

• EUs for X.28/PAD end users<br />

• EUs for packet layer services (PLS) end users<br />

• EUs for DCE Network end users<br />

———————————————————————————————————————<br />

6.4.1. EUs for X.28/PAD End Users<br />

Format<br />

Parameters<br />

This section explains how to use the EU statement to configure X.28/PAD end users.<br />

This statement is required to configure a <strong>DCP</strong> to provide packet<br />

assembler/disassembler (PAD) functionality. It associates an external end user name<br />

(XEU) with a PDN. Each network for which you want to configure a PAD requires a<br />

separate EU statement. You must also use a separate EU for terminals that operate in<br />

a character-at-a-time or buffered character data mode.<br />

———————————————————————————————————————<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

PRCSR=prcsr<br />

Specifies the PRCSR statement on which <strong>X.25</strong> <strong>PSCS</strong> is configured.<br />

TYPE=X28PAD<br />

Specifies that this end user is an X.28/PAD.<br />

NETWORK=netid<br />

Specifies a PDN name. Table 6–2 lists the mnemonics to use here. You cannot use this<br />

parameter unless you specify the NETWORK parameter on the associated X25DEF statement.<br />

7831 5470–200 6–25<br />

EU


EU<br />

6–26<br />

X25DEF=x25type<br />

Specifies an X25DEF statement. If you define a connection to a private network, that is, one for<br />

which there is no mnemonic listed in Table 6–2, you must use the X25DEF parameter.<br />

EUPRCSR=(prcsr,dpp)<br />

Specify this parameter for asynchronous terminals that operate in a character-at-a-mode protocol.<br />

This type of operation allows each character that is entered on the terminal to be forwarded to<br />

the X.29 host. Do not specify this parameter for asynchronous terminals operating in a buffered<br />

character mode (that is, text characters are not forwarded until a carriage return character is<br />

entered). You must not specify this mode for synchronous terminals.<br />

prcsr Specifies the PRCSR statement on which <strong>X.25</strong> <strong>PSCS</strong> is configured.<br />

dpp Specify sxdpp to indicate a character mode.<br />

Note: 1. If this configuration defines a connection to only one network, neither<br />

the NETWORK or the X25DEF parameter is required.<br />

2. Do not specify both the NETWORK and the X25DEF parameter.<br />

3. If all X25DEF statements in this configuration use the same network<br />

parameter name, then use the NETWORK parameters.<br />

———————————————————————————————————————<br />

7831 5470–200


Accunet (USA)<br />

Arpac (Argentina)<br />

Austpac (Australia)<br />

Table 6–2. Network Names and Mnemonics<br />

Network Name Mnemonic (NETWORK=netid)<br />

B<strong>X.25</strong> (USA, private operator)<br />

Datapac (Canada)<br />

Datex (Sweden)<br />

Datex–P 1980 (Austria and Germany)<br />

DCS (Belgium)<br />

DDX (NTT Japan)<br />

Defense Data Network (USA)<br />

DN1 (Netherlands)<br />

Euronet<br />

Iberpac (Spain)<br />

Itapac (Italy)<br />

Mexpac (Mexico)<br />

NOPN (Norway)<br />

NPDN (Finland)<br />

<strong>PSCS</strong>NET<br />

PSS (United Kingdom)<br />

Renpac<br />

SITA (France)<br />

Telenet (USA)<br />

Telepac (Switzerland)<br />

Telepacp (Portugal)<br />

Transpac (France)<br />

ACCUNET<br />

ARPAC<br />

AUSTPAC<br />

BX25<br />

DATAPAC<br />

DATEX<br />

DATEXPA<br />

DCS<br />

DDXP<br />

DDNX25<br />

DN1<br />

EURONET<br />

IBERPAC<br />

ITAPAC<br />

MEXPAC<br />

NOPN<br />

NPDN<br />

<strong>PSCS</strong>NET<br />

PSS<br />

RENPAC<br />

SITA<br />

TELENET<br />

TELEPAC<br />

TELEPACP<br />

TRANSPAC<br />

7831 5470–200 6–27<br />

EU


EU<br />

Examples<br />

6–28<br />

Example 1<br />

Example 1 defines a PAD for asynchronous terminals operating in a character mode to<br />

an X.29 host. The X.29 host is accessed through the Telenet network. The EU<br />

statement specifies TYPE=X28PAD. The EUPRCSR parameter specifies SXDPP for the<br />

character-at-a-time mode, as does the DPP parameter on the XEU statement.<br />

<br />

<br />

Example 2<br />

<br />

<br />

<br />

<br />

<br />

Example 2 defines a PAD for either asynchronous or synchronous terminals accessing<br />

an X.29 host through the Telenet network. The XEU that references the EU specifies<br />

DPP=INT1, which presents characters entered from the terminal in a buffered mode.<br />

Since INT1 is the default protocol on the EU statement's EUPRCSR parameter, it does<br />

not have to be specified. Data messages entered from the terminal can only be sent to<br />

the X.29 host in a buffered character mode.<br />

<br />

<br />

Example 3<br />

<br />

<br />

<br />

<br />

Example 3 combines the two terminal operating modes from Examples 1 and 2.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

7831 5470–200


Example 4<br />

Example 4 provides the same terminal operating modes to the DN1 network as well as<br />

to the Telenet network as shown in Example 3. XEU and EU statement pairs can be<br />

repeated for defining access to more than one network and for defining the two<br />

terminal operating modes.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Example 5<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Unlike the previous examples, Example 5 uses the X25DEF parameter because the<br />

associated X25DEF statement defines a private network.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200 6–29<br />

EU


EU<br />

6.4.2. EUs for PLS End Users<br />

Format<br />

Parameters<br />

6–30<br />

This subsection explains how to use the EU statement to configure PLS end users. The<br />

EU statement associates a host DTP connection with a remote DTE. You must<br />

configure an EU for each DTE requiring this DTP association.<br />

———————————————————————————————————————<br />

<br />

———————————————————————————————————————<br />

PRCSR=prcsr<br />

Specifies the PRCSR statement on which <strong>X.25</strong> <strong>PSCS</strong> is configured.<br />

TYPE=PLSTSU<br />

Specifies PLS software as an end user.<br />

USERSTX1=dte<br />

Specifies the name of a DTE statement, which defines the DTE that will use the PLS interface.<br />

USERSTX2=xeu<br />

Specifies the name of an XEU statement that enables a host GASIF interface.<br />

———————————————————————————————————————<br />

7831 5470–200


Example<br />

The following example defines PLS as an end user and associates a DTE with a host<br />

DTP connection. The EU statement specifies TYPE=PLSTSU and references XEU and<br />

DTE statements.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200 6–31<br />

EU


EU<br />

6.4.3. EUs for DCE Network<br />

Format<br />

Parameters<br />

6–32<br />

This section explains how to use the EU statement to configure a DCE Network end<br />

user. DCE Network requires one EU statement for each <strong>DCP</strong> functioning as a DCE.<br />

<strong>DCP</strong>s that function as routing nodes only do not require a DCE Network EU.<br />

The DCE Network EU associates a DCE node address with a particular <strong>DCP</strong> through<br />

the PRCSR parameter.<br />

———————————————————————————————————————<br />

<br />

———————————————————————————————————————<br />

PRCSR=prcsr<br />

The PRCSR statement that defines the <strong>DCP</strong> on which DCE Network software runs.<br />

TYPE=<strong>DCP</strong>NET<br />

Specifies DCE Network software as an end user.<br />

DCENODE='nodeaddr'<br />

Specifies a DCE node address, which is a subset of a DTE address. The DCE node address must<br />

be between five and eight digits and must be enclosed in quotation marks. It consists of the<br />

following:<br />

• A data network identifier code (DNIC), which is a four-digit number that identifies the<br />

network. The ITU/TSS assigns DNICs to public data networks (PDNs). If one or more of the<br />

<strong>DCP</strong>s in your network connects to a PDN, make sure the DNIC is not the same as the<br />

PDN's.<br />

• A node number, which consists of one to four digits.<br />

———————————————————————————————————————<br />

7831 5470–200


Example<br />

The following example shows an EU statement defining DCE Network software as an<br />

end user and specifying a DCE node address on the DCENODE parameter. Since the<br />

DNIC portion of the node address must be exactly four digits, the node number in this<br />

example is 001.<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200 6–33<br />

EU


LCLASS<br />

6.5. LCLASS — Defining Line Characteristics<br />

The LCLASS statement defines classes of communications lines, specifying attributes<br />

such as the line speed and the protocol that controls the line. This statement has been<br />

modified for <strong>X.25</strong> <strong>PSCS</strong>, enabling you to specify an <strong>X.25</strong> line protocol handler for the<br />

X.21, X.21 bis, and V.35 line modules or a LAPB implementation for an Intelligent Line<br />

Module-20 (ILM-20).<br />

———————————————————————————————————————<br />

6.5.1. LCLASS For Standard <strong>Communications</strong> Lines<br />

Format<br />

Parameters<br />

Example<br />

6–34<br />

This section explains how to configure the <strong>X.25</strong> protocol handler for the X.21, X.21 bis,<br />

and V.35 lines.<br />

———————————————————————————————————————<br />

<br />

<br />

———————————————————————————————————————<br />

LPH=X25PKT<br />

The <strong>X.25</strong> line protocol handler for this line. Use this value for X.21, X.21 bis, and V.35 lines.<br />

OPTIONS=(DIR,SYFD)<br />

A direct, synchronous, full-duplex line, which the <strong>X.25</strong> protocol requires.<br />

SPEED=speed<br />

The line speed for lines referencing this LCLASS statement. For X.21 and X.21 bis lines, the<br />

maximum line speed is 19,200 bits-per-second (bps). For V.35 lines, the maximum speed is<br />

65,000 bps.<br />

———————————————————————————————————————<br />

The following example defines a line class, specifying an <strong>X.25</strong> protocol handler and a<br />

direct, synchronous, full-duplex line running at 9,600 bps.<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


6.5.2. LCLASS For ILM-20 Lines<br />

Format<br />

Parameters<br />

Example<br />

LCLASS<br />

This section describes how to use the LCLASS statement to define ILM-20 lines for the<br />

<strong>X.25</strong> <strong>PSCS</strong> LAPB implementation.<br />

———————————————————————————————————————<br />

<br />

<br />

———————————————————————————————————————<br />

LPH=(ILML,'<strong>PSCS</strong>HDLC')<br />

ILML Specifies an ILM line. This parameter is required for the ILM platform to initialize the<br />

lines associated with this statement.<br />

`<strong>PSCS</strong>HDLC'<br />

The name of the <strong>DCP</strong> file that holds pre-registration information. Enclose this name in<br />

quotation marks.<br />

OPTIONS=(DIR,SYFD)<br />

Specifies a direct, synchronous, full-duplex line, which the <strong>X.25</strong> protocol requires.<br />

SPEED=speed<br />

The line speed for lines referencing this LCLASS statement. The ILM–20 supports an aggregate<br />

capacity of two million bps.<br />

———————————————————————————————————————<br />

The following example shows an LCLASS specifying the ILM-20 LAPB implementation<br />

and a direct, synchronous, full-duplex line running at 250 kbps.<br />

<br />

<br />

<br />

<br />

<br />

<br />

Note: The ILM-20 supports an aggregate speed of two million bits-per-second<br />

(mbps). If you configure more than one line on an ILM-20 and if the lines<br />

reference a common LCLASS statement, the value on the SPEED parameter<br />

multiplied by the number of lines associated with this ILM-20 cannot exceed<br />

two mbps.<br />

———————————————————————————————————————<br />

7831 5470–200 6–35


LINE<br />

6.6. LINE — Defining Physical <strong>Communications</strong><br />

Lines<br />

Format<br />

Parameters<br />

Examples<br />

6–36<br />

The LINE statement defines certain characteristics of communications lines. It has<br />

been modified for <strong>X.25</strong> <strong>PSCS</strong> to define a PDNGRP statement as a parent facility.<br />

———————————————————————————————————————<br />

<br />

———————————————————————————————————————<br />

PDNGRP=parnt<br />

Specifies the parent facility (always a PDNGRP) for a PDN connection.<br />

CLASS=lclass<br />

Specifies the associated LCLASS statement which defines the line handler protocol and line<br />

speed.<br />

ADR={port|(port,linenum)}<br />

Specifies the port processor identification number. Values range from 0 to 255. When using<br />

ILM–20 lines, you must also specify the line module's line number. Values range from 0 to 3.<br />

———————————————————————————————————————<br />

Example 1<br />

Example 1 defines an X.21, X.21 bis, or V.35 line. The LINE statement specifies a<br />

PDNGRP statement as the parent facility. The associated LCLASS statement specifies<br />

LPH=X25PKT and OPTIONS=(DIR,SYFD). Both of these LCLASS parameters and<br />

values are required with standard line modules.<br />

<br />

<br />

<br />

<br />

<br />

<br />

7831 5470–200


Example 2<br />

LINE<br />

Example 2 defines a multilink procedure configuration. The LINE statements reference<br />

the same PDNGRP statement, which specifies the multilink option.<br />

<br />

<br />

<br />

<br />

<br />

Example 3<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Example 3 defines an ILM-20 line module. Parameters on the LINE statement are the<br />

same as in Example 1 and Example 2. The associated LCLASS statement, however,<br />

specifies LPH=(ILML,<strong>PSCS</strong>HDLC). For an ILM-20, you must also specify one of the<br />

four lines on the line module. In this example, the second line (“1”) is specified. The<br />

line numbers range from 0 to 3.<br />

<br />

<br />

<br />

<br />

<br />

<br />

Note: 1. Multiple LINE statements may not have a common PDNGRP parent<br />

unless the PDNGRP statement specifies the multilink procedure. If so, up<br />

to 48 LINE statements can specify the same PDNGRP as a parent.<br />

2. LINE statements that specify resiliency should not use the RESIL<br />

parameter (see the PDNGRP statement), but should specify the ADR and<br />

LSMI parameters when connected to a line switch module (LSM).<br />

———————————————————————————————————————<br />

7831 5470–200 6–37


PDNGRP<br />

6.7. PDNGRP — Defining a Network Connection<br />

6–38<br />

The PDNGRP statement is not a standard Telcon statement but was created especially<br />

for <strong>X.25</strong> <strong>PSCS</strong>. It defines the following:<br />

• Certain packet level attributes for the <strong>DCP</strong> connection to a network<br />

• The backup processor in resilient configurations<br />

• Parameters for DDN configurations<br />

• Parameters for configurations that use the multilink protocol<br />

• Parameters for DCE Network configurations<br />

You can configure up to 300 PDNGRP statements for each <strong>DCP</strong> and up to eight of<br />

these can specify the multilink procedure. PDNGRPs reference X25DEF, DTETYPE,<br />

and X25ROUTE statements and are referenced by LINE and DTE statements. Usually,<br />

each LINE statement references a separate PDNGRP statement. In multilink<br />

configurations, however, up to 48 LINE statements can reference the same PDNGRP.<br />

———————————————————————————————————————<br />

7831 5470–200


6.7.1. PDNGRPs for PDNs and Private <strong>Packet</strong> Networks<br />

Format<br />

Parameters<br />

PDNGRP<br />

This section explains how to use the PDNGRP statement in a PDN or private packet<br />

network environment.<br />

———————————————————————————————————————<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

PRCSR=parnt<br />

Specifies the PRCSR statement that defines the <strong>DCP</strong> to which this PDNGRP is associated. Up to<br />

300 PDNGRP statements can reference a single PRCSR statement.<br />

X25DEF=netdef<br />

Specifies an X25DEF statement, which associates this PDNGRP with an X25DEF statement.<br />

VCGRP=(fchan,lchan[,type])<br />

fchan Specifies the first logical channel number of a type of virtual circuit. Values may range<br />

from 1 to 4,095. See the network administrator for information on logical channel<br />

ranges.<br />

lchan Specifies the last logical channel number for this type. Values may range from 1 to<br />

4,095. This value must be greater than or equal to fchan. Do not configure more than<br />

1,900 logical channels for each PDNGRP statement.<br />

Note: Special rules apply for specifying these logical channel numbers when the associated<br />

X25DEF statement has specified the L3OPT=3 parameter option (allowing logical<br />

channel zero to be used as a data circuit). See Example 4 below.<br />

7831 5470–200 6–39


PDNGRP<br />

6–40<br />

type Specifies the type of virtual circuit. A description of each type follows:<br />

Default<br />

PERM Specifies permanent virtual circuits (PVCs). If you choose this option, the<br />

values on the PERMVC parameter of the associated DTE statement must fall<br />

within the range of logical channel numbers specified on this statement.<br />

SVC Specifies two-way switched virtual circuits (SVCs).<br />

RIC Specifies switched virtual circuits for outgoing calls only. Incoming calls on<br />

these circuits are cleared.<br />

ROC Specifies switched virtual circuits for incoming calls only.<br />

Two–way switched virtual circuits (SVCs) are the default.<br />

X25ROUTE=route<br />

Specifies the route selected.<br />

DTETYPE=dtype<br />

Specifies a DTETYPE statement. <strong>X.25</strong> <strong>PSCS</strong> uses this DTETYPE reference to determine how to<br />

process calls from nonconfigured DTEs that do not specify certain packet level parameters. If<br />

call packets from a nonconfigured DTE do not specify a flow control negotiation facility, <strong>X.25</strong><br />

<strong>PSCS</strong> uses the information on the associated DTETYPE statement to establish packet level<br />

parameters, such as window and packet sizes. Calls from nonconfigured DTEs that do not<br />

specify a flow control negotiation facility, use the <strong>X.25</strong> <strong>PSCS</strong> defined defaults, which are a<br />

window size of 2 and a packet size of 128.<br />

DTEADR='adr'<br />

Specifies the local DTE address. This parameter is required for the ARPAC, DDN, IBERPAC, and<br />

TELEPACP networks. If you specify this parameter, <strong>X.25</strong> <strong>PSCS</strong> places the local DTE address into<br />

the calling DTE address field of call request packets. If you specify the X.75 option for this<br />

network connection (PDNGRP), the address of the calling, directly attached DTE (DAD) is<br />

substituted for this address. This address is also used to validate the called DTE address in<br />

incoming call packets. Specify up to 15 digits.<br />

RESIL=bdcp<br />

Specifies the name of the backup processor (<strong>DCP</strong>) to be activated whenever the parent<br />

processor fails. Be sure to specify the ADR and LSMI parameters on the associated LINE<br />

statement.<br />

MLPW=window<br />

Specifies the multilink window size, which specifies the maximum number of sequentially<br />

numbered multilink frames that can be transferred without acknowledgment. See your network<br />

administrator for the correct value.<br />

7831 5470–200


Examples<br />

OPTIONS=(opt1,opt2,...)<br />

Specifies the following options:<br />

MLP Specifies the multilink procedure. The default is no multilink option.<br />

PDNGRP<br />

HIPRI Specifies that this PDNGRP supports calls specifying the priority facility option, which is<br />

defined in the 1988 ITU/TSS Blue Book. When specified, facility parameter values for<br />

the priority of data on a virtual circuit connection are processed in call set up packets.<br />

Valid values range from 0 (least expedited data) to 3 (most expedited data).<br />

X75 Specifies an X.75 interface for a DCE Network. This option is required to enable a DCE<br />

Network to pass a calling DTE address in a call packet to another network. Specify this<br />

option only if you configure the DCE Network feature.<br />

THRUCLAS<br />

Specifies that throughput class negotiation is available on this network connection. The<br />

default is that throughput class negotiation is not available. When specified,<br />

nonconfigured call requests to the network may contain the throughput class<br />

negotiation facility. Note that call requests that are configured use the DTE statement<br />

and its associated DTETYPE statement to determine whether or not the call request<br />

contains the throughput class negotiation facility.<br />

FLOWC Specifies that flow control negotiation is available on this network connection. The<br />

default is that flow control negotiation is not available. When specified, nonconfigured<br />

call requests to the network may contain the flow control negotiation facility. Note that<br />

call requests that are configured use the DTE statement and its associated DTETYPE<br />

statement to determine whether or not the call request contains the flow control<br />

negotiation facility.<br />

———————————————————————————————————————<br />

Example 1<br />

Example 1 defines a connection to a DN1-compatible network. It specifies switched<br />

virtual circuits for logical channels 1 - 9 (VCGRP=(1,9,SVC)) and permanent virtual<br />

circuits on logical channels 10 - 21 (VCGRP=(10,21,PERM)). The associated DTE<br />

statement specifies permanent virtual circuit numbers to match the PDNGRP<br />

specification, although the numbers on the DTE PERMVC parameter do not have to<br />

match, but fall within the range specified on the PDNGRP statement.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

7831 5470–200 6–41


PDNGRP<br />

6–42<br />

Example 2<br />

Example 2 defines a multilink procedure configuration. The PDNGRP statement<br />

specifies OPTIONS=MLP and a multilink window size of 21 frames (MLPW=21). The<br />

LINE statements reference the same PDNGRP statement.<br />

<br />

<br />

<br />

<br />

<br />

Example 3<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Example 3 shows the PDNGRP statement in a resilient configuration.<br />

<br />

<br />

Example 4<br />

<br />

<br />

<br />

<br />

Example 4 defines how to configure the logical channel number ranges when the<br />

network allows logical channel zero to be used as a data circuit. This is done by<br />

specifying the L3OPT=3 parameter option on the X25DEF statement associated with<br />

the PDNGRP statement. If the network administrator assigns logical channel numbers<br />

