18.08.2013 Views

Download - NASA

Download - NASA

Download - NASA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

98 Rotor<br />

κ<br />

κ<br />

1.14<br />

1.12<br />

1.10<br />

1.08<br />

1.06<br />

1.04<br />

1.02<br />

Maxial = 1.176<br />

Maxial = 0.5<br />

Maxial = 2.0<br />

1.00<br />

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0<br />

4.50<br />

4.00<br />

3.50<br />

3.00<br />

2.50<br />

2.00<br />

1.50<br />

μ z /λ h<br />

Figure 11-5. Induced power factor for rotor in axial flight.<br />

CT /σ = 0.08<br />

CT /σ = 0.14<br />

(μedge , κedge )<br />

1.00<br />

0.00 0.10 0.20 0.30 0.40 0.50<br />

Figure 11-6. Induced power factor for rotor in edgewise flight.<br />

where Mdd0 is the drag divergence Mach number at zero lift, and typically κ =0.16.<br />

b) Similarity model: From transonic small-disturbance theory (refs. 11–12), the scaled wave drag must<br />

be a function only of K1 =(M 2 at − 1)/[M 2 atτ(1 + γ)] 2/3 . An approximation for the wave drag increment<br />

is<br />

Δcd =<br />

τ 5/3<br />

[M 2 at(1 + γ)] 1/3 D(K1)<br />

τ<br />

=<br />

5/3<br />

[M 2 at(1 + γ)] 1/3 1.774(K1 +1.674) 5/2<br />

(constant for K1 > −0.2). Integration of Δcd over the rotor disk gives the compressibility increment in<br />

the profile power. Following Harris, the resulting compressibility increment in the mean drag coefficient<br />

μ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!