18.08.2013 Views

Download - NASA

Download - NASA

Download - NASA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

92 Rotor<br />

inflow angles are obtained, and then the angle-of-attack:<br />

uT = r + μx sin ψ + μy cos ψ<br />

uR = μx cos ψ − μy sin ψ<br />

uP = λ + r( ˙ β +˙αx sin ψ − ˙αy cos ψ)+uRβ<br />

U 2 = u 2 T + u 2 P<br />

<br />

cos Λ = U/<br />

u 2 T + u2 P + u2 R<br />

φ = tan −1 uP /uT<br />

α = θ − φ<br />

In reverse flow (|α| > 90), α ← α − 180 signα, and then cℓ = cℓαα still (airfoil tables are not used). The<br />

blade pitch consists of collective, cyclic, twist, and pitch-flap coupling terms. The flap motion is rigid<br />

rotation about a hinge with no offset, and only coning and once-per-revolution terms are considered:<br />

θ = θ0.75 + θtw + θc cos ψ + θs sin ψ − KP β<br />

β = β0 + βc cos ψ + βs sin ψ<br />

where KP = tan δ3. The twist is measured relative to 0.75R; θtw = θL(r − 0.75) for linear twist. The<br />

inflow includes gradients caused by edgewise flight and hub moments:<br />

λ = μz + λi(1 + κxr cos ψ + κyr sin ψ)+Δλm<br />

= μz + λi(1 + κxr cos ψ + κyr sin ψ)+<br />

From the hub moments <br />

−CMy<br />

the inflow gradient is<br />

<br />

Δλm =<br />

fm<br />

μ 2 + λ 2<br />

<br />

σa<br />

8<br />

ν 2 − 1<br />

γ/8<br />

CMx<br />

= σa<br />

2<br />

fm<br />

μ 2 + λ 2 (−2CMyr cos ψ +2CMxr sin ψ)<br />

ν 2 − 1<br />

γ<br />

βc<br />

βs<br />

<br />

(rβc cos ψ + rβs sin ψ) =Km<br />

The constant Km is associated with a lift-deficiency function:<br />

ν 2 − 1<br />

γ/8<br />

1<br />

1<br />

C = =<br />

1+Km 1+fmσa/ 8 μ2 + λ2 (rβc cos ψ + rβs sin ψ)<br />

The blade chord is c(r) =crefĉ(r), where cref is the thrust-weighted chord (chord at 0.75R for linear<br />

taper). Yawed flow effects increase the section drag coefficient, hence cd = cdmean/ cos Λ. The section<br />

forces in velocity axes and shaft axes are<br />

L = 1<br />

2 ρU 2 ccℓ<br />

D = 1<br />

2 ρU 2 ccd<br />

R = 1<br />

2 ρU 2 ccr = D tan Λ<br />

Fz = L cos φ − D sin φ = 1<br />

2 ρUc(cℓuT − cduP )<br />

Fx = L sin φ + D cos φ = 1<br />

2 ρUc(cℓuP + cduT )<br />

Fr = −βFz + R = −βFz + 1<br />

2 ρUccduR<br />

These equations for the section environment and section forces are applicable to high inflow (large μz),<br />

sideward flight (μy), and reverse flow (uT < 0). The total forces on the rotor hub are<br />

<br />

T = N Fz dr<br />

<br />

H = N Fx sin ψ + Fr cos ψdr<br />

<br />

Y = N −Fx cos ψ + Fr sin ψdr

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!