05.04.2014 Views

Elektronika 2010-11.pdf - Instytut Systemów Elektronicznych ...

Elektronika 2010-11.pdf - Instytut Systemów Elektronicznych ...

Elektronika 2010-11.pdf - Instytut Systemów Elektronicznych ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

minal V REF<br />

reference voltage of designed circuit equals 1.23 V,<br />

temperature coefficient is 0.3 ppm/ºC at T 0<br />

= 27ºC temperature,<br />

V REF<br />

voltages changes ΔV REF<br />

= 2.4 mV over the temperature<br />

range from 0ºC to 85ºC for typical conditions (TM plot in Fig. 5).<br />

V REF<br />

reference voltage sets the V CM<br />

common mode voltage at the<br />

driver’s output, so for all above cases an achieved V CM<br />

voltage is<br />

compatible with IEEE specification. Tabl. 1 presents the corners<br />

analysis settings, which were used during the simulation.<br />

D. Control block<br />

Control block circuit has been implemented as a two chains<br />

of inverters with complementary outputs, connected with the<br />

shorted gates of LVDS core’s switches. In simplify, the control<br />

blocks buffers U DATA<br />

driver’s input signal to LVDS core’s inputs.<br />

To minimize dynamic control block’s current consumption it is recommended<br />

to control the core of driver by the signal with rise/fall<br />

time around 0.5 ns. It significantly reduces the spikes of current<br />

driven from the supply lines during the switching of inverters.<br />

Simulation Results<br />

Designed LVDS driver characterizes a very low static 7.5<br />

mW and dynamic 8.5 mW power dissipation at data rate<br />

400 Mb/s (TM plot in Fig. 6). The rise/fall time of V DIFF<br />

dif-<br />

ferential voltage is 710/720 ps so the driver is capable<br />

of sending data with maximum rate about 500 Mb/s. The<br />

limits of fall/rise time are set by the output driver’s current<br />

and C R<br />

input capacitance at the receiver side (Fig. 7). According<br />

to the formula:<br />

dV<br />

DIFF<br />

I<br />

(3)<br />

D = C<br />

R<br />

dt<br />

achieving faster changes in V DIFF<br />

voltage for constant value<br />

of I D<br />

is dependent on capacitor’s value C R<br />

. Fig. 8 presents<br />

the V DIFF<br />

voltage at data rate 1.8 Gb/s and C R<br />

= 1 pF load. To<br />

increase the data rate there can be increased output driver’s<br />

current by external resistor connected with R BIAS<br />

resistor.<br />

That resistor can be also used to set value of V DIFF<br />

differential<br />

voltage when its desired level is changed by the process<br />

technology.<br />

Compatibility with IEEE specification limits the current flow<br />

across R R<br />

= 100 Ω termination resistor to maximum value<br />

4 mA. If the output driver’s current exceeds that limit it is recommended<br />

to decrease the resistance visible into receiver’s<br />

input. Achieved parameters of designed LVDS driver are<br />

shown in Tabl. 2.<br />

Fig. 6. Corners simulation: V DIFF<br />

voltage at data rate 400 Mb/s, C R<br />

= 5 pF<br />

Rys. 6. Symulacje brzegowe: napięcie V DIFF<br />

, transmisja danych<br />

400 Mb/s, C R<br />

= 5 pF<br />

Fig. 8. V DIFF<br />

voltage at data rate 1.8 Gb/s, C R<br />

= 1 pF<br />

Rys. 8. Napięcie V DIFF<br />

, transmisja danych 1,8 Gb/s, C R<br />

= 1 pF<br />

Tabl. 2. V DIFF<br />

voltage at data rate 1.8 Gb/s, C R<br />

= 1 pF<br />

Tab. 2. Napięcie V DIFF<br />

, transmisja danych 1,8 Gb/s, C R<br />

= 1 pF<br />

Fig. 7. Maximum data rate dependence on input’s receiver capacitance<br />

Rys. 7. Maksymalna szybkość transmisji danych w zależności od<br />

pojemności obciążenia<br />

Parameter<br />

V DIFF<br />

differential voltage<br />

400 Mb/s<br />

(at C R<br />

= 5pF)<br />

Data rate<br />

360 mV<br />

V CM<br />

common mode voltage 1.23V<br />

static current consumption<br />

dynamic current consumption<br />

static power dissipation<br />

4.16 mA<br />

4.16 mA/7.5 mW<br />

1.8Gb/s<br />

(at C R<br />

= 1pF)<br />

4.7 mA 6.45 mA<br />

7.5 mW<br />

dynamic power dissipation 8.5 mW 11.6 mW<br />

rise/fall time 710/720ps 180/175ps<br />

chip area 0.087 mm 2<br />

<strong>Elektronika</strong> 11/<strong>2010</strong> 25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!