04.01.2015 Views

FINFET Isolation Approaches and Ramifications - SOI Industry ...

FINFET Isolation Approaches and Ramifications - SOI Industry ...

FINFET Isolation Approaches and Ramifications - SOI Industry ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

IBM SRDC<br />

<strong>FINFET</strong> <strong>Isolation</strong> <strong>Approaches</strong> <strong>and</strong><br />

<strong>Ramifications</strong>: Bulk vs. <strong>SOI</strong><br />

Terence Hook<br />

IBM SRDC<br />

FD<strong>SOI</strong> Workshop, Hsinchu, Taiwan, April 22, 2013


IBM Semiconductor Research <strong>and</strong> Development Center<br />

Background – FD<strong>SOI</strong> <strong>and</strong> FinFETs<br />

• Fully Depleted Transistors: FD<strong>SOI</strong> <strong>and</strong> FinFETs<br />

– Similarities<br />

Electrostatics<br />

Access resistance<br />

Threshold fluctuations<br />

– Differences<br />

Physical Orientation<br />

Density <strong>and</strong> “fin effect”<br />

Backgate <strong>and</strong> body effect<br />

• FinFETs on <strong>SOI</strong> <strong>and</strong> bulk substrates<br />

– Process Comparison<br />

– Fin Taper<br />

– <strong>Isolation</strong> doping<br />

Intrawell<br />

Interwell<br />

Drain-source current<br />

– Self-heating <strong>and</strong> history effect<br />

– Transistor mismatch<br />

– Work function <strong>and</strong> gate reliability<br />

– Process variations<br />

• Conclusion<br />

FD<strong>SOI</strong> Workshop Hsinchu, Taiwan April 22, 2013


IBM Semiconductor Research <strong>and</strong> Development Center<br />

FD<strong>SOI</strong> <strong>and</strong> FinFET transistors<br />

• The key in both device types is very thin silicon.<br />

– FD<strong>SOI</strong> is 5-8nm thick<br />

– FinFET 8-15nm wide<br />

– The short-channel effect is set by physical geometry, not doping<br />

• Both are challenged in getting the current out of the thin body <strong>and</strong><br />

into the contact metal.<br />

• In principle both FinFET <strong>and</strong> FD<strong>SOI</strong> bodies can be undoped<br />

– The threshold voltage is set by the gate work function<br />

– Doping can be used to adjust threshold voltage but there are adverse<br />

implications<br />

– FinFETs built in bulk silicon inherently require some level of doping<br />

• While electrical characteristics share some similarities, the structures<br />

<strong>and</strong> processes are completely different<br />

FD<strong>SOI</strong> Workshop Hsinchu, Taiwan April 22, 2013


IBM Semiconductor Research <strong>and</strong> Development Center<br />

Electrostatics<br />

“Conventional”<br />

FD<strong>SOI</strong><br />

FinFET<br />

Λ<br />

S<br />

Gate<br />

D<br />

Λ/2<br />

S<br />

Gate<br />

BOX<br />

Substrate<br />

D<br />

S<br />

Gate<br />

Gate<br />

D<br />

Λ<br />

Λ = t dep +ε si /ε ox t ox<br />

L ~ 1/√N<br />

• Confinement of field<br />

lines by doping<br />

Λ = 2(t si +ε si /ε ox t ox )<br />

L min ~ 3t si +9t ox<br />

• Confinement of field<br />

lines by BOX<br />

Λ = t si +ε si /ε ox 2t ox<br />

L min ~ 1.5t si +9t ox<br />

• Confinement of field<br />

lines by gates<br />

2004 IEEE <strong>SOI</strong> Short Course<br />

Huang & Nowak<br />

D. Frank, et al.<br />

FD<strong>SOI</strong> Workshop Hsinchu, Taiwan April 22, 2013


IBM Semiconductor Research <strong>and</strong> Development Center<br />

Access resistance<br />

FD<strong>SOI</strong><br />

Finfet<br />

Thin-body devices use epitaxial silicon deposition on the<br />

source <strong>and</strong> drain to dope <strong>and</strong> “fatten” the body for the<br />