0 through 9 as permanent circuits and numbers 10 through 50 as switched circuits, the<br />

logical channel numbers specified on the VCGRP parameter would be one greater than<br />

that assigned by the network administrator.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


6.7.2. PDNGRPs for the DDN<br />

Format<br />

Parameters<br />

PDNGRP<br />

This section explains how to use the PDNGRP statement in the DDN environment.<br />

———————————————————————————————————————<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

PRCSR=parnt<br />

Specifies the PRCSR statement that defines the <strong>DCP</strong> to which this PDNGRP is associated. Up to<br />

300 PDNGRP statements can reference a single PRCSR statement.<br />

X25DEF=netdef<br />

Specifies an X25DEF statement, which associates this PDNGRP with an X25DEF statement that<br />

defines the characteristics of the <strong>X.25</strong> network interface.<br />

VCGRP=(fchan,lchan[,type])<br />

fchan Specifies the first logical channel number of a type of virtual circuit. Values may range<br />

from 1 to 4,095. See the network administrator for information on logical channel<br />

ranges.<br />

lchan Specifies the last logical channel number for this type. Values may range from 1 to<br />

4,095. This value must be greater than or equal to fchan. Do not configure more than<br />

2,000 logical channels for each PDNGRP statement.<br />

Note: Special rules apply for specifying these logical channel numbers when the associated<br />

X25DEF statement has specified the L3OPT=3 parameter option (allowing logical<br />

channel zero to be used as a data circuit).<br />

7831 5470–200 6–43


PDNGRP<br />

6–44<br />

type Specifies the type of virtual circuit. A description of each type follows:<br />

Default<br />

PERM Specifies permanent virtual circuits (PVCs). If you choose this option, the<br />

values on the PERMVC parameter of the associated DTE statement must fall<br />

within the range of logical channel numbers specified on this statement.<br />

SVC Specifies two-way switched virtual circuits (SVCs).<br />

RIC Specifies switched virtual circuits for outgoing calls only. Incoming calls on<br />

these circuits are cleared.<br />

ROC Specifies switched virtual circuits for incoming calls only.<br />

Two–way switched virtual circuits (SVCs) are the default.<br />

X25ROUTE=route<br />

Specifies the route selected.<br />

DTEADR='adr'<br />

Specifies the local DTE address. The DDN requires this parameter. See the network<br />

administrator for the DTE address.<br />

DTETYPE=dtype<br />

Specifies a DTETYPE statement. <strong>X.25</strong> <strong>PSCS</strong> uses this DTETYPE reference to determine how to<br />

process calls from nonconfigured DTEs that do not specify certain packet level parameters. If<br />

call packets from a nonconfigured DTE do not specify a flow control negotiation facility, <strong>X.25</strong><br />

<strong>PSCS</strong> uses the information on the associated DTETYPE statement to establish packet level<br />

parameters, such as window and packet sizes. Calls from nonconfigured DTEs that do not<br />

specify a flow control negotiation facility, use the <strong>X.25</strong> <strong>PSCS</strong> defined defaults, which are a<br />

window size of 2 and a packet size of 128.<br />

RESIL=bdcp<br />

Specifies the name of the backup processor (<strong>DCP</strong>) to be activated whenever the parent<br />

processor fails. Be sure to specify the ADR and LSMI parameters on the associated LINE<br />

statement.<br />

7831 5470–200


IMP=(psn)<br />

PDNGRP<br />

Specifies an IMP or packet switching node (PSN) number assigned to the DCE by the DDN. This<br />

parameter is required only when the <strong>DCP</strong> configures logical hosts. Specify a value from 0 to<br />

255. Use this number with the TCP-IP Stack program product.<br />

IPHOST=(host1...host16)<br />

Specifies logical host numbers assigned to the DTE by the DDN. This parameter is required for<br />

logical host configuration on the DDN. You can specify up to 16 host numbers. Use this number<br />

with the TCP-IP Stack program product.<br />

OPTIONS=(opt1,opt2,...)<br />

Specifies the following options:<br />

THRUCLAS Specifies that throughput class negotiation is available on this network connection.<br />

The default is that throughput class negotiation is not available. When specified,<br />

nonconfigured call requests to the network may contain the throughput class<br />

negotiation facility. Note that call requests that are configured use the DTE<br />

statement and its associated DTETYPE statement to determine whether or not the<br />

call request contains the throughput class negotiation facility.<br />

HIPRI Specifies that this PDNGRP accepts calls specifying priority circuits. When<br />

specified, facility parameter values for the priority of data on a virtual circuit<br />

connection are processed in call set up packets. Valid values range from 0 (least<br />

expedited data) to 3 (most expedited data).<br />

FLOWC Specifies that flow control negotiation is available on this network connection. The<br />

default is that flow control negotiation is not available. When specified,<br />

nonconfigured call requests to the network may contain the flow control<br />

negotiation facility. Note that call requests that are configured use the DTE<br />

statement and its associated DTETYPE statement to determine whether or not the<br />

call request contains the flow control negotiation facility.<br />

———————————————————————————————————————<br />

7831 5470–200 6–45


PDNGRP<br />

Examples<br />

6–46<br />

Example 1<br />

Example 1 defines a connection to the DDN. It specifies switched virtual circuits for<br />

logical channels 1 - 9 (VCGRP=(1,9,PERM)) and permanent virtual circuits on logical<br />

channels 10 - 21 (VCGRP=(10,21,SVC)). The associated DTE statement specifies<br />

permanent virtual circuit numbers to match the PDNGRP specification, although the<br />

numbers on the DTE's PERMVC parameter do not have to match, but simply fall<br />

within the range specified on the PDNGRP statement.<br />

<br />

<br />

<br />

Example 2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Example 2 shows the PDNGRP statement in a resilient configuration.<br />

<br />

<br />

<br />

Example 3<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Example 3 shows the PDNGRP statement configuring logical host and PSN numbers.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


6.7.3. PDNGRPs for DCE Networks<br />

Format<br />

Parameters<br />

This section explains how to use the PDNGRP statement in a DCE network<br />

environment.<br />

PDNGRP<br />

———————————————————————————————————————<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

PRCSR=parnt<br />

Specifies the PRCSR statement that defines the <strong>DCP</strong> to which this PDNGRP is associated. Up to<br />

300 PDNGRP statements can reference a single PRCSR statement.<br />

X25DEF=netdef<br />

Specifies an X25DEF statement, which associates this PDNGRP with an X25DEF statement.<br />

VCGRP=(fchan,lchan[,type])<br />

fchan Specifies the first logical channel number of a type of virtual circuit. Values may range<br />

from 1 to 4,095.<br />

lchan Specifies the last logical channel number for this type. Values may range from 1 to<br />

4,095. This value must be greater than or equal to fchan. Do not configure more than<br />

2,000 logical channels for each PDNGRP statement.<br />

Note: Special rules apply for specifying these logical channel numbers when the associated<br />

X25DEF statement has specified the L3OPT=3 parameter option (allowing logical<br />

channel zero to be used as a data circuit).<br />

type Specifies the type of virtual circuit. A description of each type follows:<br />

Default<br />

SVC Specifies two-way switched virtual circuits (SVCs), which are the default.<br />

RIC Specifies switched virtual circuits for outgoing calls only. Incoming calls on<br />

these circuits are cleared.<br />

ROC Specifies switched virtual circuits for incoming calls only.<br />

Two–way switched virtual circuits (SVCs) are the default.<br />

7831 5470–200 6–47


PDNGRP<br />

Examples<br />

6–48<br />

RESIL=bdcp<br />

Specifies the name of the backup processor (<strong>DCP</strong>) to be activated whenever the parent<br />

processor fails.<br />

MLPW=window<br />

Specifies the multilink window size, which specifies the maximum number of sequentially<br />

numbered multilink frames that can be transferred without acknowledgment.<br />

OPTIONS=(opt1,opt2,...)<br />

Specifies the following options:<br />

DAD Specifies a directly attached DTE. Call packets from the DTE defined here are routed<br />

based on the called DTE address only. You must specify OPTIONS=DAD for DCE<br />

Network PDNGRPs.<br />

MLP Specifies that this network connection supports the multilink procedure. The default is<br />

no multilink option.<br />

HIPRI Specifies that this PDNGRP supports calls specifying the priority facility option as<br />

defined in the 1988 ITU/TSS Blue Book. When specified, facility parameter values for<br />

the priority of data on a virtual circuit connection are processed in call set up packets.<br />

Valid values range from 0 (least expedited data) to 3 (most expedited data).<br />

———————————————————————————————————————<br />

Example 1<br />

Example 1 shows a DTE connected to the DCE network. The PDNGRP statement<br />

specifies OPTIONS=DAD.<br />

<br />

<br />

<br />

Example 2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Example 2 is similar to Example 1 except it also specifies high priority virtual circuits.<br />

The PDNGRP statement specifies OPTIONS=(DAD,HIPRI).<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


Online configuration differences<br />

PDNGRP<br />

1. Most online configuration changes take effect when you issue the DOWN and UP commands<br />

for the LINE whose parent is this PDNGRP. When you change the VCGRP parameter, however,<br />

you must restart Telcon before configuration changes take effect.<br />

2. In order to remove the local DTE address, enter DTEADR=NONE, then issue the DOWN and<br />

UP commands for the associated LINE statement.<br />

3. In order to remove the X25ROUTE, enter X25ROUTE=NONE, then issue the DOWN and UP<br />

commands for the associated LINE statement.<br />

———————————————————————————————————————<br />

7831 5470–200 6–49


PDNPAD<br />

6.8. PDNPAD — Defining Operational Parameters<br />

for a PAD<br />

Format<br />

Parameters<br />

6–50<br />

The PDNPAD statement is not a Telcon statement but was created especially for <strong>X.25</strong><br />

<strong>PSCS</strong> to define operating characteristics for terminals using the X.29 PAD feature.<br />

These operating characteristics are used by a network X.29 PAD to set up a terminal<br />

operating environment. Recommendation X.3 defines operating characteristics which<br />

may be specified on this statement, and are detailed below. For network or private<br />

X.29 PAD interfaces that allow non-standard terminal operating characteristics, you<br />

may also specify these locally-defined operating parameters and values.<br />

TERM statements reference PDNPAD statements. After a terminal user has signed on,<br />

<strong>X.25</strong> <strong>PSCS</strong> automatically sends the X.3 operating characteristics specified on the<br />

PDNPAD statement to the network X.29 PAD, setting up the operating environment<br />

required for that terminal.<br />

———————————————————————————————————————<br />

<br />

<br />

———————————————————————————————————————<br />

PRCSR=prcsr<br />

Specifies the PRCSR statement that defines the <strong>DCP</strong> to which the terminal is connected.<br />

X3P01=value<br />

Defines a PAD recall character. Specify one of the following values:<br />

0 Does not allow return to PDN control state.<br />

1 Generates an ASCII DLE (hexadecimal 10) character.<br />

32-126 Are user-defined characters that define a graphic character that you may enter at the<br />

terminal to escape from the data transfer state and recall the PAD control state. The<br />

value of the character is the binary representation of the decimal value in accordance<br />

with ITU/TSS Recommendation, International Alphabet No. 5, Volume 8 FASCICLE XIII.1<br />

V.3.<br />

For example, to specify capital letter H as the escape character, specify:<br />

<br />

Decimal 72 equals hexadecimal 48, which equals ASCII capital letter H.<br />

7831 5470–200


X3P02=value<br />

Defines echo function.<br />

0 Specifies no echo<br />

1 Specifies echo<br />

If parameter 20 is implemented, it determines which characters are echoed.<br />

X3P03=value<br />

PDNPAD<br />

Selects the data forwarding signal. Use a decimal value to specify the required functions. The<br />

following values may be added to combine any required character codes:<br />

0 Indicates no data forwarding character<br />

1 Alphanumeric characters (A-Z, a-z, 0-9)<br />

2 Character CR<br />

4 Characters ESC, BEL, ENQ, ACK<br />

8 Characters DEL, CAN, DC2<br />

16 Characters ETX, EOT<br />

32 Characters HT, LF, VT, FF<br />

64 All other nonprintable characters; hexadecimal 01 to 1F<br />

For example, to designate characters ETX, EOT, and CR, specify:<br />

<br />

X3P04=value<br />

Selects the idle timer delay. Any decimal value from 0 to 255 may be specified.<br />

0 Requires no data forwarding on timeout<br />

1-255<br />

Delays in 20ths of a second<br />

X3P05=value<br />

Defines ancillary device control.<br />

0 X-ON (DC-1) and X-OFF (DC-3) are not used.<br />

1 X-ON (DC-1) and X-OFF (DC-3) are used.<br />

7831 5470–200 6–51


PDNPAD<br />

6–52<br />

X3P06=value<br />

Defines control of PAD service signals. Specify the functions required with decimal values.<br />

0 Indicates no service signals are to be transmitted to the start-stop mode DTE<br />

1 Transmits service signals other than the prompt PAD service signal<br />

4 Transmits prompt PAD service signal in standard format<br />

8-15 Transmits PAD service signals in a network-dependent format<br />

X3P07=value<br />

Defines the operation of the PAD on receipt of break signal from the start-stop mode DTE.<br />

Specify a decimal value.<br />

0 Does nothing<br />

1 Sends interrupt packet to <strong>X.25</strong> <strong>PSCS</strong><br />

2 Resets<br />

4 Sends X.29 indication-of-break PAD message to <strong>X.25</strong> <strong>PSCS</strong><br />

8 Escapes from data transfer state<br />

16 Discards output to start-stop mode DTE<br />

X3P08=value<br />

Defines the discard output function.<br />

0 Delivers data normally to the start-stop mode DTE<br />

1 Discards output<br />

X3P09=value<br />

Defines the padding after carriage return function.<br />

0-255 Specifies the number of padding characters after each carriage return<br />

Selecting 0 causes no padding characters to be sent, although PAD service signals will contain<br />

some padding characters, according to the data rate of the start-stop mode DTE.<br />

7831 5470–200


X3P10=value<br />

Defines the line folding function. Specify a decimal value as follows:<br />

0 Indicates no line folding required<br />

PDNPAD<br />

1-255 Specifies the number of graphic characters per line, after which the PAD automatically<br />

inserts appropriate format characters<br />

X3P11=value<br />

Do not specify this parameter. It is reserved for the <strong>X.25</strong> <strong>PSCS</strong> software.<br />

X3P12=value<br />

Defines flow control of the PAD by the start-stop mode DTE.<br />

0 Indicates X-ON (DC1) and X-OFF (DC3) are not used<br />

1 Indicates X-ON (DC1) and X-OFF (DC3) are used<br />

X3P13=value<br />

Defines the line-feed insertion after carriage return function.<br />

0 Indicates no line-feed character insertion required<br />

1 Inserts a line-feed character after each carriage return character to the start-stop DTE<br />

2 Inserts a line-feed character after each carriage return character from the start-stop DTE<br />

4 Inserts a line-feed character after each carriage return character in the echo to the<br />

start-stop DTE<br />

X3P14=value<br />

Defines the line-feed padding function.<br />

0-255 Specifies the number of padding characters generated by the PAD after a line-feed<br />

character is transmitted to the start-stop DTE during the data transfer state.<br />

X3P15=value<br />

Defines the editing function.<br />

0 Specifies editing is not used in the data transfer stream<br />

1 Specifies editing is used in the data transfer state. In addition, the following PAD functions<br />

are suspended:<br />

– Data forwarding on a full packet until the editing buffer is full<br />

– Data forwarding on idle timer period expiration (the value specified on the X3P04<br />

parameter is unchanged)<br />

7831 5470–200 6–53


PDNPAD<br />

6–54<br />

X3P16=value<br />

Defines the character delete function.<br />

0-127 Defines a character that may be entered at the terminal to delete a character. The<br />

value of the character is the binary representation of the decimal value in accordance<br />

with ITU/TSS Recommendation, International Alphabet No. 5, Volume 8 FASCICLE XIII.1<br />

V.3.<br />

For example, to define the delete key as a character-delete character, specify:<br />

<br />

Decimal 127 equals hexadecimal 7F, which equals the ASCII delete function.<br />

X3P17=value<br />

Defines the line delete function.<br />

0-127 Defines a character that may be entered at the terminal to delete a line. The value of<br />

the character is the binary representation of the decimal value in accordance with<br />

ITU/TSS Recommendation, International Alphabet No. 5, Volume 8 FASCICLE XIII.1 V.3.<br />

For example, to define the cancel function as a line-delete character, specify:<br />

<br />

Decimal 24 equals hexadecimal 18, which equals the ASCII cancel function (Control-X).<br />

X3P18=value<br />

Defines the line display function.<br />

0-127 Defines a graphic character that may be entered at the terminal to display a line. The<br />

value of the character is the binary representation of the decimal value in accordance<br />

with ITU/TSS Recommendation, International Alphabet No. 5, Volume 8 FASCICLE XIII.1<br />

V.3.<br />

For example, to specify device control 2 (DC-2) as a line display function, specify:<br />

<br />

Decimal 18 equals hexadecimal 12, which equals the ASCII DC-2 function (Control-R).<br />

7831 5470–200


X3P19=value<br />

X3P20<br />

X3P21<br />

Defines the format of the editing-type service signal.<br />

0 Indicates no editing-type PAD service signals are returned to the terminal<br />

PDNPAD<br />

1 Indicates editing-type PAD service signals for printing terminals are returned to the<br />

terminal<br />

2 Indicates editing-type PAD service signals for display terminals are returned to the<br />

terminal<br />

8 Indicates editing-type PAD service signals through use of backspace character are<br />

returned to the terminal<br />

32-126 Defines an ASCII character as the editing character returned to the terminal<br />

Defines which characters will not be echoed.<br />

0 All characters echoed<br />

1 No echoing of carriage returns<br />

2 No echoing of line feeds<br />

4 No echoing of characters VT, HT, FF<br />

8 No echoing of characters BEL, BS<br />

16 No echoing of characters ESC, ENQ<br />

32 No echoing of characters ACK, NAK, STX, SOH, EOT, ETB, ETX<br />

64 No echoing of characters designated by parameters 16, 17, 18<br />

128 Indicates all other non-printable characters (hexadecimal 01 - 1F)<br />

Defines parity checking procedures.<br />

0 No parity checking or generation<br />

1 Parity checking<br />

2 Parity generation<br />

7831 5470–200 6–55


PDNPAD<br />

Examples<br />

6–56<br />

X3P22<br />

Defines page wait procedure.<br />

0 Page wait disabled<br />

1–255 Specifies the number of linefeed characters the PAD sends the terminal before invoking<br />

page wait<br />

LPS=(x,y)<br />

Defines local parameter separator. These two bytes build a 16-bit marker that separates the X.3<br />

standard parameters from the local parameters.<br />

x 0-255, which specifies the value of the first byte of the local parameter separator<br />

y 0-255, which specifies the value of the second byte of the local parameter separator<br />

Default<br />

The default values are zero. Recommendation X.29 defines zero values as the local<br />

parameter separation marker.<br />

LPAR=(pnum,value),...(pnum,value)<br />

Specifies a local parameter number and value. Any number of these values may be used.<br />

This parameter defines local parameters established by the local network administration.<br />

pnum 0-255, which specifies a local parameter.<br />

value 0-255, which specifies a local option.<br />

———————————————————————————————————————<br />

Example 1<br />

Example 1 defines terminal operating characteristics for “break signal” handling. All<br />

other operating characteristics default to whatever the network X.29 PAD interface<br />

has defined. When TERM01 invokes a “break signal,” the X.29 PAD sends an interrupt<br />

packet value to the <strong>X.25</strong> <strong>PSCS</strong> and <strong>X.25</strong> <strong>PSCS</strong> discards any output messages waiting to<br />

be sent to the terminal. These characteristics correspond to values of 1 and 16,<br />

respectively, for X.3 parameter 7. To achieve both these characteristics, the values are<br />

added together when specified on the PDNPAD X3P07 statement parameter.<br />

<br />

<br />

<br />

<br />

<br />

<br />

7831 5470–200


Example 2<br />

PDNPAD<br />

Example 2 defines local operating characteristics implemented by a network X.29<br />

PAD. Here, the network PAD supports parameter 4, the automatic data forwarding<br />

timer, plus local parameter 15. The network X.29 PAD requires a non-zero local<br />

parameter separation marker consisting of two octet values. This marker is used to<br />

distinguish the local parameter 15 definition from the X.3 parameter 15.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200 6–57


TERM<br />

6.9. TERM — Defining a Terminal<br />

The TERM statement is a standard Telcon statement that defines terminals. It has<br />

been modified for <strong>X.25</strong> <strong>PSCS</strong> to configure the following:<br />

• Terminals attached to a UTS 4000 Cluster Controller functioning as a configured<br />

DTE<br />

• Terminals using the X.29 PAD capability<br />

Note: This section does not describe configuration for a terminal using the<br />

