18.08.2013 Views

Download - NASA

Download - NASA

Download - NASA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Rotor 93<br />

with an average over the rotor azimuth implied, along with the integration over the radius. Lift forces<br />

are integrated from the root cutout rroot to the tip-loss factor B. Drag forces are integrated from the root<br />

cutout to the tip.<br />

In coefficient form (forces divided by ρAV 2<br />

tip) the rotor thrust and inplane forces are:<br />

<br />

CT = σ Fz dr<br />

<br />

CH = σ Fx sin ψ + Fr cos ψdr<br />

<br />

CY = σ − Fx cos ψ + Fz =<br />

Fr sin ψdr<br />

1<br />

2 ĉU(cℓuT − cduP )<br />

Fx = 1<br />

2 ĉU(cℓuP + cduT )<br />

Fr = −β Fz + 1<br />

2 ĉUcduR<br />

(and the sign of CY is changed for a clockwise rotating rotor). The terms Δ Fx ∼ = Fz ˙ β and Δ Fr = − Fzβ<br />

produce tilt of the thrust vector with the tip-path plane (CH = −CT βc and CY = −CT βs), which<br />

are accounted for directly. The section drag coefficient cd produces the profile inplane forces. The<br />

approximation uP ∼ = μz is consistent with the simplified method (using the function FH), hence<br />

Fxo = 1<br />

2 ĉU0cduT<br />

Fro = 1<br />

2 ĉU0cduR<br />

<br />

CHo = σ<br />

<br />

CYo = σ<br />

Fxo sin ψ + Fro cos ψdr= σ<br />

2<br />

− Fxo cos ψ + Fro sin ψdr= − σ<br />

2<br />

<br />

<br />

ĉU0cd(r sin ψ + μx) dr<br />

ĉU0cd(r cos ψ + μy) dr<br />

where U 2 0 = u 2 T + μ2 z, and cd = cdmean/ cos Λ. Using blade-element theory to evaluate CHo and CYo<br />

accounts for the planform (ĉ) and root cutout. Using the function FH implies a rectangular blade and no<br />

root cutout (plus at most a 1% error approximating the exact integration). The remaining terms in the<br />

section forces produce the inplane loads relative to the tip-path plane:<br />

Fxi = Fx − Fz ˙ β − Fxo = 1<br />

2 ĉUcℓ(uP − uT ˙ β)+ 1<br />

2 ĉUcd((1 − U0/U)uT + uP ˙ β)<br />

Fri = Fr + Fzβ − Fro = 1<br />

2 ĉUcd(1 − U0/U)uR<br />

<br />

CHtpp = σ Fxi sin ψ + Fri cos ψdr<br />

<br />

CY tpp = σ − Fxi cos ψ + Fri sin ψdr<br />

(including small profile terms from U0 = U).<br />

Evaluating these inplane forces requires the collective and cyclic pitch angles and the flapping<br />

motion. The thrust equation must be solved for the rotor collective pitch. The relationship between<br />

cyclic pitch and flapping is defined by the rotor-flap dynamics. The flap motion is rigid rotation about a<br />

central hinge, with a flap frequency ν>1 for articulated or hingeless rotors. The flapping equation of<br />

motion is<br />

¨β + ν 2 β +2˙αy sin ψ +2˙αx cos ψ = γ<br />

<br />

Fzrdr+(ν<br />

a<br />

2 − 1)βp<br />

including precone angle βp; the Lock number γ = ρacrefR4 /Ib. This equation is solved for the mean<br />

(coning) and 1/rev (tip-path plane tilt) flap motion:<br />

ν 2 β0 = γ<br />

<br />

Fzrdr+(ν<br />

a<br />

2 − 1)βp<br />

(ν 2 <br />

βc<br />

− 1) =<br />

βs<br />

γ<br />

<br />

Fzrdr<br />

2 cos ψ 2˙αx<br />

+<br />

a<br />

2 sin ψ 2˙αy

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!