contact<br />

FD<strong>SOI</strong> Workshop Hsinchu, Taiwan April 22, 2013


IBM Semiconductor Research <strong>and</strong> Development Center<br />

Matching<br />

• Matching is affected by<br />

several components:<br />

– Physical variations<br />

such as line-edgeroughness<br />

– Electrical variations<br />

such as metal-gate<br />

work function<br />

variations<br />

– Doping variations<br />

subject to classic<br />

Poisson statistical<br />

variations<br />

• Undoped FinFET <strong>and</strong><br />

FD<strong>SOI</strong> are comparable<br />

calculted σΔVt (mV)<br />

40<br />

30<br />

20<br />

10<br />

IEDM 2011<br />

1.3mV-um<br />

AVT<br />

0<br />

0.00 0.01 0.02 0.03<br />

1/sqrt(LxW) (nm -1 )<br />

VLSI 2011<br />

1.5mV-um<br />

• Adding doping degrades<br />

matching<br />

FD<strong>SOI</strong><br />

FinFET<br />

FD<strong>SOI</strong> Workshop Hsinchu, Taiwan April 22, 2013


IBM Semiconductor Research <strong>and</strong> Development Center<br />

PD<strong>SOI</strong> FD<strong>SOI</strong> FinFET orientation<br />

Gate<br />

Drain<br />

Gate<br />

Drain<br />

Drain<br />

Current flow<br />

Source<br />

Current flow<br />

Source<br />

Source<br />

Source<br />

Fin<br />

Gate<br />

Source<br />

Current<br />

flow<br />

PD<strong>SOI</strong><br />

FD<strong>SOI</strong><br />

FinFET<br />

Electron Mobility (cm 2 V -1 s -1 )<br />

500<br />

400<br />

Universal (100) curve<br />

300<br />

200<br />

100<br />

0<br />

0 5 10 15<br />

N inv (X10 12 cm -2 )<br />

NFET<br />

180<br />

PFET<br />

Hole Mobility (cm 2 V -1 s -1 )<br />

160<br />

140<br />

120<br />

100<br />

V. Basker, IBM, VLSI 2011<br />

Universal (100) curve<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 2 4 6 8 1 0 1 2 1 4 16<br />

N inv (X10 12 cm -2 )<br />

FD<strong>SOI</strong> Workshop Hsinchu, Taiwan April 22, 2013


IBM Semiconductor Research <strong>and</strong> Development Center<br />

The 3D Effect in FinFET<br />

FD<strong>SOI</strong><br />

Effective width ~1X (current <strong>and</strong> capacitance)<br />

Aerial width ~0.7X<br />

FinFET<br />

• FD<strong>SOI</strong> is conventionally planar<br />

– The current drive <strong>and</strong> device<br />

capacitance <strong>and</strong> the layout footprint<br />

correspond directly<br />

Footprint width<br />

Electrical width<br />

• FinFET is 3-D<br />

– has more current drive (<strong>and</strong> also<br />

capacitance) per layout footprint<br />

Where the<br />

gate will be<br />

fin<br />

FD<strong>SOI</strong> Workshop Hsinchu, Taiwan April 22, 2013


IBM Semiconductor Research <strong>and</strong> Development Center<br />

Substrate effect<br />

375<br />

370<br />

Vtsat (mV)<br />

365<br />

360<br />

355<br />

Backgate<br />

• In FD<strong>SOI</strong> the threshold voltage may<br />

be modulated by the potential on the<br />

backgate<br />

• A typical number for a 25nm thick<br />

BOX is ~60-80mV/V.<br />

350<br />

-1.5 -1 -0.5 0 0.5 1<br />

Pwell Bias (V)<br />

• In FinFET - even in bulk - the<br />

substrate bias has little to no effect<br />

on the device<br />

• The so-called “body effect” is virtually<br />

absent, only 3mV/V.<br />

FD<strong>SOI</strong> Workshop Hsinchu, Taiwan April 22, 2013


IBM Semiconductor Research <strong>and</strong> Development Center<br />

The Main Event – why <strong>SOI</strong> FinFETs are better<br />

• Fully Depleted Transistors: FD<strong>SOI</strong> <strong>and</strong> FinFETs<br />