X.28/PAD because this X.28/PAD configuration does not require changes to<br />

the TERM statement.<br />

———————————————————————————————————————<br />

6.9.1. Terminals Using the UTS 4000 Cluster Controller<br />

Format<br />

Parameters<br />

6–58<br />

This section explains how to use the TERM statement to configure terminals attached<br />

to a UTS 4000 Cluster Controller. The ADR parameter is the only parameter modified<br />

for <strong>X.25</strong> <strong>PSCS</strong>.<br />

———————————————————————————————————————<br />

<br />

———————————————————————————————————————<br />

ADR=(cid,pid)<br />

cid Not used by <strong>X.25</strong> <strong>PSCS</strong>. Enter any one-digit number except zero to satisfy the configuration<br />

processor.<br />

pid Specifies a port index within a cluster. <strong>X.25</strong> <strong>PSCS</strong> requires that the first TERM statement<br />

defining a terminal attached to a UTS Cluster Controller be assigned a PID of 1, the second<br />

a 2, the third a 3, and so on. The port index of a remote print interface must follow the last<br />

port index assigned to a workstation.<br />

CCS=ccs<br />

Coded character set parameter.<br />

———————————————————————————————————————<br />

7831 5470–200


Example<br />

The following example defines three terminals attached to a UTS 4000 Cluster<br />

Controller.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

TERM<br />

———————————————————————————————————————<br />

6.9.2. Terminals Using the X.29 PAD<br />

Format<br />

This subsection explains how to configure a terminal to use the X.29 PAD feature. A<br />

reference to a PDNPAD statement is the only <strong>X.25</strong> <strong>PSCS</strong> change to this statement.<br />

A terminal user must send the TERM or parent PDNPAD statement name to <strong>X.25</strong><br />

<strong>PSCS</strong> in order to sign on. This is done in one of two ways:<br />

• When a call packet is sent to <strong>X.25</strong> <strong>PSCS</strong>, it searches for a configured TERM or<br />

PDNPAD statement name in the packet's user data field. If a name is found, <strong>X.25</strong><br />

<strong>PSCS</strong> automatically signs onto the terminal. Note that this functionality depends<br />

on the network's X.29 PAD's capabilities.<br />

• After the network X.29 PAD interface has established a packet layer connection,<br />

the terminal user enters the standard Telcon sign on command, $$SON.<br />

Note that if a PDNPAD statement name is used during the sign on procedure, <strong>X.25</strong><br />

<strong>PSCS</strong> automatically selects an available TERM statement name to use for the Telcon<br />

transport connection.<br />

———————————————————————————————————————<br />

<br />

———————————————————————————————————————<br />

7831 5470–200 6–59


TERM<br />

Parameters<br />

Example<br />

6–60<br />

PDNPAD=parnt<br />

Specifies the name of a parent PDNPAD statement.<br />

TYPE=type<br />

Specifies one of the following terminal types:<br />

• TTY for teletype models 33 and 35<br />

• DCT500 for terminals using 132 characters per line<br />

• UTS10B for asynchronous buffered mode terminals using ETX<br />

• UTS10C for asynchronous terminals<br />

CCS=ccs<br />

Specifies a coded character set (CCS) value. If a CCS value is specified, the X.29 PAD interface<br />

does not clear the most significant bit of each character. This allows for sending and receiving<br />

binary data.<br />

Default<br />

The default is 7-bit ASCII character, the same as configuring the CCS parameter as<br />

CCS=UNKNOWN. The X.29 PAD interface regards the most significant bit of each character<br />

as a parity bit and clears it.<br />

———————————————————————————————————————<br />

The following example defines a PDNPAD functioning as a parent to a remote<br />

terminal.<br />

<br />

<br />

<br />

<br />

<br />

<br />

Note: Terminals configured for PDN use may not be configured for autoallocation.<br />

———————————————————————————————————————<br />

7831 5470–200


6.10. X25DEF — Defining Network<br />

Characteristics<br />

X25DEF<br />

The X25DEF statement is not a standard Telcon statement but was created especially<br />

for <strong>X.25</strong> <strong>PSCS</strong>. It enables you to define the following:<br />

• A network name that appears on the console screen when an NMS STAT LINE<br />

command is issued<br />

• The size of the information field contained in frames passed between the <strong>DCP</strong> and<br />

a network or directly attached DTE<br />

• The number of frames that can be sent and received without acknowledgment<br />

• The amount of time to wait before retransmitting an unacknowledged frame<br />

• The number of times to retransmit an unacknowledged frame<br />

• The length of time a channel can remain idle<br />

• The length of time to delay before acknowledging a frame<br />

• An extended frame-level window (modulo 128), which enables up to 128<br />

unacknowledged frames<br />

• Various level 2 and level 3 options to tailor the <strong>DCP</strong>'s connection to a specific<br />

network<br />

Most configurations require only one X25DEF statement. You may need more,<br />

however, if you define connections to more than one network or you want PDNGRPs<br />

associated with the same network to define different network characteristics.<br />

When you use more than one X25DEF statement, <strong>X.25</strong> <strong>PSCS</strong> defines more than one<br />

network only when the NETID or the GLOBALID differ between X25DEF statements.<br />

Specifying the same GLOBALID maintains a single network definition even though<br />

different NETIDs appear on the NETWORK parameter.<br />

In a multiple network-connection environment, the networks perceived by <strong>X.25</strong> <strong>PSCS</strong><br />

as accessible become crucial when determining over which network connections a call<br />

request packet can be sent. Inconsistent use of the NETID or GLOBALID parameter<br />

values across more than one X25DEF statement can cause call packets to be cleared,<br />

or can cause the call packet to be sent on the wrong network.<br />

———————————————————————————————————————<br />

7831 5470–200 6–61


X25DEF<br />

Format<br />

Parameters<br />

6–62<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

NETWORK=netid<br />

Specifies a network mnemonic, which identifies a set of operating parameters appropriate for<br />

connection to a particular supported network. Table 6–3 provides mnemonics for supported<br />

networks. Table 6–4 lists the values for the N1, N2, T1, T2, T3, L2WINDOW, L2OPT, and L3OPT<br />

parameters associated with a particular mnemonic. If you do not specify this parameter, be sure<br />

the network characteristics defined on this statement's other parameters are appropriate for the<br />

network.<br />

Note: Consult your network administrator to verify that the default values in Table 6–4 (or the<br />

parameter values you specify) match the operating characteristics set by the network<br />

for each physical connection. Often, these characteristics vary for each network<br />

connection, requiring more than one X25DEF statement. Some networks, such as SITA,<br />

define the T1, T2, and T3 timer parameter values based on the line speed.<br />

Individual values specified for N1, N2, T1, T2, T3, L2WINDOW, L2OPT, and L3OPT override the<br />

values associated with a NETID.<br />

———————————————————————————————————————<br />

7831 5470–200


Table 6–3. Network Names and Mnemonics for the X25DEF Statement<br />

Accunet (USA)<br />

Arpac (Argentina)<br />

Austpac (Australia)<br />

Network Name Mnemonic (NETWORK=netid)<br />

B<strong>X.25</strong> (USA, private operator)<br />

Datapac (Canada)<br />

Datex (Sweden)<br />

Datex–P 1980 (Austria and Germany)<br />

DCS (Belgium)<br />

DDX (NTT Japan)<br />

Defense Data Network (USA)<br />

DN1 (Netherlands)<br />

Euronet (NET2 certified)<br />

Iberpac (Spain)<br />

Itapac (Italy)<br />

Mexpac (Mexico)<br />

NOPN (Norway)<br />

NPDN (Finland)<br />

<strong>PSCS</strong>NET (DCE Network feature)<br />

PSS (United Kingdom)<br />

Renpac<br />

SITA (France)<br />

Telenet (USA)<br />

Telepac (Switzerland)<br />

Telepacp (Portugal)<br />

Transpac (France)<br />

ACCUNET<br />

ARPAC<br />

AUSTPAC<br />

BX25<br />

DATAPAC<br />

DATEX<br />

DATEXPA<br />

DCS<br />

DDXP<br />

DDNX25<br />

DN1<br />

EURONET<br />

IBERPAC<br />

ITAPAC<br />

MEXPAC<br />

NOPN<br />

NPDN<br />

<strong>PSCS</strong>NET<br />

PSS<br />

RENPAC<br />

SITA<br />

TELENET<br />

TELEPAC<br />

TELEPACP<br />

TRANSPAC<br />

X25DEF<br />

7831 5470–200 6–63


X25DEF<br />

Table 6–4. NETID Values<br />

Network N1 N2 T1 T2 T3 L2W L2OPT L3OPT<br />

Accunet<br />

Arpac<br />

Austpac<br />

B<strong>X.25</strong><br />

Datapac<br />

Datex<br />

Datex–P (80)<br />

DCS<br />

DDN<br />

DDXP<br />

DN1<br />

Euronet<br />

Iberpac<br />

512<br />

128<br />

1024<br />

1024<br />

512<br />

1024<br />

512<br />

128<br />

1024<br />

128<br />

1024<br />

512<br />

128<br />

2<br />

3<br />

10<br />

20<br />

10<br />

10<br />

10<br />

10<br />

10<br />

7<br />

10<br />

10<br />

3<br />

2000<br />

1500<br />

3000<br />

10K<br />

3000<br />

3000<br />

3000<br />

3000<br />

4000<br />

2000<br />

3000<br />

3000<br />

1500<br />

200<br />

Def<br />

Def<br />

2000<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

26K<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

7<br />

7<br />

7<br />

7<br />

7<br />

7<br />

7<br />

7<br />

7<br />

7<br />

7<br />

7<br />

7<br />

2,3,6,7,9,10,17<br />

2,3,6,8<br />

2,3,6<br />

2,3,6,7,9,10,16,17<br />

2,3,5,6,7,8<br />

1,2,3<br />

2,3,6,8,9,10,12,13,14<br />

2,3,5,6,7,9<br />

2,3,7,8,9,18<br />

3,6,9,10,12,17<br />

2,3,6,9<br />

2,3,6,8,9,10,12,13,14<br />

2,3,6,8<br />

5,8<br />

2<br />

None<br />

5<br />

8,9<br />

8<br />

None<br />

6<br />

None<br />

2,5,31<br />

2<br />

5,31<br />

2<br />

Itapac<br />

Mexpac<br />

NOPN<br />

NPDN<br />

<strong>PSCS</strong>NET<br />

PSS<br />

Renpac<br />

SITA<br />

Telenet<br />

Telepac<br />

Telepacp<br />

Transpac<br />

256<br />

1024<br />

1024<br />

1024<br />

1024<br />

1024<br />

1024<br />

256<br />

1024<br />

128<br />

512<br />

1024<br />

10<br />

20<br />

20<br />

10<br />

10<br />

20<br />

3<br />

10<br />

20<br />

10<br />

10<br />

3<br />

3000<br />

3000<br />

3000<br />

3000<br />

3000<br />

3000<br />

1000<br />

3000<br />

3000<br />

3000<br />

3000<br />

1000<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

Def<br />

7<br />

7<br />

7<br />

7<br />

7<br />

7<br />

7<br />

7<br />

7<br />

7<br />

7<br />

7<br />

2,3,5,6,7,8<br />

1<br />

1,3<br />

2,3,5,6,7,8<br />

2,3,5–10,12–14<br />

1,3<br />

2,3,5,6,7,8<br />

2,6,8,12,16,17<br />

4,6,8<br />

2,3,5,6,7,8<br />

2,3,5,6,8<br />

2,3,5,6,7,8<br />

6<br />

None<br />

None<br />

4<br />

None<br />

None<br />

4<br />

None<br />

None<br />

None<br />

None<br />

None<br />

7831 5470–200<br />

6–64


Parameters<br />

NAME='net-name'<br />

X25DEF<br />

Specifies the network identifier (up to eight characters) for Telcon Network Management Services<br />

(NMS) to display when a STAT LINE command is issued for a line associated with this network.<br />

Default<br />

IDENT=globalid<br />

The default is the netid specified on the NETWORK parameter.<br />

Specifies a global network identifier, which identifies a network and differentiates between<br />

networks when more than one X25DEF statement is configured. If an upper layer program is<br />

unable to identify a PDN by the X25DEF STE index or network identifier (netid), it can use the<br />

global network identifier. Values for this parameter range from 0 through 255.<br />

N1=frame–size<br />

Specifies the maximum length of the information field in frames passed between the <strong>DCP</strong> and a<br />

network. Specify sizes of 16, 32, 64, 128, 256, 512, 1,024, 2,048, or 4,096 octets.<br />

Default<br />

N2=rxmit–count<br />

There are two defaults. If you used the NETWORK parameter, the network's default is used.<br />

Otherwise, the default is 128. Make sure the size does not exceed network maximums.<br />

Specifies the maximum number of frame retransmissions following the expiration of the T1 timer.<br />

The range is 0 – 255.<br />

Default<br />

There are two defaults. If you specified a netid on the NETWORK parameter, the network's<br />

default is used. Otherwise, the default is 10.<br />

X25ROUTE=route<br />

Specifies the route selected.<br />

7831 5470–200 6–65


X25DEF<br />

6–66<br />

T1=t1–timer<br />

Specifies the period of the T1 timer. When this timer expires, a frame may be retransmitted. The<br />

range is from 1 – 60,000 milliseconds.<br />

The value of the T1 timer must be greater than the maximum time between when frames are<br />

transmitted (for example, SABM, DM, DISC, FRMR, I, or an S-format command with its P-bit set to<br />

1) and the corresponding frame is returned as an answer to this frame (for example, UA, DM, or<br />

acknowledging frame).<br />

Default<br />

T2=t2–timer<br />

There are two defaults. If you specified a NETID on the NETWORK parameter, the network's<br />

default is used. Otherwise, the default is computed as the time taken to transmit a frame<br />

(based on line speed multiplied by 3.5).<br />

Specifies the response delay timing, which defines the maximum time the DTE delays before<br />

acknowledging SABM, DM, DISC, FRMR, I frames, or an S-format command with its P-bit set to 1.<br />

T2 must be less than the value specified by the T1 parameter. The range is 1 – 60,000<br />

milliseconds, and the default is to respond at the earliest opportunity. <strong>X.25</strong> <strong>PSCS</strong> does not use<br />

this parameter for ILM-20 lines.<br />

T3=t3–timer<br />

Specifies the length of time a channel can remain idle. This parameter conforms to ITU/TSS<br />

(CCITT) 1984 <strong>X.25</strong> Recommendation, which calls the parameter the "excessively long idle<br />

channel state." Set this timer to expire between 1 – 60,000 milliseconds, but set it for a period<br />

greater than that specified for the T1 timer. <strong>X.25</strong> <strong>PSCS</strong> does not use this parameter for ILM-20<br />

lines.<br />

L2WINDOW=k<br />

Specifies the frame-level window size, which defines the maximum number of frames that can be<br />

sent and received without acknowledgment. For standard <strong>X.25</strong> line modules, the range is<br />

between 1 and 7. For ILM-20 lines, the range is between 1 and 127. If you specify a window size<br />

greater than 7, you must also specify EXTENDED=YES.<br />

Default<br />

EXTENDED=YES<br />

For standard <strong>X.25</strong> lines, the default is 7.<br />

Specifies modulo 128, which enables up to 127 unacknowledged frames, instead of the normal<br />

seven frame maximum. Use this with ILM-20 lines only.<br />

7831 5470–200


DTETYPE=dtype<br />

X25DEF<br />

Specifies a DTETYPE statement, which defines the DTE-to-DCE interface packet layer flow control<br />

parameters for all network connections (PDNGRPs) associated with this statement. Both the DTE<br />

and PDNGRP statements (when referencing a DTETYPE statement) override the parameters<br />

specified from this reference.<br />

DTX=YES<br />

Specifies a point-to-point connection to another DTE in which the <strong>DCP</strong> acts as the DCE. Use this<br />

parameter with the DCE Network feature and to configure a non-DCE Network point-to-point<br />

connection.<br />

Default<br />

The default is NO.<br />

L2OPT=option1,...,option31<br />

Level 2 options determine the operation of the link level protocol. Specify as many as required<br />

(<strong>X.25</strong> <strong>PSCS</strong> does not use this parameter for ILM-20 lines). They are explained as follows:<br />

1 Specifies that the DTE and DCE go through a disconnected phase prior to establishing<br />

a mode. If this option is not specified, the mode is established immediately.<br />

2 Specifies that the network allows a DM command from the DTE. Do not specify this<br />

value if the network does not recognize a DM command.<br />

3 Specifies that the network transmits the DM command. Do not specify this value if the<br />

network does not transmit the command and any DM command received is ignored.<br />

4 Specifies that the DTE transmits a disconnect command prior to attempting to<br />

reestablish a link with a SABM after the DTE has detected a fault or timeout (T1 X N2).<br />

Do not specify this value if you want the DTE to continue attempting to establish the link<br />

with SABM transmissions after detecting a fault or a timeout (T1 X N2).<br />

5 Specifies that the DTE transmits a DM when the network responds to a SABM with a<br />

frame-reject. Do not specify this value if the DTE sends SABM when the network<br />

responds with a frame-reject.<br />

6 Specifies that the DTE supports the SABM collision state. The DTE considers the link to<br />

be initialized upon issuing a UA and does not require its SABM to be acknowledged with<br />

a UA from the DCE. Do not specify this value if the DTE does not support a SABM<br />

collision state. In this case, the DTE responds to a SABM with a UA, even when it has<br />

just sent a SABM and expects the DCE to respond to the outstanding SABM with a UA.<br />

7 Specifies that the DTE responds to a DISC command with a DM and then the DTE is in<br />

either the silent or sending DM state. Do not specify this value if the DTE responds to a<br />

DISC command with a UA when the DTE is in the sending DM state and does not have a<br />

silent state. The DTE should attempt to reestablish the link after it is disconnected.<br />

7831 5470–200 6–67


X25DEF<br />

6–68<br />

8 Specifies that the DCE sends an FRMR when it receives an unsolicited UA in the<br />

information transfer state. Do not specify this value if the DTE ignores an unsolicited UA<br />

in the information transfer state.<br />

9 Specifies that the DTE resets the link when it receives an unsolicited F-bit in a response<br />

frame. Do not specify this value if the DTE sends an FRMR when it receives an<br />

unsolicited F-bit in a response frame.<br />

10 Specifies that the DTE resets the link when it receives an unsolicited UA in the<br />

information transfer state. This option overrides option 8. If you do not specify this<br />

value, option 8 dictates the recovery procedure.<br />

11 Specifies when parameter DTX=YES and the other DTE initiates link establishment.<br />

12 Specifies that when layer 2 is in the frame-reject state, the T1 timer value is ignored.<br />

That is, FRMR frames are not retransmitted. Do not specify this value if you want the T1<br />

timer value to be honored while in the frame-reject state.<br />

13 Specifies that the F-bit should be set in an FRMR when the invalid input frame had the<br />

P/F-bit set. Do not specify this value if the P/F-bit setting is irrelevant in an invalid input<br />

frame. The FRMR will have the F-bit clear.<br />

14 Specifies that during link establishment the DTE responds to supervisory or information<br />

frames that have the P-bit set with a DM and responds to a DM frame with a SABM with<br />

the P–bit set. Do not specify this value if the supervisory, information, or DM frame<br />

should be ignored during link establishment.<br />

15 Reserved.<br />

16 Specifies that the link level inform level 3 of a link reset when it receives an SABM while<br />

in the information transfer state.<br />

Do not specify if the link level should not inform level 3 of a link reset when it receives<br />

an SABM while in the information transfer state.<br />

17 Specifies that the DTE sends a polled receive ready frame after a period of T1 times<br />

N2 has elapsed in the information transfer state and no frames have been sent or<br />

received during that period.<br />

Do not specify this value if no receive ready frame should be sent in these<br />

circumstances.<br />

18 Specifies than an unsolicited UA received in the frame reject state is ignored.<br />

Do not specify this value if an unsolicited UA received in the frame reject state is<br />

processed.<br />

19–31 Reserved.<br />

7831 5470–200


L3OPT=(option1,...,option31)<br />

Level 3 options determine the operation of the packet level protocol. Specify as many as<br />

required. They are explained as follows:<br />

X25DEF<br />

1 Specifies that the network provides end-to-end acknowledgment at level 3 and that you<br />

prefer this to the LEVEL4 transport protocol's end-to-end acknowledgment.<br />

Do not specify this value if the network does not provide end-to-end acknowledgment or<br />

it is provided by LEVEL4.<br />

2 Specifies that the DTE responds with a CLEAR/RESET when it receives a packet with an<br />

invalid general format identifier (GFI).<br />

Do not specify this value if the DTE ignores a packet with an invalid GFI.<br />

3 Specifies that the DCE does not follow the ITU/TSS Recommendation and transmits<br />

packets other than restart on logical channel zero.<br />

Do not specify this value if the DCE transmits only restart packets on logical channel<br />

zero.<br />

4 Specifies that the network rounds up the called DTE address field in an incoming call to<br />

an integral number of octets, when necessary, by appending four 0 bits to the field.<br />

The called/calling address combination is assumed to be rounded up in all cases.<br />