– Similarities<br />

Electrostatics<br />

Access resistance<br />

Threshold fluctuations<br />

– Differences<br />

Physical Orientation<br />

Density <strong>and</strong> “fin effect”<br />

Backgate <strong>and</strong> body effect<br />

• FinFETs on <strong>SOI</strong> <strong>and</strong> bulk substrates<br />

– Process Comparison<br />

– Fin Taper<br />

– <strong>Isolation</strong> doping<br />

Intrawell/Interwell<br />

Drain-source<br />

– Self-heating <strong>and</strong> history effect<br />

– Transistor mismatch<br />

– Work function <strong>and</strong> gate reliability<br />

– Process variations<br />

• Conclusion<br />

FD<strong>SOI</strong> Workshop Hsinchu, Taiwan April 22, 2013


IBM Semiconductor Research <strong>and</strong> Development Center<br />

FinFETs on Bulk <strong>and</strong> <strong>SOI</strong> substrates<br />

Gate<br />

Epitaxial Source/drain<br />

Active Fin<br />

Sub-fin leakage path<br />

Junction depth<br />

Junction <strong>Isolation</strong><br />

Thermal conduction path<br />

Dielectric <strong>Isolation</strong><br />

FD<strong>SOI</strong> Workshop Hsinchu, Taiwan April 22, 2013


IBM Semiconductor Research <strong>and</strong> Development Center<br />

FinFet Options: Bulk Isolated, Oxide Isolated<br />

fin<br />

Gate Stack<br />

Fin<br />

CSD<br />

Oxide<br />

Oxide<br />

Silicon Substrate<br />

Silicon Substrate<br />

• Bulk isolated<br />

– Process complex more<br />

expensive<br />

– Process integration scheme<br />

has process control<br />

challenges<br />

– Bulk starting wafer<br />

• Oxide isolated<br />

– Process simpler less expensive<br />

– Many control issues improved over<br />

bulk isolated FinFet<br />

– <strong>SOI</strong> starting wafer<br />

FD<strong>SOI</strong> Workshop Hsinchu, Taiwan April 22, 2013


IBM Semiconductor Research <strong>and</strong> Development Center<br />

Bulk Isolated FinFet Process (1)<br />

RIE etch to create fin<br />

<strong>and</strong> isolation trench<br />

Channel Stop Doping<br />

Resist<br />

• Starting material: Silicon wafer<br />

• Add channel stop doping<br />

• Etch silicon to create fin <strong>and</strong> isolation trench<br />

– Blind/timed etch (i.e. no etch stop)<br />

– Depth control has many variables (local<br />

pattern density, etch chemistry, local surface<br />

condition, etc.)<br />

– Trench must be tapered for good fill<br />

Silicon Substrate<br />

Ø<br />

Fin<br />

fin<br />

Trench Depth<br />

<strong>Isolation</strong> Trench<br />

CSD<br />

Silicon Substrate<br />

FD<strong>SOI</strong> Workshop Hsinchu, Taiwan April 22, 2013


IBM Semiconductor Research <strong>and</strong> Development Center<br />

Bulk Isolated FinFet Process (2)<br />

Dep/etch Oxide<br />

Planarize Oxide<br />

fin<br />

fin<br />

CSD<br />

CSD<br />

Oxide<br />

Oxide<br />

Silicon Substrate<br />

Silicon Substrate<br />

Recess Oxide<br />

Recess Depth<br />

fin<br />

CSD<br />

Oxide<br />

Silicon Substrate<br />

FD<strong>SOI</strong> Workshop Hsinchu, Taiwan April 22, 2013


IBM Semiconductor Research <strong>and</strong> Development Center<br />

<strong>SOI</strong> FinFet Process<br />

RIE etch to create fin<br />

Top Silicon<br />

Oxide<br />

Resist<br />

• Starting material: Silicon wafer with buried<br />

oxide<br />

• Etch silicon to create fin stopping on oxide<br />

– Fin height controlled by starting silicon<br />

thickness<br />

– Fin etched profile vertical (no fill constraint)<br />

– No channel stop doping impinging on the device<br />

Silicon Substrate<br />

Top Si Thickness<br />

Fin<br />

Oxide<br />

Silicon Substrate<br />

FD<strong>SOI</strong> Workshop Hsinchu, Taiwan April 22, 2013


IBM Semiconductor Research <strong>and</strong> Development Center<br />

Fin Taper: detrimental to device performance<br />

• Electrostatics <strong>and</strong><br />

current density vary<br />

through fin height<br />

• Massive doping<br />

suppresses some<br />

contribution of fat-fin<br />

region but current<br />

degraded<br />

• Output conductance<br />

for <strong>SOI</strong> with vertical fin<br />

empirically<br />

demonstrated to be<br />

superior to bulk with<br />

tapered fin<br />

FD<strong>SOI</strong> Workshop Hsinchu, Taiwan April 22, 2013


IBM Semiconductor Research <strong>and</strong> Development Center<br />

Bulk Well <strong>Isolation</strong> Engineering<br />

• Bulk FinFETs require<br />

– Junction isolation masks <strong>and</strong> implants<br />

– Well contacts<br />

– Latchup prevention measures<br />

Second STI<br />

Heavily doped substrate<br />

Pfet-Pfet<br />

FD<strong>SOI</strong> Workshop Hsinchu, Taiwan April 22, 2013


IBM Semiconductor Research <strong>and</strong> Development Center<br />

Drain-source Current Suppression<br />

• Heavy doping:<br />

– BTB current<br />

– Nonuniformity<br />

• Deep gate<br />

– Capacitance<br />

– Process challenge<br />