Do not specify this value if the network does not pad out the called DTE address when<br />

it has an odd number of digits.<br />

5 Specifies that the DTE address length and facility length fields must be present in CALL<br />

CONNECTED, CALL ACCEPTED, CLEAR REQUEST, CLEAR CONFIRMATION, or CLEAR<br />

INDICATION packets, even though the length values are zero.<br />

Do not specify this value if the DTE address length and facility length fields need not be<br />

present when the length values are zero.<br />

6 Specifies that the network uses the throughput class facility to imply window size<br />

negotiation. Do not specify this value if window size negotiation is not assumed from<br />

the throughput class facility.<br />

7 Reserved.<br />

8 Specifies a prefix digit on the called DTE address for international connections. (An<br />

international connection is one in which the called DTE is not on the network defined by<br />

this X25DEF statement.) Do not specify this value if the network does not require a<br />

prefix digit for an international connection.<br />

9 Specifies that the prefix digit on the called DTE address is 1. Specify option 8 if you<br />

specify option 9.<br />

7831 5470–200 6–69


X25DEF<br />

6–70<br />

10 Specifies that the calling DTE address in a call packet from a directly attached DTE<br />

(DAD) on a DAD–configured line (OPTIONS=DAD on PDNGRP statement) is validated<br />

against the address configured on the DTE statement. If the addresses do not match,<br />

the call is cleared.<br />

11 Specifies that the received calling address is validated against the configured address.<br />

If the call does not have a calling address, it is cleared.<br />

12–30 Reserved.<br />

31 Specifies that the PDN supports the 1984 amendments to Recommendation <strong>X.25</strong>. This<br />

option allows the following:<br />

– Facility fields longer than 63 octets<br />

– Transit delay feature<br />

– Nonzero or DTE created cause codes sent to the network<br />

– Frame and packet sizes greater than 1,024 octets<br />

– Up to 128 octets of user data in clear packets for a connection using the fast<br />

select option<br />

———————————————————————————————————————<br />

7831 5470–200


Examples<br />

Example 1<br />

Example 1 defines the network characteristics of the Telenet PDN. No other<br />

parameters are required.<br />

<br />

Example 2<br />

X25DEF<br />

Example 2 defines a network with a global network identifier value of 24. The <strong>DCP</strong><br />

end user program interfaces to <strong>PSCS</strong> maintains the value for identifying a network<br />

when initiating a connection. Also, the host application program passes the value<br />

when identifying the network.<br />

<br />

<br />

<br />

<br />

Example 3<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Example 3 defines two networks, even though the netids on the NETWORK<br />

parameters are the same and all PDN lines may be connected to the same network.<br />

This definition allows “class of service” choices to the same network.<br />

<br />

<br />

Example 4<br />

<br />

<br />

<br />

<br />

Example 4 defines one network even though the netids are different and the PDN lines<br />

are connected to different networks (the netid for X25DFPR1 is zero). If connectivity<br />

to a remote DTE is achieved through either physical connection, only a single network<br />

definition is necessary.<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200 6–71


X25DEF<br />

Online configuration differences<br />

6–72<br />

1. To make changes to the X25DEF statement, the LINE associated with this statement (via the<br />

PDNGRP statement) must be placed in a DOWN condition and then an UP condition.<br />

2. To clear all L2OPT or L3OPT options to zero, enter L2OPT=0, L2OPT=NONE or L3OPT=0,<br />

L3OPT=NONE. Then enter the option values you want.<br />

3. Entering L2OPT or L3OPT values replaces previously entered values.<br />

4. To remove any currently specified X25ROUTE, enter X25ROUTE=NONE.<br />

———————————————————————————————————————<br />

7831 5470–200


6.11. X25NET — Defining DCE Network Routes<br />

Format<br />

Parameters<br />

X25NET<br />

The X25NET statement is used exclusively in DCE network configurations, providing<br />

the Telcon network with call routing information. It references PRCSR and XEU<br />

statements.<br />

X25NET statements are associated with individual <strong>DCP</strong>/DCEs through the PRCSR<br />

parameter. Each DCE requires an X25NET statement for every other DCE to which it<br />

routes calls. For example, networks consisting of a single DCE do not require X25NET<br />

statements, but those with two DCEs require two X25NET statements, each providing<br />

routing information on the other. Additional X25NET statements are required when<br />

another DCE provides a gateway to an external <strong>X.25</strong> network.<br />

———————————————————————————————————————<br />

name X25NET PRCSR prcsr, XEU xeu,<br />

,DESTID 'dce num'<br />

,DNICID 'dnic'<br />

———————————————————————————————————————<br />

PRCSR=prcsr<br />

Specifies the PRCSR statement that defines the <strong>DCP</strong> to which this X25NET statement is<br />

associated.<br />

XEU=xeu<br />

Specifies an XEU statement, which associates a node number (DESTID) or DNIC (DNICID) with a<br />

Telcon transport route.<br />

DESTID='dce-num'<br />

Specifies the node number of a destination DCE. This address is a subset of the complete DTE<br />

address that appears on a DTE statement and a subset of the address specified on the<br />

DCENODE parameter of the EU statement. Specify either DESTID or DNICID, but not both.<br />

Enclose this number in quotation marks.<br />

DNICID='dnic'<br />

Specifies a DNIC. Call request packets carrying this DNIC are routed to the DCE connected to a<br />

network identified by the DNIC. Specify either DESTID or DNICID, but not both. Enclose this<br />

number in quotation marks.<br />

———————————————————————————————————————<br />

7831 5470–200 6–73


X25NET<br />

Examples<br />

6–74<br />

Example 1<br />

Example 1 shows how to use the X25NET statement in a two-node DCE network<br />

configuration. There are two X25NET statements. Each specifies the following:<br />

• The <strong>DCP</strong> with which it is associated<br />

• The DCE node number of the other node (DESTID parameter)<br />

• The name of the XEU associated with the other <strong>DCP</strong><br />

<br />

<br />

<br />

<br />

<br />

<br />

Example 2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Example 2 shows how to use the X25NET statement in a two-node network with an<br />

X.75 interface to another network. There are three X25NET statements. The first two<br />

statements provide the node number and associated XEU statement of the other <strong>DCP</strong>.<br />

The third X25NET statement specifies a DNIC, indicating that the <strong>DCP</strong> associated with<br />

the XEU named DCE1 is a gateway to another packet network.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200


6.12. X25ROUTE — Specifying Routing<br />

Precedence<br />

Format<br />

Parameters<br />

X25ROUTE<br />

The X25ROUTE statement specifies the precedence and routing used by a given line<br />

or network. Precedence indicates the order of the four routing methods <strong>X.25</strong> <strong>PSCS</strong> can<br />

use. Routing indicates to which level 4 <strong>X.25</strong> <strong>PSCS</strong> routes the incoming call. If the<br />

X25ROUTE statement is not present, the routing precedence is by calling address,<br />

protocol ID, and default level 4. This is the same routing precedence followed in<br />

previous releases. The DCE Network feature does not use X25ROUTE configuration<br />

statements.<br />

———————————————————————————————————————<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

SEARCH=(par1[,par2][,par3][,par4])<br />

Specifies the search precedence and search type. A search type of ADDRESS, PROTOCOL,<br />

SUBADR, and LEVEL4 cannot be used more than once per X25ROUTE. Any of these search<br />

methods, in any order, may be specified. The search precedence decreases from left to right.<br />

If the X25ROUTE statement is not configured, incoming calls are routed by calling DTE address,<br />

protocol ID, and default level 4.<br />

, , , <br />

= , , , depending on par1<br />

= , , , depending on par1 and par2<br />

= , , , depending on par1, par2, and par3<br />

ADDRESS= Searches the calling address for a match in the configured DTE statements. The<br />

LEVEL4 associated with a matched DTE statement is used for routing.<br />

LEVEL4= Indicates that the layer 4 program to route the incoming call is specified on the<br />

LEVEL4 parameter.<br />

7831 5470–200 6–75


X25ROUTE<br />

6–76<br />

PROTOCOL=<br />

Searches the user data for a protocol ID match. If a match is made, the LEVEL4<br />

associated with the protocol may be used for routing. The list of acceptable level 4<br />

programs is identified on the PROTOCOL parameter.<br />

SUBADR= Searches the last digits of the called address for a match. If a match is made, the<br />

LEVEL4 as specified in the subaddress list specified on the SUBADR parameter is<br />

used.<br />

LEVEL4=(lvl4)<br />

Specifies that a default level 4 was used in the SEARCH field.<br />

lvl4 Specifies the default level 4 where incoming calls are routed. The level 4 list is the<br />

same as on the SUBADR parameter.<br />

SUBADR=(lvl4,'nn')<br />

Lists level 4 types with associated subaddresses.<br />

lvl4 Identifies the level 4 type for this subaddress match. These level 4 types are selected<br />

from the list of level 4 types specified on the DTETYPE configuration statement. The<br />

level 4 types IPOSI, TPOSI, TPCCITT, IPTCP, X29PAD, PDNNPID, PDNIPID, PDNUPID,<br />

and VIDEOTEX can all use subaddress routing. All other level 4 types can not.<br />

nn Indicates 1 or 2 decimal digits for the subaddress, with n1>0 and n1


Example<br />

PROTOCOL=(lvl4[,lvl4]...)(ALLPROT)<br />

X25ROUTE<br />

Identifies a list of the level 4 types where incoming calls may be routed based on the protocol<br />

identifier contained within the incoming call.<br />

lvl4 Specifies the level 4 types where incoming calls may be routed. These are selected<br />

from the level 4 types IPOSI, TPOSI, TPCCITT, IPTCP, X29PAD, PDNNPID, PDNIPID,<br />

PDNUPID, or VIDEOTEX.<br />

X29PAD and VIDEOTEX are mutually exclusive. The X.29 identifier is the same for both.<br />

Incoming calls with the X.29 identifier are routed to X29PAD, VIDEOTEX, or neither,<br />

depending on the protocol list.<br />

ALLPROT<br />

Specifies all level 4 types on the PROTOCOL parameter. When using the ALLPROT<br />

option, any protocol identifier in an incoming call will be used for routing to a level 4<br />

type.<br />

Note: For the X.29 protocol identifier, the X29PAD level 4 will receive the incoming<br />

call.<br />

———————————————————————————————————————<br />

The following example defines a search precedence. Incoming call packets are initially<br />

routed to a layer 4 program based upon matching the subaddress digits in the called<br />

DTE address with those configured on the SUBADR parameter. If no match occurs,<br />

routing is based upon the calling DTE address matching any configured addresses on<br />

DTE statements. If no match occurs, the call is routed to the X.29 PAD terminal<br />

handler because it was specified as the default layer 4 on the LEVEL4 parameter.<br />

Note: The DTEADR='311080100040' on the PDNGRP statement PGP1 is not<br />

required, and is only included to indicate that the last two digits (40) are<br />

not found, and must not be used, in the subaddress routing list specified in<br />

the X25ROUTE statement.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

———————————————————————————————————————<br />

7831 5470–200 6–77


X25ROUTE<br />

Online configuration differences<br />

6–78<br />

1. Wherever a search type or level 4 type can be specified, NONE can be specified to clear a<br />

prior specification.<br />

2. A pre–existing SUBADR parameter can be "skipped" by specifying SUBADR=(,) for each<br />

SUBADR parameter to be skipped. The number of SUBADR parameters specified is<br />

used to determine how many SUBADR entries are put in the resulting table. It may be<br />

necessary to skip any parameters beyond those being changed. If in doubt, specify all of the<br />

SUBADR parameters if you need to change any of them.<br />

3. If the PROTOCOL parameter is specified, all the level 4 protocol identifiers used must be<br />

specified (pre–existing identifiers can not be skipped).<br />

———————————————————————————————————————<br />

7831 5470–200


Section 7<br />

<strong>X.25</strong> <strong>PSCS</strong> Troubleshooting<br />

This section provides troubleshooting information for the <strong>X.25</strong> <strong>PSCS</strong> program product.<br />

Section Topic<br />

7.1 Troubleshooting Overview<br />

7.2<br />

7.2.1<br />

7.2.1.1<br />

7.2.1.2<br />

7.2.1.3<br />

7.2.2<br />

7.2.2.1<br />

7.2.2.2<br />

7.3<br />

7.3.1<br />

7.3.2<br />

7.3.3<br />

7.3.3.1<br />

7.3.3.2<br />

7.3.3.3<br />

7.4<br />

7.4.1<br />

7.4.1.1<br />

7.4.1.2<br />

7.4.1.3<br />

7.4.2<br />

7.4.2.1<br />

7.4.2.2<br />

7.4.2.3<br />

Verifying Line Operation<br />

Verifying General Line Operation<br />

Determining If <strong>X.25</strong> <strong>PSCS</strong> Installation Failed<br />

Determining If <strong>X.25</strong> <strong>PSCS</strong> Initialization Failed<br />

Determining If Hardware/<strong>DCP</strong> System Resources Failed<br />

Verifying Specific Line Operation<br />

Physical Layer Connection<br />

Link Layer Connection<br />

Verifying Virtual Circuit Connections<br />

Using Data Session or Service Operation to Verify Connections<br />

Using NMS Commands to Verify Connections<br />

Connection Troubleshooting Actions<br />

Generating Telcon CENLOG Reports<br />

Generating Layer 3/4 Platform Interface User Reports<br />

Using Message Tracing<br />

Verifying Message Data Transfer Performance<br />

Identifying External Facilities and Interfaces That May Affect Data Transfer<br />

Performance<br />

Determining Adequate Virtual Circuit Connection Resources<br />

Determining Whether Telcon or Host Interface Resources Affect Data<br />

Transfer<br />

Determining Adequate <strong>DCP</strong>/OS Resources<br />

Determining Areas Within <strong>X.25</strong> <strong>PSCS</strong> That Affect Data Transfer<br />

<strong>Packet</strong> Level Characteristics<br />

Incompatible Flow Control Values<br />

Facility Constraints<br />

Link Level Characteristics<br />

Incompatible Frame Control Values<br />

Subscription Parameters<br />

Physical Line Characteristics<br />

———————————————————————————————————————<br />

7831 5470–200 7–1


<strong>X.25</strong> <strong>PSCS</strong> Troubleshooting<br />

7.1 Troubleshooting Overview<br />

7–2<br />

Areas that may require verification include <strong>X.25</strong> <strong>PSCS</strong> line operation, virtual circuit<br />

connections, and message data transfer performance. Before troubleshooting <strong>X.25</strong><br />

<strong>PSCS</strong> problems, ensure that:<br />

• Any general Telcon problems, such as HCONFIG configuration errors and<br />

warnings, or other Telcon component problems have been resolved<br />

• Telcon is operational<br />

• At least one <strong>X.25</strong> LINE statement has been configured<br />

———————————————————————————————————————<br />

7831 5470–200


7.2 Verifying Line Operation<br />

<strong>X.25</strong> <strong>PSCS</strong> Troubleshooting<br />

<strong>X.25</strong> <strong>PSCS</strong> connection failures occur in both general and specific line operation.<br />

To verify... You must determine if...<br />

general line operation • <strong>X.25</strong> <strong>PSCS</strong> installation failed<br />

• <strong>X.25</strong> <strong>PSCS</strong> initialization failed<br />

• hardware and/or <strong>DCP</strong> system resources failed<br />

specific line operation • physical layer connection failed<br />

• link layer connection failed<br />

———————————————————————————————————————<br />

7.2.1 Verifying General Line Operation<br />

This subsection provides information on verifying general line operation. It describes<br />

symptoms found when none of the lines belonging to <strong>X.25</strong> <strong>PSCS</strong> are operating. Line<br />

disruption may signal one of the more general problems discussed in this section.<br />

———————————————————————————————————————<br />

7831 5470–200 7–3


<strong>X.25</strong> <strong>PSCS</strong> Troubleshooting<br />

7.2.1.1 Determining If <strong>X.25</strong> <strong>PSCS</strong> Installation Failed<br />

7–4<br />

If <strong>X.25</strong> <strong>PSCS</strong> does not appear to be working, verify that the product was properly<br />

installed with Telcon. See the <strong>DCP</strong> <strong>Series</strong> Telcon Installation Guide (7831 5645) for<br />

information on verifying Telcon and Telcon program product installation.<br />

IF... THEN...<br />

you started Telcon from a <strong>DCP</strong>/OS console in an interactive mode and<br />

receive the following message:<br />

<br />

<br />

<br />

where:<br />

is a configured <strong>X.25</strong> <strong>PSCS</strong> LINE name.<br />

is the port address on which the line is configured.<br />

you started Telcon from a <strong>DCP</strong>/OS console in an interactive mode and<br />

receive the following message:<br />

<br />

you have access to an NMS console, enter the command:<br />

<br />

This command displays all program products installed with Telcon,<br />

and their release levels.<br />

<strong>X.25</strong> <strong>PSCS</strong> is not<br />

installed.<br />

<strong>X.25</strong> <strong>PSCS</strong> is installed.<br />

verify that <strong>DCP</strong>X25-<br />

<strong>PSCS</strong> Release Level 5Rx<br />

is present in the<br />

response.<br />

———————————————————————————————————————<br />

7831 5470–200


7.2.1.2 Determining If <strong>X.25</strong> <strong>PSCS</strong> Initialization Failed<br />

<strong>X.25</strong> <strong>PSCS</strong> Troubleshooting<br />

When the first configured <strong>PSCS</strong> line is enabled, it examines all configuration<br />

statements pertaining to <strong>X.25</strong> <strong>PSCS</strong> and constructs tables for internal use. If, during<br />

the initialization process, an error is detected by <strong>X.25</strong> <strong>PSCS</strong>, no lines are enabled. This<br />

problem may be identified from the following:<br />

IF... THEN...<br />

you start Telcon from a <strong>DCP</strong>/OS console in<br />

interactive mode and receive the following message:<br />

<br />

<br />

<br />

where:<br />

is a configured <strong>PSCS</strong> LINE name<br />

is the port address on which the<br />

line is configured<br />

you have access to an NMS console and have<br />

logged the CENLOG events, use the NMS LOGI<br />

command to display the logged CENLOG events<br />

you cannot locate the CENLOG "<br />

" message<br />

search for a Class 5, Event Code 15<br />

CENLOG " "<br />

from Procedure PDNIUS. Register R9<br />

contains the specific reason for the<br />

initialization error. Refer to the <strong>DCP</strong> <strong>Series</strong><br />

Telcon Message Manual (7436 0728) for<br />

an explanation of the reason code.<br />

search for a Class 5, Event Code 15<br />

CENLOG " "<br />

from Procedure PDNIUS. Register R9<br />

contains the specific reason for the<br />

initialization error. Refer to the <strong>DCP</strong> <strong>Series</strong><br />

Telcon Message Manual (7436 0728) for<br />

an explanation of the reason code.<br />

determine if hardware or <strong>DCP</strong> system<br />

resources failed. See Section 7.1.1.3,<br />

"Determining If Hardware/<strong>DCP</strong> System<br />

Resources Failed."<br />

———————————————————————————————————————<br />

7831 5470–200 7–5


<strong>X.25</strong> <strong>PSCS</strong> Troubleshooting<br />

7.2.1.3 Determining If Hardware/<strong>DCP</strong> System Resources Failed<br />

7–6<br />

If you determine that a <strong>X.25</strong> <strong>PSCS</strong> installation or initialization error is not the problem,<br />

hardware or resources allocated by the <strong>DCP</strong>/OS may be the reason for the line failure.<br />

To locate the problem:<br />

• Verify that the line module type configured for the <strong>PSCS</strong> LINE is correct.<br />

A port address that references the wrong line module cannot “load” the line<br />

module or initialize <strong>X.25</strong> <strong>PSCS</strong>. Refer to the <strong>DCP</strong> <strong>Series</strong> <strong>X.25</strong> <strong>Packet</strong> <strong>Switched</strong><br />

<strong>Communications</strong> <strong>Software</strong> (<strong>PSCS</strong>) <strong>Software</strong> Release Announcement (7436 5289)<br />

for a list of supported line module types.<br />

• If you observe a slow response, do not see a response, or observe excessive mass<br />

storage disk access when no other activity is occurring on the <strong>DCP</strong>, verify the<br />

amount of memory available for the Telcon program.<br />

When the first <strong>PSCS</strong> line is enabled, <strong>X.25</strong> <strong>PSCS</strong> initializes by constructing internal<br />

tables. The additional memory required during <strong>X.25</strong> <strong>PSCS</strong> initialization may exceed<br />

a <strong>DCP</strong>/OS memory limitation, causing a “throttling” condition. This condition<br />

adversely impacts performance because <strong>DCP</strong>/OS is allocating more resources to<br />

memory management than to the <strong>X.25</strong> <strong>PSCS</strong> program for processing message data.<br />

The <strong>DCP</strong>/OS provides console commands for:<br />

• Examining the status of the <strong>DCP</strong><br />

• Determining the programs running on the <strong>DCP</strong><br />

• Examining memory usage<br />

They include:<br />

• @@CONS SS<br />

• @@CONS RE<br />

• @@CONS RD<br />

• @@CONS RT<br />

7831 5470–200


<strong>X.25</strong> <strong>PSCS</strong> Troubleshooting<br />

<strong>DCP</strong>/OS also provides a number of programs which allow you to examine and<br />

modify the memory structure of the <strong>DCP</strong>. Refer to the <strong>DCP</strong>/OS Operations<br />

Reference Manual (7831 5702) for a description of these commands and programs.<br />

Memory problems may be identified by using a number of <strong>DCP</strong>/OS console<br />

commands or programs.<br />

See your Unisys representative to identify the amount of <strong>DCP</strong> system resources<br />

required, such as memory requirements, and to determine whether current<br />

resources are sufficient.<br />

———————————————————————————————————————<br />

7831 5470–200 7–7


<strong>X.25</strong> <strong>PSCS</strong> Troubleshooting<br />

7.2.2 Verifying Specific Line Operation<br />

7–8<br />

This section describes problems unique to a given line connection. From your Telcon<br />

NMS console, ensure that the <strong>PSCS</strong> LINE is enabled by entering:<br />

<br />

where:<br />

is the name of the configured <strong>PSCS</strong> LINE.<br />

Determine the status of the <strong>PSCS</strong> LINE by entering:<br />

<br />

IF the response received is... THEN a problem exists with...<br />

<strong>X.25</strong> physical layer connection. See Section 7.2.2.1,<br />

"Physical Layer Connection."<br />

line designation. Ensure that the line is of type ,<br />

then determine that the line is physically connected.<br />

hardware components. Check the <strong>DCP</strong> line module,<br />

modem, and connecting cable. You may have to<br />

replace one or more of these items to determine the<br />

failing component.<br />

<br />

<br />

<strong>X.25</strong> link layer service. See Section 7.2.2.2, "Link<br />

Layer Connection."<br />

———————————————————————————————————————<br />

7831 5470–200


7.2.2.1 Physical Layer Connection<br />

<strong>X.25</strong> <strong>PSCS</strong> Troubleshooting<br />

If the response is received, observe any messages displayed on the<br />

interactive <strong>DCP</strong>/OS console if you have previously entered the NMS UP LINE<br />

command. The following message may be displayed on the <strong>DCP</strong>/OS console:<br />

<br />

where:<br />

is the port number of the <strong>X.25</strong> <strong>PSCS</strong> line.<br />

is either “” or the name of another program running on the <strong>DCP</strong>.<br />

IF the program name is... THEN...<br />

the <strong>X.25</strong> <strong>PSCS</strong> line is being enabled on an incompatible or broken<br />

line module type. Refer to the <strong>DCP</strong> <strong>Series</strong> <strong>X.25</strong> <strong>PSCS</strong> <strong>Software</strong><br />

Release Announcement (7436 5289) to verify that the correct line<br />

module type is being used.<br />

running on the <strong>DCP</strong> the system is attempting to enable the <strong>X.25</strong> <strong>PSCS</strong> line on a port<br />

that is already being used by the program.<br />

Note: is the name used by <strong>DCP</strong>/OS itself.<br />

———————————————————————————————————————<br />

7.2.2.2 Link Layer Connection<br />

A problem exists at the <strong>X.25</strong> link layer service if the line status response displays:<br />

<br />

<br />

7831 5470–200 7–9


<strong>X.25</strong> <strong>PSCS</strong> Troubleshooting<br />

7–10<br />

To determine the cause:<br />

Action Explanation<br />

Verify the<br />

DTE/DCE<br />

assignment.<br />

Verify the<br />

network's<br />

characteristics<br />

compatibility.<br />

Verify that the<br />

PDN or <strong>X.25</strong><br />

device is<br />

operational.<br />

The line status response displays if the <strong>X.25</strong> <strong>PSCS</strong> line is to emulate a<br />

DTE, or if it is to emulate a DCE. If you have configured this line to connect<br />

to a network, for example, the network is typically the DCE. If you have<br />

configured this line to connect directly to another <strong>X.25</strong> device in a back-to-back<br />

fashion or to connect to an external DTE, you must decide which device<br />

becomes the DTE and which becomes the DCE. If both the <strong>DCP</strong> and the <strong>X.25</strong><br />

device have been configured as either the DTE or DCE, the <strong>X.25</strong> <strong>PSCS</strong> line will<br />

not initialize.<br />

Different link layer protocol methods are used to form a link layer connection. If<br />

the network type that you configure uses a different method, the link may not<br />

initialize.<br />

Ensure that the line status displays the network name you have configured.<br />

IF you have configured<br />

this line to connect...<br />

to one of the PDNs<br />

supported by <strong>X.25</strong> <strong>PSCS</strong><br />

directly to another <strong>X.25</strong><br />

device<br />

THEN...<br />

determine that the name configured on the<br />

NETWORK parameter of the X25DEF statement<br />

is correct for this PDN. If you have specified<br />

the L2OPT parameter on the X25DEF<br />

statement, verify that the option values chosen<br />

do not conflict with those required by the PDN.<br />

The L2OPT parameter values specified override<br />

those implicitly defined by the NETWORK<br />

parameter. Refer to Table 6–4, "NETID Values,"<br />

in Section 6 of this guide.<br />

determine that the network type specified is<br />

compatible with the network being emulated by<br />

the <strong>X.25</strong> device. If no specific PDN emulation is<br />

offered by the <strong>X.25</strong> device, you must examine<br />

each link layer option described by the X25DEF<br />

statement's L2OPT parameter to determine<br />

whether it should be set.<br />

A software failure within the PDN or connected <strong>X.25</strong> device may be the cause<br />

of the line failure. Without contacting the PDN network administrator or<br />

accessing the connected <strong>X.25</strong> device, this symptom is not directly observable.<br />

In this situation, it may be necessary to obtain an <strong>X.25</strong> line monitor, connect it<br />

to the <strong>X.25</strong> <strong>PSCS</strong> line, and observe the line activity to determine this type of<br />

failure. Finally, if you are using standard line modules, you may need to perform<br />

a Telcon dump and analyze the port processor trace entries.<br />

———————————————————————————————————————<br />

7831 5470–200


7.3 Verifying Virtual Circuit Connections<br />

<strong>X.25</strong> <strong>PSCS</strong> Troubleshooting<br />

After you have verified that one or more <strong>X.25</strong> lines are operational, the lines can be<br />

used for establishing packet-layer virtual circuit connections. These connections are<br />

formed between <strong>X.25</strong> DTE devices and the <strong>DCP</strong> using call type packets. Within the<br />

<strong>DCP</strong>, an incoming call packet is routed to one of several layer 4 types, including such<br />

program products as OSITS, TCP-IP Stack, or SNA/net. The DTE device can be<br />

attached to a PDN where the network is used for routing the connection, or it can be<br />

directly attached to the <strong>DCP</strong>. If you have configured the DCE Network feature for<br />

connection routing, the virtual circuit can connect to a layer 4 that resides within<br />

another <strong>DCP</strong>. Refer to Section 2, “Configuring Standard <strong>X.25</strong> <strong>PSCS</strong> Capabilities,” and<br />

Section 3, “Configuring a DCE Network,” for information on standard <strong>X.25</strong> <strong>PSCS</strong> and<br />

DCE Network feature connection concepts.<br />

Note: Permanent virtual circuit (PVC) connections do not use call type packets.<br />

Routing is explicitly defined with DTE and DTETYPE statements. The DCE<br />

Network feature does not support permanent virtual circuits.<br />

The following subsections describe methods for verifying whether virtual circuit<br />

connections were established and determining circuit connection troubleshooting<br />

actions.<br />

———————————————————————————————————————<br />

7.3.1 Using Data Session or Service Operation to Verify<br />

Connections<br />

You can verify virtual circuit connection establishment based upon the operability of<br />

the data session or operability of the service provided by the layer 4 entity. For<br />

example, if the connected DTE device is able to achieve a data session with a host,<br />

establishment of the virtual circuit connection is verified. However, not being able to<br />

achieve the data session does not imply that the virtual circuit connection was not<br />

established. The problem may be related to the layer 4 service.<br />

———————————————————————————————————————<br />

7.3.2 Using NMS Commands to Verify Connections<br />

Enter the following NMS command to display a message that includes the number of<br />

active virtual circuits:<br />

<br />

where:<br />

is a configured <strong>PSCS</strong> LINE name.<br />

7831 5470–200 7–11


<strong>X.25</strong> <strong>PSCS</strong> Troubleshooting<br />

7–12<br />

The following message appears:<br />

<br />

where:<br />

is the total number of active switched virtual circuits on the line.<br />

is the total number of configured switched virtual circuits on the PDNGRP<br />

statement.<br />

is the total number of active permanent virtual circuits on the line.<br />

is the total number of configured permanent virtual circuits on the PDNGRP<br />

statement.<br />

If the total number of active virtual circuits is not what you expect, use the following<br />

NMS commands to provide more detailed information:<br />

Command Description Explanation<br />

LIST LINE=name Specifies the <strong>X.25</strong> line on<br />

which you want status<br />

information.<br />

STAT PDTE=identifier Specifies a DTE on which to<br />

display status information.<br />

The response displays detailed<br />

information for each active virtual circuit.<br />

This information includes the:<br />

• logical channel number<br />

• DTE name or address to which it<br />

belongs<br />

• state of the circuit<br />

• layer 4 type to which it belongs<br />

is the configured DTE<br />

statement name or the DTE address.<br />

Refer to Section 5, “Using Network Management Services (NMS) Commands,” for<br />

additional information on these commands.<br />

———————————————————————————————————————<br />

7831 5470–200


7.3.3 Connection Troubleshooting Actions<br />

<strong>X.25</strong> <strong>PSCS</strong> Troubleshooting<br />

If, from the layer 4 connection or service operation or from the NMS command<br />

display, you determine that the desired virtual circuit connections are not established,<br />

use the following actions. Every failed attempt to establish a virtual circuit connection<br />

is reported, including the reason for the failure.<br />

———————————————————————————————————————<br />

7.3.3.1 Generating Telcon CENLOG Reports<br />

<strong>X.25</strong> <strong>PSCS</strong> uses the Telcon CENLOG mechanism for reporting cleared virtual circuit<br />

connections. Each CENLOG contains a unique supplementary text string which<br />

identifies the reason for the CENLOG. CENLOGs also include a diagnostic code within<br />

a register (Rn) to determine the reason the virtual circuit was cleared. The<br />

supplementary text strings related to cleared virtual circuits are:<br />

• <br />

• <br />

• <br />

• (for PVC-types only)<br />

In addition to the preceding CENLOG events, other CENLOGs that are related to the<br />

cleared virtual circuit may be reported. Other CENLOGs may report a configuration<br />

error and can be used to determine why connection establishment failed.<br />

Refer to the <strong>DCP</strong> <strong>Series</strong> Telcon Message Manual (7436 0728) for a description of<br />

CENLOG events that are reported by <strong>X.25</strong> <strong>PSCS</strong>. The Telcon Message Manual also<br />

includes a description of the <strong>X.25</strong> <strong>PSCS</strong> diagnostic codes accompanying the CENLOG<br />

events.<br />

———————————————————————————————————————<br />

7831 5470–200 7–13


<strong>X.25</strong> <strong>PSCS</strong> Troubleshooting<br />

7.3.3.2 Generating Layer 3/4 Platform Interface User Reports<br />

A layer 4 feature within <strong>X.25</strong> <strong>PSCS</strong>, or a program product using <strong>X.25</strong> <strong>PSCS</strong> that<br />

initiates virtual circuit connections, always receives a notification about the success or<br />

failure of the connection attempt. The Layer 3/4 Platform interface service returns a<br />

Clear primitive to the layer 4 feature or product when the attempt fails. The Clear<br />

primitive includes a cause and diagnostic code (also reported by the CENLOGs).<br />

Depending upon the layer 4 feature or product you are using, these codes can be<br />

reported to you directly or they can be translated by the feature or product into an<br />

error message.<br />

The cause code can help you determine where the connection attempt failed.<br />

Cause Code<br />

(Decimal)<br />

Meaning Explanation<br />

19 Local procedure error The PDN's DCE node attached to the <strong>DCP</strong> is failing<br />

the attempt.<br />

17 Remote procedure error The DTE being called is rejecting the connection<br />

attempt.<br />

Neither — Refer to <strong>DCP</strong> <strong>Series</strong> Telcon Message Manual (7436<br />

0728).<br />

The diagnostic code can also help you determine where and why the connection<br />

attempt failed. Refer to the <strong>DCP</strong> <strong>Series</strong> Telcon Message Manual (7436 0728) for a<br />

description of the <strong>X.25</strong> <strong>PSCS</strong> diagnostic codes accompanying the CENLOG events.<br />

———————————————————————————————————————<br />

7.3.3.3 Using Message Tracing<br />

7–14<br />

You can generate a trace that shows the path of a failed virtual circuit attempt with<br />

NMS TRAC SNAP=X25 commands. Refer to Section 5, “Using Network Management<br />

Services Commands,” for a description of the command. If you are using the DCE<br />

Network feature, enable message tracing with the<br />

TRAC SNAP=DCEF command.<br />

Note: You must activate all interfaces affecting the PDNCALL module using the<br />

TYPE=H parameter value for the TRAC SNAP=X25 command to process call<br />

packets for virtual circuit establishment.<br />

———————————————————————————————————————<br />

7831 5470–200


7.4 Verifying Message Data Transfer<br />

Performance<br />

<strong>X.25</strong> <strong>PSCS</strong> Troubleshooting<br />

This subsection describes areas that can affect message data throughput and the<br />

conditions that may occur when performance is adversely impacted. Usually,<br />

performance can be verified at the session data layer. If your console sends prompt<br />

message responses or if data transfers that are larger than the expectations of the<br />

session layer running over an <strong>X.25</strong> network are sent, further verification is not<br />

warranted. (See your Unisys representative for expected data message throughput<br />

values when running various session layer protocols over an <strong>X.25</strong> network.) If<br />

expected throughput is not occurring, refer to the following information.<br />

———————————————————————————————————————<br />

7.4.1 Identifying External Facilities and Interfaces That May<br />

Affect Data Transfer Performance<br />

Several external software and hardware conditions may adversely impact the message<br />

data throughput in <strong>X.25</strong> <strong>PSCS</strong>. They include virtual circuit connection resources,<br />

Telcon or host interface resources, and <strong>DCP</strong>/OS resources.<br />

———————————————————————————————————————<br />

7.4.1.1 Determining Adequate Virtual Circuit Connection Resources<br />

The virtual circuit connections established through <strong>X.25</strong> <strong>PSCS</strong> require resources<br />

outside the <strong>DCP</strong>. If the <strong>DCP</strong> is not active, it may be waiting for responses from other<br />

resources. Resources include:<br />

• Public or private <strong>X.25</strong> network<br />

Typically, an <strong>X.25</strong> network provides virtual circuit connections for many users.<br />

One or more of the network's routing nodes may be congested from excessive<br />

message data from users.<br />

• Remote DTEs<br />

Remote DTE devices may not have sufficient software or hardware resources to<br />

accommodate the demand from the virtual circuit connections of the <strong>DCP</strong>.<br />

7831 5470–200 7–15


<strong>X.25</strong> <strong>PSCS</strong> Troubleshooting<br />

Verifying in a production environment that these resources adversely impact<br />

performance can be difficult. If it is unreasonable to isolate or remove the impact of<br />

the network or remote DTE, use the following tools to determine performance impact:<br />

Tool Description<br />

Message Tracing Use the NMS TRAC SNAP=X25 command to enable message buffer<br />

tracing at the level 2/3 interface. Refer to Section 5 for a description of<br />

the command. For each data message (or packet) sent or received, the<br />

contents of the trace file includes the <strong>DCP</strong> real-time clock. By analyzing<br />

the real-time clock values, the response time between message or<br />

packet exchanges by the network, or subsequently from the remote<br />

DTE, can be determined. An excessive delay can suggest that the<br />

performance impact is associated with the <strong>X.25</strong> network or remote DTE.<br />

Receipt of Receive-Not-Ready (RNR) packets also indicate a resource<br />

condition.<br />

<strong>X.25</strong> Line Monitor By attaching a monitor to the line between the <strong>DCP</strong> and the network, the<br />

message data or packet response time can be determined. The line<br />

monitor also shows link level RNR frames being received, indicating a<br />

network resource condition.<br />

———————————————————————————————————————<br />

7.4.1.2 Determining Whether Telcon or Host Interface Resources Affect<br />

Data Transfer<br />

7–16<br />

<strong>X.25</strong> <strong>PSCS</strong> provides a number of interfaces to Telcon modules which can “terminate”<br />

the <strong>X.25</strong> circuit connections or relay them to a configured host. These interfaces<br />

introduce other resources that can adversely impact performance. A Telcon or host<br />

interface can be slow to respond or send message data to <strong>X.25</strong> <strong>PSCS</strong>, even if <strong>X.25</strong><br />

<strong>PSCS</strong> is operating properly.<br />

These interfaces may provide their own tracing tools for determining operating<br />

efficiency. In addition, you can use the NMS TRAC SNAP=X25 message tracing<br />

command to determine message response characteristics by enabling the message<br />

tracing command for the layer 3/4 interface and analyzing the message trace file's realtime<br />

clock values.<br />

———————————————————————————————————————<br />

7831 5470–200


7.4.1.3 Determining Adequate <strong>DCP</strong>/OS Resources<br />

<strong>X.25</strong> <strong>PSCS</strong> Troubleshooting<br />

As more virtual circuit connections are formed, more resources are needed for each<br />

connection's table space. If the additional table space needed approaches the amount<br />

of memory available to the <strong>DCP</strong>/OS, a <strong>DCP</strong> “throttling” condition can occur. This<br />

condition adversely impacts performance because <strong>DCP</strong>/OS is allocating more<br />

resources to memory management than to <strong>X.25</strong> <strong>PSCS</strong> for processing message data.<br />

The <strong>DCP</strong>/OS provides console commands for:<br />

• Examining the status of the <strong>DCP</strong><br />

• Determining what programs are running on the <strong>DCP</strong><br />

• Examining memory usage<br />

They include:<br />

• @@CONS SS<br />

• @@CONS RE<br />

• @@CONS RD<br />

• @@CONS RT<br />

<strong>DCP</strong>/OS also provides a number of programs which allow you to examine and modify<br />

the memory structure and use of the <strong>DCP</strong>. Refer to the <strong>DCP</strong> <strong>Series</strong> Distributed<br />

<strong>Communications</strong> Processor Operating System (<strong>DCP</strong>/OS) Operations Reference<br />

Manual (7831 5702) for a description of these commands and programs.<br />

———————————————————————————————————————<br />

7831 5470–200 7–17


<strong>X.25</strong> <strong>PSCS</strong> Troubleshooting<br />

7.4.2 Determining Areas Within <strong>X.25</strong> <strong>PSCS</strong> That Affect Data<br />

Transfer<br />

The following <strong>X.25</strong> <strong>PSCS</strong> components may adversely impact performance.<br />

———————————————————————————————————————<br />

7.4.2.1 <strong>Packet</strong> Level Characteristics<br />

<strong>X.25</strong> <strong>PSCS</strong> data transfer at the packet level may be impacted by:<br />

• incompatible flow control values<br />

• facility constraints<br />

———————————————————————————————————————<br />

Incompatible Flow Control Values<br />

7–18<br />

For each virtual circuit connection, window and packet size flow control values are<br />

assumed or are negotiated during the establishment of the connection. If the values<br />

between <strong>X.25</strong> <strong>PSCS</strong> and the network are not the same, a large overhead is incurred<br />

while the connection is being repeatedly reset, or cleared and reestablished.<br />

<strong>X.25</strong> <strong>PSCS</strong> uses Class/Event 13/3 CENLOGs for reporting Reset and Clear packets sent<br />

to or received from the network. Use an NMS console to observe these CENLOG<br />

events, or analyze the CENLOG file to which they are being sent. <strong>X.25</strong> <strong>PSCS</strong> uses the<br />

following supplementary text strings for reporting these events:<br />

• <br />

• <br />

• <br />

• <br />

Refer to the <strong>DCP</strong> <strong>Series</strong> Telcon Message Manual (7436 0728) for a description of<br />

CENLOG events.<br />

———————————————————————————————————————<br />

7831 5470–200


Facility Constraints<br />

<strong>X.25</strong> <strong>PSCS</strong> Troubleshooting<br />

If facilities such as small packet size or optional throughput class, transit delay, or low<br />

priority are used, their values may cause poor performance. These facilities can be<br />

assumed or negotiated on a per call basis between <strong>X.25</strong> <strong>PSCS</strong> and the network.<br />

You can use the NMS TRAC SNAP=X25 command to trace the facilities used during<br />

the establishment of a connection. If no facilities are negotiated during the connection<br />

set up, <strong>X.25</strong> <strong>PSCS</strong> assumes any values configured on any associated DTE or DTETYPE<br />

statements. Consult your network administrator for the PDN facility values you have<br />

subscribed.<br />

———————————————————————————————————————<br />

7.4.2.2 Link Level Characteristics<br />

Network parameter attributes that you can define on the X25DEF statement or that<br />

are provided when you specify a network type on the X25DEF statement's NETWORK<br />

parameter may affect data transfer. Adverse performance impacts at the link level may<br />

be difficult to observe, depending upon the attributes defined for the network.<br />

CENLOG events may or may not be reported for various problems due to attribute<br />

incompatibilities. An <strong>X.25</strong> line monitor may be necessary for analyzing frame<br />

exchanges between <strong>X.25</strong> <strong>PSCS</strong> and the network to determine optimum performance.<br />

———————————————————————————————————————<br />

Incompatible Frame Control Values<br />

Window and frame sizes are assumed between <strong>X.25</strong> <strong>PSCS</strong> and the network. If these<br />

values are incompatible, a large overhead is incurred when the link level periodically<br />

reinitializes. Incompatible flow control values are observed with Class/Event 14/2<br />

CENLOG events containing the following supplementary text strings:<br />

• <br />

• <br />

• <br />

Depending on how the network definition's level 2 parameter 16 (X25DEF statement<br />

parameter value L2OPT=16) is set, an incompatibility could affect all virtual circuit<br />

connections on the line. In this case, symptoms described in Section 7.4.2.1, “<strong>Packet</strong><br />

Level Characteristics,” also appear.<br />

———————————————————————————————————————<br />

7831 5470–200 7–19


<strong>X.25</strong> <strong>PSCS</strong> Troubleshooting<br />

Subscription Parameters<br />

Values for subscription parameters such as frame size (N1), frame response timer<br />