• Shallow junction<br />

– Strain reduction<br />

– Process challenge<br />

FD<strong>SOI</strong> Workshop Hsinchu, Taiwan April 22, 2013


IBM Semiconductor Research <strong>and</strong> Development Center<br />

Doping <strong>and</strong> Matching <strong>and</strong> Vmin<br />

• Bulk FinFETs must<br />

have doping in the subfin<br />

region<br />

• Body doping degrades<br />

transistor matching;<br />

data presented in VLSI<br />

2012<br />

• Transistor mismatch is<br />

fundamentally<br />

associated with SRAM<br />

low-voltage capability<br />

FD<strong>SOI</strong> Workshop Hsinchu, Taiwan April 22, 2013


IBM Semiconductor Research <strong>and</strong> Development Center<br />

Doping <strong>and</strong> Vmax<br />

• Bulk FinFETs must have<br />

doping in the sub-fin<br />

region<br />

• For a given off-current,<br />

body doping requires a<br />

work function closer to<br />

b<strong>and</strong> edge <strong>and</strong> the<br />

electric field is larger<br />

• The electric field is<br />

fundamentally associated<br />

with dielectric reliability<br />

Undoped<br />

Doped<br />

Electric potential across the fin from<br />

one side to the other for two design<br />

points with the same threshold<br />

voltage.<br />

The electric field is larger for the<br />

doped fin case.<br />

FD<strong>SOI</strong> Workshop Hsinchu, Taiwan April 22, 2013


IBM Semiconductor Research <strong>and</strong> Development Center<br />

Bulk <strong>and</strong> <strong>SOI</strong> Voltage Range<br />

• Combining Vmax<br />

(WF) <strong>and</strong> Vmin (RDF)<br />

the operating voltage<br />

range of bulk FinFETs<br />

is inherently more<br />

restricted than <strong>SOI</strong><br />

FinFETs<br />

• Representative<br />

calculations as much<br />

as 200mV difference<br />

• This trend is also<br />

exacerbated by<br />

scaling<br />

FD<strong>SOI</strong> Workshop Hsinchu, Taiwan April 22, 2013


IBM Semiconductor Research <strong>and</strong> Development Center<br />

Bulk <strong>and</strong> <strong>SOI</strong> Variation<br />

• Gate recess: <strong>SOI</strong> FinFET is<br />

nearly unaffected by gate<br />

recess variation<br />

• Fin Height: <strong>SOI</strong> fin height is<br />

less variable than bulk.<br />

• Doping: Bulk FinFET is<br />

affected by global doping<br />

variation in addition to RDF<br />

• Fin width: Bulk FinFET has<br />

less sensitivity to fin width is<br />

because of the doping<br />

• Overall: Variation due to<br />

these critical fin formation<br />

features is smaller in <strong>SOI</strong><br />

than bulk<br />

FD<strong>SOI</strong> Workshop Hsinchu, Taiwan April 22, 2013


IBM Semiconductor Research <strong>and</strong> Development Center<br />

Strain, SER, Self-heating<br />

Minimal strain<br />

reduction for <strong>SOI</strong><br />

FD<strong>SOI</strong> Workshop Hsinchu, Taiwan April 22, 2013


IBM Semiconductor Research <strong>and</strong> Development Center<br />

Conclusions<br />

• FinFETs with <strong>SOI</strong> <strong>and</strong> bulk isolation architectures have been compared<br />

• Key differences:<br />

– Tapered fin profile intrinsic to bulk degrades electrostatics <strong>and</strong> uniformity<br />

– Inter <strong>and</strong> Intrawell junction isolation requires well implants <strong>and</strong> latchup prevention<br />

methods<br />

– Suppression of sub-fin leakage requires doping<br />

Doping degrades transistor matching <strong>and</strong> therefore low-voltage operation<br />

Doping requires work function nearer b<strong>and</strong>-edge, therefore degrades reliability<br />

Net result is closure of voltage range window<br />

– Larger fin height variation <strong>and</strong> influence of sub-fin conduction region result in larger<br />

Ieff variation in bulk <strong>and</strong> therefore loss of potential performance<br />

–<br />

• <strong>SOI</strong>-based FinFET obviates many challenges to realization of FinFET potential<br />

• <strong>SOI</strong>-based FinFET is extendable<br />

• IBM technology offering is based on <strong>SOI</strong><br />

FD<strong>SOI</strong> Workshop Hsinchu, Taiwan April 22, 2013


IBM Semiconductor Research <strong>and</strong> Development Center<br />

Acknowledgements<br />

• FinFET research <strong>and</strong> development has been active at various<br />

IBM sites for many years.<br />

• Key results from personnel at these IBM locations have been<br />

incorporated in this presentation:<br />

– Albany, New York<br />

– East Fishkill, New York<br />

– Essex Junction, Vermont<br />

– Yorktown Heights, New York<br />

• Special thanks for the contributions of B. Anderson, A.<br />

Bryant, Y. Deng, A. Dixit, J. Johnson, E. Nowak, A. Scholze,<br />

T. St<strong>and</strong>aert, <strong>and</strong> R. Vega<br />

FD<strong>SOI</strong> Workshop Hsinchu, Taiwan April 22, 2013

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!