(T1), retransmission counter (N2), and idle condition timer (T3) can have an adverse<br />

affect on performance.<br />

frame size, response time<br />

value, or retransmission<br />

counter are incompatible<br />

IF... THEN...<br />

a large overhead is incurred in the link level procedure in order<br />

to recover from invalid frame sizes received, from discarding<br />

unexpected frames, or from reinitializing the link.<br />

retransmission counter expires a CENLOG event with is reported.<br />

idle condition timer expires the link level is reinitialized which may clear all virtual circuits.<br />

———————————————————————————————————————<br />

7.4.2.3 Physical Line Characteristics<br />

7–20<br />

At the physical level of the <strong>X.25</strong> connection, no characteristics are directly controllable<br />

by <strong>X.25</strong> <strong>PSCS</strong>. The line bandwidth, or speed, is the largest line factor affecting<br />

performance. The SPEED parameter on the LCLASS statement does not control the<br />

actual line speed or baud rate running on the line. This is controlled by the baud rate<br />

setting on the modem connected to the line module. Check the modem's baud rate<br />

setting to verify the line speed; no warning messages are reported to indicate any<br />

incompatibilities between this setting and the speed specified on the SPEED<br />

parameter.<br />

Note: For ILM-20s, the SPEED parameter is particularly critical. Its value must<br />

match the cumulative setting values of the (up to four) modem line speeds.<br />

If the line quality is poor, a large overhead may be incurred from corrupted frames<br />

(frames with bad frame check sequences [FCSs]) or aborted frames (frames containing<br />

flags). These errors cause the link level to resend frames or reinitialize the link. These<br />

symptoms are indicated by a Class/Event 15/2 CENLOG event with a “ ” or<br />

“ ” supplementary text string. Poor line quality also causes symptoms<br />

described in Section 7.4.2.2, “Link Level Characteristics.” If no symptoms are observed,<br />

connect an <strong>X.25</strong> line monitor between <strong>X.25</strong> <strong>PSCS</strong> and the network to analyze frames<br />

with a bad FCS or frames that have been aborted.<br />

———————————————————————————————————————<br />

7831 5470–200


Appendix A<br />

<strong>X.25</strong> <strong>PSCS</strong> Reserved Words<br />

Certain words have special meaning to Telcon or <strong>X.25</strong> <strong>PSCS</strong>. Therefore, do not use<br />

these words in a configuration statement name field. Words reserved for <strong>X.25</strong> <strong>PSCS</strong><br />

are listed below. Words reserved for Telcon are listed in the <strong>DCP</strong> <strong>Series</strong> Telcon<br />

Configuration Reference Manual (7831 5686).<br />

ABBRVADR<br />

ACKDATA<br />

ACCUNET<br />

AIRNET<br />

ALLOWI<br />

ALLOWIO<br />

ALLOWO<br />

ARINC<br />

ARPAC<br />

AUSTPAC<br />

BX25<br />

CALLED<br />

CALLING<br />

CLOSED<br />

DAD<br />

DATAPAC<br />

DATEXPA<br />

DCECUG<br />

DCENODE<br />

<strong>DCP</strong>NET<br />

DCS<br />

DDNX25<br />

DESTID<br />

DNICID<br />

DN1<br />

EXTENDED<br />

FASTSL<br />

FASTSLA<br />

FIXED<br />

FLOWC<br />

HGROUP<br />

HIPRI<br />

IBERPAC<br />

IN<br />

<strong>PSCS</strong> Reserved Words<br />

IPOSI<br />

IPTCP<br />

ITAPAC<br />

MEXPAC<br />

MIXED<br />

MLP<br />

NOCHG<br />

NPDN<br />

PADVTX<br />

PDN<br />

PDNDXA<br />

PDNELLC<br />

PDNIPID<br />

PDDNNET<br />

PDDNPID<br />

PDNQLLC<br />

PDNTRUNK<br />

PDNUNIS<br />

PDNUPID<br />

PDNX28<br />

PERM<br />

PLS<br />

PLSTSU<br />

<strong>PSCS</strong>NET<br />

PSS<br />

PVC<br />

RIC<br />

ROC<br />

RPOA<br />

RRVCHG<br />

RVCHG<br />

SITA<br />

SVC<br />

TELENET<br />

TELEPAC<br />

TELEPACP<br />

THRUCLAS<br />

TPCCITT<br />

TPOSI<br />

TRANDLY<br />

TRANSPAC<br />

VIDEOTEX<br />

XNET<br />

X25NET<br />

X25PKT<br />

X28PAD<br />

X29PAD<br />

X75<br />

Note: To obtain the most current list of reserved words, run the configuration<br />

processor with the option ().<br />

——————————————————————————————————————<br />

7831 5470–200 A–1


Appendix B<br />

<strong>X.25</strong> <strong>PSCS</strong> Outgoing Call Routing<br />

Concepts<br />

This appendix explains <strong>X.25</strong> <strong>PSCS</strong> call routing concepts. Specifically, it explains how<br />

<strong>X.25</strong> <strong>PSCS</strong> routes outgoing calls to the correct line and network. This information may<br />

help you make informed configuration decisions.<br />

This appendix provides information on standard <strong>X.25</strong> <strong>PSCS</strong> call routing only. It does<br />

not discuss DCE Network routing.<br />

Note: This appendix includes discussions about when to use DTE statements to<br />

provide <strong>X.25</strong> <strong>PSCS</strong> with routing information and when this information is<br />

not required. Some DTEs must always be configured, however. That is, they<br />

must always be defined by DTE statements. For example, if another <strong>DCP</strong> is<br />

to function as a DTE, it must be defined by a DTE statement even if <strong>X.25</strong><br />

<strong>PSCS</strong> does not require the statement for routing purposes. As well, these same<br />

DTEs cannot use the abbreviated address option described on these pages. See<br />

the discussion on the DTE statement presented in Section 6, “Using <strong>X.25</strong><br />

Configuration Statements,” for more information.<br />

Routing outgoing calls requires <strong>X.25</strong> <strong>PSCS</strong> to determine the correct network and line<br />

to which outbound packets should be delivered. In some configurations, you do not<br />

have to configure DTE statements. In others, you must. The following information<br />

helps you determine when to configure DTE statements and when this is not<br />

necessary.<br />

———————————————————————————————————————<br />

7831 5470–200 B–1


<strong>X.25</strong> <strong>PSCS</strong> Outgoing Call Routing Concepts<br />

When DTE Statements Are Not Necessary<br />

There are four types of configurations that do not require DTE statements for outgoing<br />

calls. In these instances, when you configure a basic connection to a network, you<br />

provide all the information <strong>X.25</strong> <strong>PSCS</strong> requires to correctly route calls. These<br />

configurations are:<br />

• A <strong>DCP</strong> connected to a single network by a single line.<br />

• A <strong>DCP</strong> connected to a single network by more than one line, but the particular<br />

line to which the call is routed does not matter.<br />

• When a Level 4 program initiating the call is able to scan the configuration and<br />

determine the correct line or network. The TCP-IP Stack and the Internet Protocol<br />

component (OSITP) of the OSITS program product are the only Level 4 programs<br />

Unisys provides with this capability, though some user-written Level 4 programs<br />

may include it as well.<br />

• When the Level 4 program can be configured to specify the desired line or<br />

network. The <strong>PSCS</strong> X.28/PAD feature and the Transport Protocol component<br />

(OSITP) of the OSITS program product have this capability. That is, configuration<br />

statements or parameters other than the DTE statement can be used for providing<br />

routing information.<br />

———————————————————————————————————————<br />

Configuring Routing Information<br />

B–2<br />

Except for the configurations just described, all others require you to supply outgoing<br />

call routing information in the configuration. You provide this information on DTE<br />

statements, and you can provide it in one of two ways:<br />

• You can configure each DTE with a DTE statement.<br />

• You can define some or all DTEs on the same network with a single DTE<br />

statement. (You cannot, however, define DTEs on different networks with the<br />

same DTE statement.)<br />

In both instances, <strong>X.25</strong> <strong>PSCS</strong> uses a packet's called (destination) DTE address to<br />

determine the correct network on which to place the call.<br />

7831 5470–200


<strong>X.25</strong> <strong>PSCS</strong> Outgoing Call Routing Concepts<br />

When you define each DTE with its own statement, <strong>X.25</strong> <strong>PSCS</strong> attempts to match the<br />

packet's entire called DTE address with an entry on a list of addresses compiled from<br />

DTE statements. When it finds a match, it references the associated PDNGRP<br />

statement. Through the PDNGRP's reference to an X25DEF statement, <strong>X.25</strong> <strong>PSCS</strong><br />

determines the network on which to route the call. This method does not define a<br />

particular line to use, only the network. To define a particular line, you must also<br />

specify on the DTE statement; <strong>X.25</strong> <strong>PSCS</strong> then routes all calls to the<br />

defined DTE on the line associated with the PDNGRP statement.<br />

Defining each DTE with its own DTE statement is efficient for networks with few<br />

DTEs. However, when the <strong>DCP</strong> must communicate with many DTEs, or when DTEs<br />

may be added to the configuration periodically, defining many with the same<br />

statement may be more efficient.<br />

Define more than one DTE by specifying a DTE statement with the abbreviated<br />

address option () and by entering a partial address on the<br />

DTEADR parameter. The ABBRVADR parameter tells <strong>X.25</strong> <strong>PSCS</strong> that the address on<br />

the statement is a subset of the full address. <strong>X.25</strong> <strong>PSCS</strong> then matches this partial<br />

address with the most significant digits of a packet's called DTE address, not with the<br />

entire DTE address.<br />

For example, if you used the DNIC as the partial address, <strong>X.25</strong> <strong>PSCS</strong> can route calls to<br />

any DTE on the network, since each network DTE has an address beginning with<br />

these four digits. As with configured DTEs, to select a particular line, specify the<br />

FIXED option.<br />

If <strong>X.25</strong> <strong>PSCS</strong> cannot match a packet's called DTE address with one on its list of DTE<br />

statements, it cannot place the call.<br />

Figure B–1 illustrates how <strong>X.25</strong> <strong>PSCS</strong> determines the line and network on which to<br />

route outgoing calls.<br />

7831 5470–200 B–3


<strong>X.25</strong> <strong>PSCS</strong> Outgoing Call Routing Concepts<br />

B–4<br />

Figure B–1. Outgoing Call Routing<br />

———————————————————————————————————————<br />

7831 5470–200


Appendix C<br />

NMS TRAC Command Trace File<br />

Formats<br />

This appendix outlines NMS TRAC command trace file formats.<br />

Section Topic<br />

C.1 SNAP=X25 Parameter Option Format<br />

Example<br />

C.2 SNAP=DCEF Parameter Option Format<br />

Example<br />

———————————————————————————————————<br />

7831 5470–200 C–1


NMS TRAC Command Trace File Formats<br />

C.1 SNAP=X25 Parameter Option Format<br />

C–2<br />

This section describes the contents of the trace files generated by the NMS TRAC<br />

SNAP=X25 parameter option.<br />

Word Offset Description<br />

0<br />

1<br />

2-3<br />

4<br />

5<br />

6-7<br />

8-9<br />

10-n<br />

Record length in bytes.<br />

Trace return virtual address.<br />

<strong>DCP</strong> real-time clock value.<br />

DATA parameter value of the interfaces to trace. This corresponds to the<br />

TYPE=H parameter option used in conjunction with the DATA parameter value<br />

setting.<br />

DATA parameter value of items being traced. This corresponds to the TYPE=M<br />

parameter option used in conjunction with the DATA parameter value setting.<br />

Interface identifier in ASCII.<br />

Item identifier in ASCII.<br />

Data of item being traced. "n" depends on the item type being traced. For<br />

example, if Registers are being traced (identifier equals ), the data uses 16<br />

words (one word per register). "n" equals 25 decimal (9+16).<br />

Note that any other selected item identifiers follow the end of the preceding data item<br />

starting on the next eight-word boundary.<br />

———————————————————————————————————<br />

7831 5470–200


Example<br />

NMS TRAC Command Trace File Formats<br />

The following is an example of a trace entry. The output was generated using the<br />

DPRINT utility program. For information on how to use the DPRINT program or the<br />

<strong>DCP</strong>/OS @LIST command for printing trace entries, see the <strong>DCP</strong> <strong>Series</strong> Distributed<br />

<strong>Communications</strong> Processor Operating System (<strong>DCP</strong>/OS) Operations Reference<br />

Manual (7831 5702).<br />

When using the DPRINT program on an OS 2200 host, you must first transfer the<br />

omnibus trace file from its <strong>DCP</strong> file to an OS 2200 host file (or file element). The<br />

<strong>DCP</strong>/OS @COPY command or the Telcon NMS XFER command allows you to do this.<br />

For information on the @COPY command, see the <strong>DCP</strong> <strong>Series</strong> Distributed<br />

<strong>Communications</strong> Processor Operating System (<strong>DCP</strong>/OS) Operations Reference<br />

Manual (7831 5702). For information on the XFER command, see the <strong>DCP</strong> <strong>Series</strong><br />

Telcon Operations Reference Manual (7831 5728).<br />

Word Offset<br />

(Hex.) Trace Data ASCII Equivalent<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Note: 1. When registers are being traced (identifier equals ), the register values<br />

are stored in the order R1 through R15 and R0.<br />

2. When the MCT is being traced (identifier equals MCT), only the last half<br />

of PCALL packet area is included.<br />

3. When the message buffer is being traced (identifier equals ), up to 128<br />

bytes of data are traced starting at the offset in field .<br />

———————————————————————————————————<br />

7831 5470–200 C–3


NMS TRAC Command Trace File Formats<br />

C.2 SNAP=DCEF Parameter Option Format<br />

C–4<br />

This section describes the contents of the trace files generated by the NMS TRAC<br />

SNAP=DCEF parameter option.<br />

Word Offset Description<br />

0<br />

1<br />

2-3<br />

4-5<br />

6-n<br />

Record length in bytes.<br />

Trace return virtual address.<br />

<strong>DCP</strong> real-time clock value.<br />

Trace identifier in ASCII.<br />

Data of item being traced. "n" depends on the item type being traced.<br />

For example, if the PCALL packet is being traced at one of the<br />

interfaces, such as input from level 4 (identifier equals L4PI), the data<br />

occupies 64 words (size of MCT). "n" equals 69 decimal (5+64).<br />

Note that the next trace entry follows the end of the preceding trace entry starting on<br />

the next 128-byte boundary.<br />

———————————————————————————————————<br />

7831 5470–200


Example<br />

NMS TRAC Command Trace File Formats<br />

The following is an example of a trace entry. The output was generated using the<br />

DPRINT utility program. For information on how to use the DPRINT program or the<br />

<strong>DCP</strong>/OS @LIST command for printing trace entries, see the <strong>DCP</strong> <strong>Series</strong> Distributed<br />

<strong>Communications</strong> Processor Operating System (<strong>DCP</strong>/OS) Operations Reference<br />

Manual (7831 5702).<br />

When using the DPRINT program on an OS 2200 host, you must first transfer the<br />

omnibus trace file from its <strong>DCP</strong> file to an OS 2200 host file (or file element). The<br />

<strong>DCP</strong>/OS @COPY command or the Telcon NMS XFER command allows you to do this.<br />

For information on the @COPY command, see the <strong>DCP</strong> <strong>Series</strong> Distributed<br />

<strong>Communications</strong> Processor Operating System (<strong>DCP</strong>/OS) Operations Reference<br />

Manual (7831 5702). For information on the XFER command, see the <strong>DCP</strong> <strong>Series</strong><br />

Telcon Operations Reference Manual (7831 5728).<br />

Word Offset<br />

(Hex.) Trace Data ASCII Equivalent<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Note: 1. When registers are being traced (identifier equals ), the register<br />

values are stored in the order R0 through R15.<br />

2. When the PCALL packet is being traced (identifier equals ), the<br />

complete MCT is included.<br />

3. When the message buffer is being traced (identifier equals ), the first<br />

16 bytes of data traced start at the beginning of the message buffer (<br />

header). Up to 112 (128-16) bytes of data are then traced starting at the<br />

offset in field .<br />

———————————————————————————————————<br />

7831 5470–200 C–5


Glossary<br />

A<br />

asynchronous transmission<br />

A transmission mode for serial data channels. The sender and receiver achieve bit<br />

synchronization by operating the channel at a specified frequency and byte<br />

synchronization by inserting start and stop signals into the data stream before and<br />

after each character. This mode is called asynchronous because there is no<br />

synchronizing clock between sender and receiver.<br />

C<br />

call request<br />

A control packet used to establish a network connection across a packet-switched<br />

PDN. The call request packet contains addressing information and optional special<br />

network facility requests such as requests for reverse charging, nondefault packet and<br />

window sizes, and closed user groups.<br />

CCITT<br />

See International Telecommunications Union/Telecommunications Standardization<br />

Sector.<br />

CENLOG<br />

See critical event notification and logging.<br />

closed user group (CUG)<br />

A security scheme that groups terminals and hosts. Members of the CUG can<br />

communicate with each other but cannot communicate with terminals and hosts<br />

outside the group. A device may belong to more than one CUG.<br />

cluster controller<br />

A hardware component that concentrates communication traffic to and from<br />

workstations attached to it, and that centrally manages the memory and peripheral<br />

resources of the terminal system or workstation.<br />

7831 5470–200 Glossary–1


Glossary<br />

COMUS<br />

Acronym for Computerized Onsite Maintenance of User System. COMUS is an<br />

OS 1100 processor that leads you interactively through the process of defining the<br />

configuration and parameters for the software products you want to install. For<br />

example, after you define a CMS 1100 configuration, COMUS calls the symbolic stream<br />

generator, which creates a runstream to generate a CMS 1100 configuration file.<br />

COMUS can also initiate generation of the Telcon software for <strong>DCP</strong>s in your network.<br />

Consultative Committee on International Telephone and Telegraph (CCITT)<br />

See International Telecommunications Union/Telecommunications Standardization<br />

Sector.<br />

critical event and notification logging (CENLOG)<br />

The facility that allows software processes to log system and error events. Logs are in<br />

a standard format and can be written to a disk file cataloged for that purpose. In<br />

addition, warning messages are sent to network administrator consoles for critical<br />

events.<br />

CUG<br />

D<br />

DAD<br />

See closed user group.<br />

See directly attached DTE.<br />

data circuit-terminating equipment (DCE)<br />

A network switch that communicates with customer equipment (a computer or<br />

terminal). <strong>X.25</strong> defines how a DCE (network equipment) communicates with a DTE<br />

(subscriber equipment).<br />

data network identifier code (DNIC)<br />

An international prefix for a recognized <strong>X.25</strong> network, as defined by ITU/TSS<br />

Recommendation X.121.<br />

data terminal equipment (DTE)<br />

An <strong>X.25</strong> term describing a network subscriber's computer or terminal that<br />

communicates with a network switch. <strong>X.25</strong> defines communication between a DTE<br />

(subscriber equipment) and DCE (network equipment).<br />

Glossary–2<br />

7831 5470–200


Glossary<br />

data unit control (DUC)<br />

The portion of a transport network control region that segments port data units into<br />

network data units and controls network flow. This function implies the reassembly of<br />

network data units into port data units and the sequencing of the network data units.<br />

DCA<br />

See Distributed <strong>Communications</strong> Architecture.<br />

DCA transport protocol (DTP)<br />

The DCA (Level II) layer 4 protocol that defines the set of rules for creating and<br />

maintaining end-to-end communication paths between computing systems or transport<br />

service users. It establishes and terminates connections, controls data flow, recovers<br />

errors, and segments and recombines messages. DTP replaced port flow control and<br />

the Device Management Facility (DMF), which are functions supported by DCA Level<br />

I. Handles all DCA layer 4 traffic between DCA layer 3 modules (such as DNS or<br />

TSTN) and DCA layer 5 modules (such as DTPX).<br />

DCA transport protocol extension (DTPX)<br />

The DCA level II layer 5 protocol that establishes and controls interactive sessions,<br />

session layer addressing, and data assurance. Handles all DCA layer 5 traffic between<br />

the DCA layer 4 modules (such as DTP) and a VTR (via TSM) or End-User Module (via<br />

EUSERV).<br />

DCE<br />

See data circuit-terminating equipment.<br />

DCE Network feature<br />

An <strong>X.25</strong> <strong>PSCS</strong> feature that enables Telcon networks to function as private packet<br />

networks. This feature enables directly attached DTEs to use the <strong>X.25</strong> protocol to<br />

access the Telcon network for communications with other DTEs.<br />

<strong>DCP</strong><br />

DDN<br />

See Distributed <strong>Communications</strong> Processor.<br />

See Defense Data Network.<br />

7831 5470–200 Glossary–3


Glossary<br />

DDN 1100<br />

A communication software product that provides OS 1100 host application system<br />

services for the TCP/IP network environment of the Defense Data Network (DDN).<br />

Defense Data Network (DDN)<br />

An <strong>X.25</strong> LAN-based connectionless packet-switched network operated by the U.S.<br />

Department of Defense. The DDN is a telecommunications carrier service that<br />

supports a large system of interconnected military and research networks, commonly<br />

called Internet.<br />

directly attached DTE (DAD)<br />

A DTE that is physically cabled directly to the <strong>DCP</strong> and not connected to the <strong>DCP</strong><br />

through an intervening packet-switched network. DAD is used in conjunction with the<br />

DCE Network feature, which provides routing from one external DTE to another<br />

external or internal DTE. In this context, external DTEs are typically DADs.<br />

Distributed <strong>Communications</strong> Architecture (DCA)<br />

A Unisys proprietary network architecture and set of communication protocols based<br />

on the seven-layer Reference Model for Open Systems Interconnection. DCA supports<br />

the protocols required for several different network environments to interoperate. The<br />

main differences between DCA and OSI architecture are in protocol implementation.<br />

DCA software implementations allow integration and concurrent operation of<br />

appropriate protocol modules or protocol conversion software that provide functions<br />

required in OSI, TCP/IP, and other network environments.<br />

Distributed <strong>Communications</strong> Processor (<strong>DCP</strong>)<br />

A special-purpose computer designed exclusively for communication applications. The<br />

<strong>DCP</strong> is used as a front-end processor for OS 1100 computers, or to interconnect<br />

networks of OS 1100 computers and other machines. Depending on how it is<br />

configured, a <strong>DCP</strong> can function as a remote concentrator, a message-switch (or nodal)<br />

processor, or a front-end processor. <strong>DCP</strong>s are available in several models.<br />

DNIC<br />

DTE<br />

Glossary–4<br />

See data network identifier code.<br />

See data terminal equipment.<br />

7831 5470–200


DTP<br />

DTPX<br />

DUC<br />

E<br />

See DCA transport protocol.<br />

See DCA transport protocol extension.<br />

See data unit control.<br />

external DTE<br />

See directly attached DTE.<br />

F<br />

Glossary<br />

Federal Information Processing Standards (FIPS)<br />

The standards issued by the National Institute of Standards and Technology (NIST) for<br />

use by the federal government. These standards pertain to particular aspects of data<br />

processing. FIPS are usually based on international standards developed by ISO or<br />

ITU/TSS.<br />

FEP<br />

FIPS<br />

See front-end processor.<br />

See Federal Information Processing Standards.<br />

foreign host<br />

A host manufactured by a company other than Unisys.<br />

frame<br />

A formatted unit of data or information prepared in the data link layer (layer 2) and<br />

sent between stations. A frame can be either a control frame or a data frame. A frame<br />

begins with a header and terminates with a frame check sequence.<br />

7831 5470–200 Glossary–5


Glossary<br />

front-end processor (FEP)<br />

A communication computer associated with a host computer. It can perform line<br />

control, message handling, code conversion, error control and application functions<br />

such as control and operation of terminals. The function of the FEP is to offload the<br />

communication-related functions from the host.<br />

G<br />

GOSIP<br />

See Government Open Systems Interconnection Profile.<br />

Government Open Systems Interconnection Profile (GOSIP)<br />

An OSI implementation profile, released in 1988, for government use. This profile<br />

defines sets of OSI protocols that can operate in various networks. GOSIP has been<br />

mandated by the National Institute of Standards and Technology (NIST) as a federal<br />

information processing standard (FIPS). The Central Computer and<br />

Telecommunications Agency (CCTA) released a similar document for the United<br />

Kingdom, the Government Open Systems Interconnection Procurement (U.K. GOSIP).<br />

H<br />

HDLC<br />

See high-level data link control.<br />

high-level data link control (HDLC)<br />

A data link layer protocol defined by ISO for controlling the flow and transmission<br />

errors of data being transmitted across a physical link. ITU/TSS modified HDLC to<br />

create the link access procedure (LAP) and link access procedure, balanced (LAPB).<br />

host<br />

Glossary–6<br />

A medium to large central processor attached to a network. Also referred to as an end<br />

system. The host is generally dedicated to data processing functions, such as<br />

executing application or system programs, rather than data communication functions.<br />

Architecturally, there is no distinction between a DCA host and a DCA terminal<br />

because both contain a termination system, although of vastly differing powers. In<br />

SNA, a host is defined as an SNA node that contains a PU Type 5.<br />

7831 5470–200


Glossary<br />

hunt group<br />

An optional <strong>X.25</strong> facility which distributes incoming calls having an address associated<br />

with the hunt group across a designated grouping of DTE/DCE interfaces.<br />

I<br />

IEEE<br />

See Institute of Electrical and Electronics Engineers.<br />

Information Services for personal computers (IS-PC)<br />

An Information Services (IS) product for Personal Workstation 2 or PC systems<br />

attached to DCA networks, <strong>X.25</strong> PDNs, and 802.3 LANs. PW 2 or PC systems with IS<br />

software installed can access DDP and DIS 1100 facilities, demand (interactive) and<br />

Transaction Processing (TIP) facilities, and other application systems on an OS 1100<br />

host. IS software also provides Distributed Data Processing (DDP) interoperability<br />

with other PW 2 or PC systems, U <strong>Series</strong> systems, and USERNET 2 LAN systems<br />

operating in a Telcon DCA network.<br />

Institute of Electrical and Electronics Engineers (IEEE)<br />

An international organization that promotes cooperation and exchange of information<br />

among its members. IEEE technical committees develop and propose computer<br />

standards, such as the 802 series standards, which define physical and data link<br />

protocols for communication networks.<br />

internal DTE<br />

A DTE that terminates in the <strong>DCP</strong> or in a host through a <strong>DCP</strong> interface. An internal<br />

DTE is on the Level 4 programs known to <strong>X.25</strong> <strong>PSCS</strong>. This term is used in conjunction<br />

with the DCE Network feature, which provides routing from an internal DTE to an<br />

external DTE (DAD). See also directly attached DTE (DAD).<br />

International Standards Organization (ISO)<br />

The English language name for the Organization Internationale de Normalisation, an<br />

agency that establishes international standards for communication network<br />

architecture. Its basic Open Systems Interconnection (OSI) Reference Model divides<br />

network functions into seven logical layers. Membership in the ISO is by country.<br />

More than 90 countries currently participate. The ISO is supported by<br />

telecommunications industry associations. Its activities are carried out by user<br />

committees and manufacturers. The American National Standards Institute (ANSI) is<br />

the U.S. group that is a member of the ISO.<br />

7831 5470–200 Glossary–7


Glossary<br />

International Telecommunications Union/Telecommunications Standardization Sector<br />

(ITU/TSS)<br />

An international advisory committee that establishes worldwide communication<br />

recommendations (standards) for use by telecommunications authorities. Voting<br />

members are nations, which often designate their administrations as representatives,<br />

and other government groups such as the National Institute of Standards and<br />

Technology (NIST). Nonvoting members are often standards organizations. Formerly<br />

known as the Consultative Committee on International Telephone and Telegraph<br />

(CCITT).<br />

ISO<br />

IS-PC<br />

ITU/TSS<br />

L<br />

LCN<br />

See International Standards Organization.<br />

See Information Services for personal computers.<br />

See International Telecommunications Union/Telecommunications Standardization<br />

Sector.<br />

See logical channel number.<br />

line module (LM)<br />

The hardware in the <strong>DCP</strong> that terminates serial communication lines, host channel<br />

connections, and peripheral connections.<br />

line switch module (LSM)<br />

A module that physically connects the lines that run from the operating and backup<br />

front-end processors (FEPs) to the terminals. If the operating FEP fails, the LSM<br />

switches the communications lines to the backup FEP so data transmission can<br />

continue. Used to switch lines from one <strong>DCP</strong> to another <strong>DCP</strong>, either under <strong>Software</strong><br />

Resiliency Control (SRC) or operator control through an NMS command.<br />

link<br />

LM<br />

Glossary–8<br />

The physical interconnection between two nodes in a network. It can consist of a data<br />

communication circuit or a direct channel (cable) connection.<br />

See line module.<br />

7831 5470–200


Glossary<br />

logical channel<br />

A network user operating through a public data network at the network interface of a<br />

set of session paths or logical subchannels. These subchannels are logical in that their<br />

physical equivalent may change, depending on when they are used. DCA uses logical<br />

subchannels to define the session path between the termination system and transport<br />

network.<br />

logical channel number (LCN)<br />

A number that refers to a virtual circuit.<br />

LSM<br />

M<br />

See line switch module.<br />

mixed trunk<br />

A trunk comprised of a combination of UDLC and <strong>X.25</strong> lines.<br />

multilink trunk<br />

A trunk that utilizes the <strong>X.25</strong> multilink options for data delivery on more than one line.<br />

N<br />

NDU<br />

network<br />

See network data unit.<br />

A group of hardware and software components that are physically and logically linked,<br />

and that interact according to established protocols. Network functions are<br />

determined by the types of cooperating application systems within the network.<br />

network data unit (NDU)<br />

The unit of information into which the port data unit is segmented to satisfy the<br />

resource handling requirements of the transport network.<br />

7831 5470–200 Glossary–9


Glossary<br />

Network Management Services (NMS)<br />

The group of network control and reporting functions that establishes, maintains, and<br />

modifies the operations of the Telcon communication network. NMS supports network<br />

administration through persons or programs that maintain the operational capabilities<br />

of the network. NMS is subdivided into a hierarchy of control points. The network<br />

control ports are linked to the Applications Management System (AMS) ports through<br />

a preestablished session path to control the total network. NMS commands are the<br />

Telcon equivalent of the CMS 1100 communication system administrator (CSA)<br />

commands.<br />

NMS<br />

O<br />

See Network Management Services.<br />

Open Systems Interconnection (OSI)<br />

An ISO communication standard network protocol. OSITS is one of the program<br />

products from the Open Systems products available for Telcon. Enables the computer<br />

system of multiple vendors to communicate. OSI is based on standard protocols<br />

developed by ISO and defined in the ISO Reference Model (usually called the OSI<br />

model, as opposed to the TCP/IP model). OSI architecture has seven layers: physical<br />

layer (layer 1), data link layer (layer 2), network layer (layer 3), transport layer (layer<br />

4), session layer (layer 5), presentation layer (layer 6), and application layer (layer 7).<br />

Each layer has specific functions, communicates with peer entities (those in the same<br />

layer), performs services for the next higher layer, and requests services from the next<br />

lower layer.<br />

OSI<br />

P<br />

See Open Systems Interconnection.<br />

packet (<strong>X.25</strong>)<br />

A packet is a layer 3 block of information. Data is transmitted from DTE to DTE in<br />

packets. <strong>Packet</strong>s are transmitted through a network using the information field of<br />

layer 2 frames. Different types of packets are concerned with call set-up, flow and<br />

error control, and transmission of data. The data field of a layer 3 packet is used to<br />

communicate higher layer data and control information.<br />

packet assembler/disassembler (PAD)<br />

A service that converts asynchronous terminal data to <strong>X.25</strong> packets and vice versa. It<br />

enables an asynchronous terminal to access computers connected to a PDN. The PAD<br />

is defined in ITU/TSS X.3.<br />

Glossary–10<br />

7831 5470–200


Glossary<br />

packet layer services (PLS)<br />

A feature of <strong>PSCS</strong> that gives application software (in a <strong>Series</strong> 1100 host) access to the<br />

<strong>X.25</strong> services of the <strong>PSCS</strong> level 3/4 platform.<br />

<strong>Packet</strong> <strong>Switched</strong> <strong>Communications</strong> <strong>Software</strong> (<strong>PSCS</strong>)<br />

One of the program products from the Open Systems products available for Telcon.<br />

<strong>PSCS</strong> enables communication between <strong>DCP</strong>s and other devices attached to packetswitched<br />

PDNs. It also enables point-to-point connections using the Recommendation<br />

<strong>X.25</strong> protocol defined by the International Telecommunications<br />

Union/Telecommunications Standardization Sector (ITU/TSS), formerly the<br />

Consultative Committee on International Telephone and Telegraph (CCITT).<br />

packet-switched network<br />

A network based on packet-switching technology in which data is transmitted in units<br />

called packets. Messages are split into packets, then routed independently on a<br />

store-and-forward basis and reassembled at the receiving end of the communication<br />

link. <strong>Packet</strong>-switched data transfer uses the communication link only during the time<br />

of actual transmission.<br />

PAD<br />

PDN<br />

See packet assembler/disassembler.<br />

See public data network.<br />

permanent virtual circuit (PVC)<br />

A circuit connection in which a permanent association exists between two DTEs. Call<br />

set-ups or clearing procedures are not possible or necessary.<br />

PLS<br />

PPN<br />

primitive<br />

See packet layer services.<br />

See private packet network.<br />

A type of command or instruction passed between software entities. A primitive<br />

represents the function executed by a specific assembly language routine. There are<br />

four types of primitives: request, indication, response, and confirm.<br />

private packet network (PPN)<br />

An <strong>X.25</strong> network operated by a private concern, such as a corporate-wide <strong>X.25</strong><br />

network.<br />

7831 5470–200 Glossary–11


Glossary<br />

protocol<br />

<strong>PSCS</strong><br />

The set of rules or conventions used to govern the interactions of processes,<br />

applications, or components within the system.<br />

See <strong>Packet</strong> <strong>Switched</strong> <strong>Communications</strong> <strong>Software</strong>.<br />

public data network (PDN)<br />

A digital data network that provides communication service for customer hosts and<br />

terminals. Public data networks use either the <strong>X.25</strong> packet-switched protocol or the<br />

circuit-switched X.21 protocol. See also <strong>Packet</strong> <strong>Switched</strong> <strong>Communications</strong> <strong>Software</strong>.<br />

PVC<br />

R<br />

See permanent virtual circuit.<br />

recognized private operating agency (RPOA)<br />

A private network recognized by another network. Calls destined for the RPOA can be<br />

routed by the independent network.<br />

Recommendation X.3<br />

A ITU/TSS standard that defines operating characteristic parameters for asynchronous<br />

terminals connected to a PAD. The standard provides 22 parameters that define<br />

characteristics, including data echoing (half or full duplex), data forwarding, (end of<br />

message) characters, printable characters, and editing characters. Each connected<br />

terminal may select its own combination of parameter values.<br />

Recommendation <strong>X.25</strong><br />

A ITU/TSS standard that defines the communication protocol for DTE and DCE<br />

devices operating in the packet mode. The standard includes procedures for the<br />

physical, link, and packet levels, which are the first three of seven layers in the<br />

International Standards Organization's Reference Model.<br />

Recommendation X.28<br />

A ITU/TSS standard that defines how an asynchronous terminal and a PAD are to<br />

communicate. The standard includes line characteristics, initialization, call<br />

establishment, clearing, and actions taken for operation parameters defined in<br />

Recommendation X.3.<br />

Glossary–12<br />

7831 5470–200


Glossary<br />

Recommendation X.29<br />

A ITU/TSS standard that defines procedures for the exchange of control information<br />

and user data between a PAD and a DTE. The standard defines control messages<br />

which allow a DTE to set and/or read the X.3 parameter settings for a specific<br />

terminal actively connected to the PAD.<br />

Recommendation X.75<br />

A ITU/TSS standard that defines the communication protocol between two PDNs. The<br />

standard is in most cases identical to Recommendation <strong>X.25</strong>, but includes special<br />

considerations unique to internetworking between two packet networks.<br />

route control (RTC) protocol<br />

A protocol that determines the transport network route or path over which particular<br />

network data units (NDUs) travel to reach the paired data unit control (DUC) entity.<br />

RTC applies one of a selection of routing algorithms according to the needs of the<br />

transport network.<br />

RPOA<br />

RTC<br />

S<br />

SNA<br />

SNA/net<br />

SVC<br />

See recognized private operating agency.<br />

See route control protocol.<br />

See Systems Network Architecture.<br />

A Unisys implementation of Systems Network Architecture (SNA) on the <strong>DCP</strong> family<br />

of communications processors. SNA/net is based on the concepts of extending SNA<br />

networks to accommodate non-SNA network needs, and operating the SNA network<br />

without continuous dependence on the host.<br />

See switched virtual circuit.<br />

switched virtual circuit<br />

A circuit connection in which a call set-up procedure and a call clearing procedure<br />

will determine a period of communication between two DTEs. All data are delivered<br />

from the network in the same order in which they are received by the network.<br />

7831 5470–200 Glossary–13


Glossary<br />

synchronous transmission<br />

The transmission of data at a fixed rate with the transmitter and receiver<br />

synchronized. This eliminates the need for start-stop elements.<br />

Systems Network Architecture (SNA)<br />

A data communication and networking architecture designed by IBM. SNA totally<br />

describes the logical structure, formats, protocols, and operational sequences for<br />

transmitting information units through a communication system. The structure of SNA<br />

enables the ultimate origins and destinations of information (the end users) to be<br />

independent of, and unaffected by, the specific communication system services and<br />

facilities used for information exchange.<br />

T<br />

TCP/IP<br />

Telcon<br />

See transmission control protocol/internet protocol.<br />

A Unisys distributed communications software system for data communication<br />

networks. The software runs in a Distributed <strong>Communications</strong> Processor (<strong>DCP</strong>) and is<br />

defined by the Distributed <strong>Communications</strong> Architecture (DCA). Telcon software<br />

handles communication connections to CMS 1100, to Telcon software in other <strong>DCP</strong>s,<br />

to various terminal types, and to other DCA compliant entities.<br />

transmission control protocol/internet protocol (TCP/IP)<br />

A set of protocols developed by the Department of Defense (DOD) to connect<br />

different kinds of networks and computers. The most common implementation of<br />

TCP/IP is UNIX systems, which use TCP/IP protocols to communicate over an IEEE<br />

LAN. Some UNIX vendors integrate TCP/IP communication software into operating<br />

system software. TCP/IP protocols are based on a four-layer architecture model, as<br />

opposed to the OSI seven-layer model. The four layers in the TCP/IP model are:<br />

process/application (layer 4), host-to-host (layer 3), internet (layer 2), and network<br />

access (layer 1). The main differences between the TCP/IP model and the OSI model<br />

are the location of reliability control (error detection and recovery) within the<br />

protocol hierarchy and the application system structure defined by each model. TCP/IP<br />

is required for the Defense Data Network (DDN).<br />

trunk<br />

Glossary–14<br />

A collection of one or more physical data links (or lines) that connect <strong>DCP</strong>s. Trunk<br />

lines are full-duplex. The physical lines are operated in parallel to improve reliability<br />

and performance and reduce costs.<br />

7831 5470–200


U<br />

U <strong>Series</strong><br />

The family of U 6000 hardware products.<br />

U.S. GOSIP<br />

See Government Open Systems Interconnection Profile.<br />

Glossary<br />

UTS 4000<br />

The family of interactive general-purpose display terminals that includes the UTS 10<br />

teletypewriter (TTY) terminal, the UTS 20 editing terminal, the UTS 30 editing<br />

terminal, the UTS 40 programmable terminal, the UTS 4000 cluster controller, and the<br />

UTS 4040 cluster controller.<br />

V<br />

Videotex 1100<br />

A software package that connects standard public Videotex terminals or personal<br />

computers with appropriate software decoders to an OS 1100 host computer through a<br />

Telcon network. A Videotex gateway allows these connections through a<br />

packet-switched PDN. Videotex 1100 supports the protocols defined by Prestel, CEPT,<br />

Teletel, and NAPLPS.<br />

virtual circuit<br />

A path through the network over which <strong>X.25</strong> data packets and control packets are<br />

exchanged. A virtual circuit is identified by logical channel numbers at each end of the<br />

connection. Synonymous with network connection. A two way logical connection<br />

through a network, which provides error handling, DTE-to-DTE flow control, routing,<br />

and packet sequencing. The routing taken by data on a virtual circuit is not hard<br />

wired, but is implemented by the network when the call is established. See also<br />

permanent virtual circuit, switched virtual circuit.<br />

W<br />

wide area network (WAN)<br />

A computer network that can spread over large geographic areas. It can connect<br />

cities, countries, and continents.<br />

WAN<br />

See wide area network.<br />

7831 5470–200 Glossary–15


Glossary<br />

X<br />

X.3<br />

X.21<br />

X.21 bis<br />

<strong>X.25</strong><br />

See Recommendation X.3.<br />

The ITU/TSS Recommendation that defines a protocol for communication between<br />

user devices and a circuit-switched network.<br />

The ITU/TSS Recommendation (a modification of X.21) that enables existing data<br />

terminals to access a digital network over telephone lines.<br />

See Recommendation <strong>X.25</strong>.<br />

<strong>X.25</strong> PDN<br />

See <strong>X.25</strong> public data network.<br />

<strong>X.25</strong> <strong>PSCS</strong><br />

See <strong>Packet</strong> <strong>Switched</strong> <strong>Communications</strong> <strong>Software</strong>.<br />

<strong>X.25</strong> public data network (<strong>X.25</strong> PDN)<br />

A communication network system that offers users the worldwide capabilities of<br />

international standard <strong>X.25</strong>, a fully certified, error-free public data network system.<br />

X.28<br />

X.29<br />

X.75<br />

Glossary–16<br />

See Recommendation X.28.<br />

See Recommendation X.29.<br />

See Recommendation X.75.<br />

7831 5470–200


Index<br />

A<br />

Accunet, 1–7, 6–27, 6–63 to 6–64<br />

activating<br />

<strong>X.25</strong> facilities, 5–29<br />

adding<br />

nodes and DTEs to a DCE Network, 3–13<br />

AIR/net, 6–17<br />

Arpac, 1–7, 6–27, 6–63 to 6–64<br />

Austpac, 1–7, 6–27, 6–63 to 6–64<br />

authorization levels<br />

for NMS commands, 5–3<br />

B<br />

B<strong>X.25</strong>, 1–7, 6–27, 6–63 to 6–64<br />

C<br />

call packets<br />

rerouting, 5–19<br />

call routing, B–1<br />

CALLED option<br />

configuration, 2–37<br />

CALLING option<br />

configuration, 2–37<br />

capacity limitations, 1–11<br />

certifications, 1–7<br />

closed user group (CUG)<br />

configuration procedure, 3–28<br />

CLSTR statement, 6–4<br />

CNMS interface, 1–5<br />

coded character set, 1–10, 6–58<br />

configuration example<br />

DCE Network, 4–48<br />

IS-PC, 4–24<br />

mixed trunk, 4–14<br />

multilink trunk, 4–8<br />

packet layer services (PLS), 4–43<br />

PDN trunk, 4–3<br />

U <strong>Series</strong>, 4–24<br />

UTS 4000 Cluster Controller, 4–19<br />

X.28/PAD, 4–29<br />

X.29 PAD with configured DTEs, 4–38<br />

X.29 PAD with nonconfigured DTEs,<br />

4–33<br />

configuring basic connections to networks,<br />

2–3<br />

configuring CALLED options, 2–37<br />

configuring CALLING options, 2–37<br />

configuring CUGs, 3–27<br />

configuring DCE Networks, 3–1<br />

procedure, 3–10<br />

configuring <strong>DCP</strong>s as DTEs<br />

example, 2–13<br />

illustration, 2–10<br />

procedure, 2–11<br />

configuring DDN connections<br />

example, 2–6<br />

illustration, 2–5<br />

procedure, 2–6<br />

configuring DTE hunt groups<br />

DCE Network, 3–33<br />

example, 3–34<br />

illustration, 3–34<br />

procedure, 3–33<br />

configuring DTE subaddresses<br />

example, 3–35<br />

illustration, 3–36<br />

procedure, 3–35<br />

configuring DTEs with PVCs<br />

example, 2–26<br />

illustration, 2–25<br />

procedure, 2–26<br />

configuring DTEs with SNA protocols<br />

example, 2–24<br />

illustration, 2–23<br />

procedure, 2–24<br />

configuring flow control negotiation<br />

example, 3–32<br />

procedure, 3–32<br />

7831 5470–200 Index–1


Index<br />

configuring frame level windows, 2–35<br />

configuring frame size, 2–34<br />

configuring ILM-20 connections to a DTE<br />

example, 3–37<br />

procedure, 3–37<br />

configuring incoming call routing<br />

precedence, 2–41<br />

configuring internal DTEs<br />

example, 3–18<br />

illustration, 3–16<br />

procedure, 3–17<br />

configuring internal DTEs for U <strong>Series</strong> or<br />

IS-PC DTEs<br />

example, 3–22<br />

illustration, 3–20<br />

procedure, 3–21<br />

configuring multilink connections<br />

example, 2–8<br />

illustration, 2–7<br />

procedure, 2–7<br />

configuring multilink connections (DCE)<br />

example, 3–39<br />

illustration, 3–39<br />

procedure, 3–38<br />

configuring one-node DCE Networks<br />

example, 3–12<br />

illustration, 3–10<br />

procedure, 3–11<br />

configuring packet layer services (PLS)<br />

(See configuring PLS interfaces as DTEs)<br />

configuring packet level window size, 2–33<br />

configuring packet size, 2–33<br />

configuring partial DTE addresses, 2–38<br />

for incoming calls, 2–38<br />

for outgoing calls, 2–38<br />

for outgoing/incoming calls, 2–39<br />

configuring PDN connections<br />

example, 2–5<br />

illustration, 2–3<br />

procedure, 2–4<br />

configuring permanent virtual circuits, 2–36<br />

configuring PLS interfaces as DTEs<br />

example, 2–18<br />

illustration, 2–17<br />

procedure, 2–18<br />

configuring priority virtual circuits<br />

example, 3–30<br />

procedure, 3–30<br />

configuring reverse charging<br />

example, 3–31<br />

procedure, 3–31<br />

Index–2<br />

configuring routing information, B–2<br />

configuring special DCE Network<br />

capabilities, 3–27<br />

configuring standard capabilities, 2–1<br />

configuring U <strong>Series</strong> or IS-PC as DTEs<br />

example, 2–22<br />

illustration, 2–21<br />

procedure, 2–22<br />

configuring U <strong>Series</strong> running DNS as a DTE<br />

example, 2–20<br />

illustration, 2–19<br />

procedure, 2–20<br />

configuring UTS 4000 Cluster Controllers as<br />

DTEs<br />

example, 2–16<br />

illustration, 2–14<br />

procedure, 2–15<br />

configuring X.28/PADs<br />

example, 2–31<br />

illustration, 2–29<br />

procedure, 2–30<br />

configuring X.29 PADs<br />

example, 2–28<br />

illustration, 2–27<br />

procedure, 2–28<br />

configuring X.75 interfaces<br />

example, 3–26<br />

illustration, 3–24<br />

procedure, 3–25<br />

connectionless-oriented service, 6–16<br />

controlling<br />

DCE Network statistics, 5–9<br />

CORP/net, 6–17<br />

creating<br />

network addresses, 3–5<br />

CUG<br />

(See closed user group)<br />

D<br />

D-bit implementation<br />

feature description, 1–9<br />

data network identifier code (DNIC), 3–5,<br />

3–7<br />

data terminal equipment<br />

defining, 6–5<br />

7831 5470–200


Datapac, 1–7, 6–27, 6–63 to 6–64<br />

Datex, 1–7, 6–27, 6–63 to 6–64<br />

Datex-P, 1–7, 6–27, 6–63 to 6–64<br />

DCA support<br />

feature description, 1–7<br />

DCE Network<br />

capabilities, 1–3<br />

configuration example, 4–48<br />

limitations, 1–13<br />

DCE Network configuration<br />

adding nodes and DTEs, 3–13<br />

basic network, 3–10<br />

closed user group, 3–27<br />

creating network addresses, 3–5<br />

DNIC, 3–7<br />

drawing a network map, 3–3<br />

DTE hunt groups, 3–33<br />

DTE identifier, 3–5<br />

flow control negotiation, 3–32<br />

ILM-20 connection, 3–37<br />

internal DTE for U <strong>Series</strong> or IS-PC, 3–20<br />

internal DTE, 3–16<br />

multilink connection, 3–38<br />

node number, 3–7<br />

one-node network, 3–10<br />

planning, 3–3<br />

priority virtual circuits, 3–30<br />

reverse charging, 3–31<br />

selecting statements, 3–8<br />

special capabilities, 3–27<br />

two-node network, 3–13<br />

X.75 interface, 3–24<br />

DCE Network routes<br />

defining, 6–73<br />

DCE Network statistics<br />

controlling statistics gathering, 5–9<br />

DCE Network with an X.75 interface<br />

example, 3–26<br />

illustration, 3–24<br />

procedure, 3–25<br />

<strong>DCP</strong><br />

as configured DTEs, 2–9 to 2–11<br />

connection to DDN, 2–5<br />

DCS, 1–7, 6–27, 6–63 to 6–64<br />

DDN, 6–27, 6–63 to 6–64<br />

certification, 1–7<br />

configuration, 2–6<br />

connection to <strong>DCP</strong>, 2–5<br />

Index<br />

DDX, 1–7<br />

deactivating<br />

<strong>X.25</strong> facilities, 5–4<br />

Defense Data Network, 1–7, 6–27, 6–63 to<br />

6–64<br />

defining<br />

data terminal equipment, 6–5<br />

DCE Network routes, 6–73<br />

DTE communication attributes, 6–15<br />

DTEs, 2–9<br />

line characteristics, 6–34<br />

network characteristics, 6–61<br />

network connection, 6–38<br />

PAD operational parameters, 6–50<br />

physical communications lines, 6–36<br />

routing precedence, 6–75<br />

terminal, 6–58<br />

UTS terminal clusters, 6–4<br />

<strong>X.25</strong> <strong>PSCS</strong> end users, 6–25<br />

displaying<br />

line activity, 5–6<br />

status of lines, 5–11<br />

DN1, 1–7, 6–27, 6–63 to 6–64<br />

DNIC<br />

(See data network identifier code)<br />

DOWN command, 5–4<br />

DTE<br />

<strong>DCP</strong> as a DTE, 2–10<br />

defining systems as DTEs, 2–9<br />

hunt group configuration, 3–33<br />

minimizing number of PLS DTEs, 1–9<br />

PLS interface as a DTE, 2–17<br />

running SNA protocols, 2–23<br />

U <strong>Series</strong> as a DTE, 2–19<br />

U <strong>Series</strong> or IS-PC as a DTE, 2–21<br />

UTS 4000 Cluster Controller as a DTE,<br />

2–14<br />

with PVCs, 2–25<br />

DTE communication attributes<br />

defining, 6–15<br />

DTE hunt group configuration, 3–33<br />

DTE identifier, 3–7<br />

DTE routing<br />

routing precedence, 1–9<br />

DTE statement, 6–5<br />

DTEs on DCE Networks, 6–11<br />

DTEs on PDNs or private networks, 6–6<br />

outgoing call routing, B–1<br />

use as filter for incoming calls, 1–16<br />

use in DCE Network configuration, 3–8<br />

7831 5470–200 Index–3


Index<br />

DTE subaddress<br />

configuration, 3–35<br />

DTETYPE statement, 6–15<br />

DCE Networks, 6–23<br />

standard packet network, 6–16<br />

use in DCE Network configuration, 3–8<br />

dynamic line switching, 1–10<br />

E<br />

end users<br />

defining for <strong>X.25</strong> <strong>PSCS</strong>, 6–25<br />

EU statement, 6–25<br />

DCE Network, 6–32<br />

PLS end users, 6–30<br />

use in DCE Network configuration, 3–8<br />

X.28/PAD end users, 6–25<br />

Euronet, 6–27, 6–63 to 6–64<br />

European CTS/WAN certification, 1–7<br />

European NET2 certification, 1–7<br />

F<br />

fast select<br />

feature description, 1–8<br />

FIPS conformance tests, 1–7<br />

flow control negotiation<br />

configuration, 3–32<br />

feature description, 1–8<br />

frame size, 1–8<br />

configuration, 2–34<br />

H<br />

hardware/<strong>DCP</strong> system resources<br />

troubleshooting, 7–6<br />

hunt groups<br />

configuration, 3–33<br />

Index–4<br />

I<br />

Iberpac, 1–7, 6–27, 6–63 to 6–64<br />

idle trunk circuit handling<br />

configuration, 2–10 to 2–11, 2–19 to 2–20<br />

feature description, 1–5<br />

ILM-20<br />

support feature, 1–4<br />

initialization<br />

troubleshooting, 7–5<br />

installation verification, 7–4<br />

internal DTE<br />

configuration, 3–16<br />

for U <strong>Series</strong> or IS-PC DTEs, 3–20<br />

internationalization, 1–10<br />

IS-PC<br />

configuration example, 4–24<br />

Itapac, 1–7, 6–27, 6–63 to 6–64<br />

ITU/TSS (CCITT) compliance<br />

1988 CCITT compliance, 1–10<br />

L<br />

layer 3/4 platform<br />

feature description, 1–5<br />

layer 4 connection verification, 7–11<br />

LCLASS statement, 6–34<br />

ILM-20 lines, 6–35<br />

standard communications lines, 6–34<br />

Level4 program definition for SNA/net, 1–17<br />

limitations<br />

DCE Network, 1–13<br />

<strong>X.25</strong> <strong>PSCS</strong>, 1–11<br />

line activity<br />

displaying, 5–6<br />

line characteristics<br />

defining, 6–34<br />

line failure<br />

general, 7–3<br />

specific, 7–8<br />

line operation verification, 7–3<br />

LINE statement, 6–36<br />

LIST command, 5–6<br />

7831 5470–200


M<br />

M-bit implementation<br />

feature description, 1–9<br />

message data transfer performance<br />

verification, 7–15<br />

message tracing, 1–10, 5–21, 7–14<br />

Mexpac, 1–7, 6–27, 6–63 to 6–64<br />

migration issues, 1–15<br />

mixed trunk<br />

configuration example, 4–14<br />

multilink<br />

configuration, 3–38<br />

connection configuration, 2–7<br />

feature description, 1–8<br />

trunk configuration example, 4–8<br />

N<br />

NET2 certification, 1–7<br />

NETID values, 6–64<br />

network addresses, 3–5, 3–7<br />

network certifications, 1–7<br />

network characteristics<br />

defining, 6–61<br />

network connections<br />

basic configurations, 2–3<br />

defining, 6–38<br />

Network Load Utility<br />

(See NLU) 1–14<br />

Network Management Services (NMS)<br />

(See NMS commands)<br />

network support<br />

by <strong>X.25</strong> <strong>PSCS</strong>, 6–27<br />

networks<br />

supported by <strong>X.25</strong> <strong>PSCS</strong>, 1–7<br />

NLU, 1–14<br />

NMS commands<br />

command authority, 5–3<br />

DOWN, 5–4<br />

enhancements, 5–1<br />

LIST, 5–6<br />

RECORD, 5–9<br />

SNAP=DCEF trace files, C–4<br />

SNAP=X25 trace files, C–2<br />

STAT, 5–11<br />

SWITCH, 5–19<br />

TRAC, 5–21<br />

UP, 5–29<br />

node<br />

adding to DCE Network, 3–13<br />

number, 3–7<br />

NOPN, 1–7, 6–27, 6–63 to 6–64<br />

NPDN, 1–7, 6–27, 6–63 to 6–64<br />

O<br />

one-way logical channels<br />

feature description, 1–8<br />

operational parameters for a PAD<br />

defining, 6–50<br />

OSI support<br />

feature description, 1–6<br />

OSI systems<br />

as configured DTEs, 2–9<br />

outgoing call routing, B–1<br />

P<br />

Index<br />

packet layer services (PLS)<br />

configuration example, 4–43<br />

configured as a DTE, 2–17<br />

feature description, 1–5, 1–9<br />

packet size<br />

configuration, 2–33<br />

feature description, 1–8<br />

PAD operational parameters<br />

defining, 6–50<br />

partial DTE addresses<br />

configuration, 2–38<br />

PDN<br />

connection to <strong>X.25</strong> <strong>PSCS</strong>, 2–3<br />

supported types, 1–7<br />

PDN trunk<br />

configuration example, 4–3<br />

PDNGRP statement, 6–38<br />

DCE Networks, 6–47<br />

DDN, 6–43<br />

PDNs and private packet networks, 6–39<br />

use in DCE Network configuration, 3–8<br />

PDNPAD statement, 6–50<br />

permanent virtual circuits (PVCs)<br />

configuration, 2–25, 2–36<br />

DTE configuration, 2–25<br />

feature description, 1–8<br />

7831 5470–200 Index–5


Index<br />

physical communications lines<br />

defining, 6–36<br />

priority virtual circuits<br />

configuration, 3–30<br />

feature description, 1–8<br />

product<br />

limitations, 1–11<br />

overview, 1–3<br />

restrictions, 1–12<br />

protocols<br />

supported, 1–6<br />

<strong>PSCS</strong><br />

capacity limitations, 1–11<br />

limitations, 1–11<br />

restrictions, 1–12<br />

<strong>PSCS</strong>NET, 6–27, 6–63 to 6–64<br />

PSS, 1–7, 6–27, 6–63 to 6–64<br />

public data networks<br />

(See PDN)<br />

R<br />

recognized private operating agencies<br />

(See RPOA)<br />

RECORD command, 5–9<br />

Renpac, 1–7, 6–27, 6–63 to 6–64<br />

rerouting<br />

call packets, 5–19<br />

reserved words, A–1<br />

resiliency, 1–10<br />

restrictions, 1–12<br />

reverse charging<br />

configuration, 3–31<br />

feature description, 1–9<br />

routing<br />

calls, B–1<br />

non-configured incoming calls, 1–15<br />

routing precedence<br />

specifying, 6–75<br />

RPOA<br />

feature description, 1–8<br />

S<br />

selecting<br />

DCE Network statements, 3–8<br />

SITA, 1–7, 6–27, 6–63 to 6–64<br />

Index–6<br />

SNA support<br />

feature description, 1–7<br />

SNA systems<br />

as configured DTEs, 2–9, 2–23 to 2–24<br />

configuration procedure, 2–24<br />

SNAP=DCEF parameter<br />

option format, C–4<br />

trace entry example, C–5<br />

SNAP=X25 parameter<br />

option format, C–2<br />

trace entry example, C–3<br />

specifying<br />

routing precedence, 6–75<br />

STAT command, 5–11<br />

STAT LINE command, 5–13<br />

STAT PDTE command, 5–15<br />

STAT PTRK command, 5–17<br />

status of lines<br />

displaying, 5–11<br />

supported<br />

networks, 1–7, 6–27<br />

protocols, 1–6<br />

SWITCH command, 5–19<br />

T<br />

TCP/IP support<br />

feature description, 1–5<br />

TCP/IP systems<br />

as configured DTEs, 2–9<br />

Telenet, 1–7, 6–27, 6–63 to 6–64<br />

Telepac, 1–7, 6–27, 6–63 to 6–64<br />

Telepacp, 1–7, 6–27, 6–63 to 6–64<br />

TERM statement, 6–58<br />

terminals using the UTS 4000 Cluster<br />

Controller, 6–58<br />

terminals using the X.29 PAD, 6–59<br />

terminal<br />

defining, 6–58<br />

throughput class assignment,<br />

facility codes, 6–20<br />

throughput class negotiation<br />

feature description, 1–9<br />

TRAC command, 5–21, 7–14<br />

trace file formats, C–1, C–4<br />

TRAC SNAP DCEF command, 5–27<br />

TRAC SNAP X25 command, 5–21<br />

trace entry example<br />

SNAP=DCEF, C–5<br />

SNAP=X25, C–3<br />

7831 5470–200


tracing<br />

messages, 5–21<br />

transit delay<br />

feature description, 1–9<br />

Transpac, 1–7, 6–27, 6–63 to 6–64<br />

troubleshooting<br />

connections, 7–13<br />

<strong>DCP</strong>/OS resources, 7–17<br />

external facilities, 7–15<br />

facility constraints, 7–19<br />

hardware/<strong>DCP</strong> system resources, 7–6<br />

incompatible flow control values, 7–18<br />

incompatible frame control values, 7–19<br />

initialization, 7–5<br />

installation, 7–4<br />

layer 3/4 platform interface user reports,<br />

7–14<br />

layer 4 connection verification, 7–11<br />

line characteristics, 7–20<br />

line failure (general), 7–3<br />

line failure (specific), 7–8<br />

link level characteristics, 7–19<br />

message data transfer performance<br />

verification, 7–15<br />

message tracing, 7–14<br />

NMS command verification, 7–11<br />

packet level characteristics, 7–18<br />

subscription parameters, 7–20<br />

Telcon CENLOG reports, 7–13<br />

Telcon or host interface resources, 7–16<br />

TRAC command, 7–14, 7–16, 7–19<br />

virtual circuit connection, 7–11, 7–15<br />

<strong>X.25</strong> line monitor, 7–16, 7–19<br />

trunk configuration, 2–10 to 2–11, 2–19 to<br />

2–20<br />

U<br />

U <strong>Series</strong><br />

configuration example, 4–24<br />

U <strong>Series</strong> systems<br />

as configured DTEs, 2–9, 2–19 to 2–22<br />

communications with, 1–5<br />

U.S. GOSIP certification, 1–7<br />

UP command, 5–29<br />

Index<br />

UTS 4000 Cluster Controller<br />

as configured DTEs, 2–9, 2–14 to 2–15<br />

communications with, 1–5<br />

configuration example, 4–19<br />

UTS terminal clusters<br />

defining, 6–4<br />

V<br />

verification<br />

connections (layer 4 or service<br />

operation), 7–11<br />

connections (NMS commands), 7–11<br />

installation, 7–4<br />

line operation, 7–3<br />

message data transfer performance, 7–15<br />

virtual circuit connection, 7–11<br />

Videotex, 1–15, 2–9, 2–28, 2–42 to 2–43,<br />

3–17, 6–17, 6–76<br />

virtual circuit connection<br />

verification, 7–11<br />

W<br />

window size<br />

configuring frame level windows, 2–35<br />

configuring packet level window size,<br />

2–33<br />

feature description, 1–8<br />

X<br />

<strong>X.25</strong> facilities<br />

activating, 5–29<br />

deactivating, 5–4<br />

<strong>X.25</strong> implementation<br />

capacity limitations, 1–11<br />

feature description, 1–5<br />

restrictions, 1–12<br />

special capabilities, 1–8<br />

<strong>X.25</strong> <strong>PSCS</strong> end users<br />

defining, 6–25<br />

<strong>X.25</strong> <strong>PSCS</strong> reserved words, A–1<br />

X.28 implementation<br />

feature description, 1–5<br />

7831 5470–200 Index–7


Index<br />

X.28/PAD<br />

configuration example, 4–29<br />

configuration, 2–29<br />

X.29 implementation<br />

feature description, 1–5<br />

X.29 PAD<br />

configuration, 2–27<br />

X.29 PAD with configured DTEs<br />

configuration example, 4–38<br />

X.29 PAD with nonconfigured DTEs<br />

configuration example, 4–33<br />

X.3 implementation<br />

feature description, 1–5<br />

X.75 interface<br />

configuration, 3–24<br />

X25DEF statement, 6–61<br />

supported networks, 6–63<br />

use in DCE Network configuration, 3–8<br />

X25NET statement, 6–73<br />

use in DCE Network configuration, 3–8<br />

X25ROUTE statement, 1–15 to 1–16, 2–41,<br />

6–75<br />

Index–8<br />

7831 5470–200

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!