10.01.2015 Views

The QCD Quark Propagator in Coulomb Gauge and - Institut für Physik

The QCD Quark Propagator in Coulomb Gauge and - Institut für Physik

The QCD Quark Propagator in Coulomb Gauge and - Institut für Physik

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 3. Remarks on <strong>QCD</strong> <strong>in</strong> <strong>Coulomb</strong> <strong>Gauge</strong> 25<br />

If we <strong>in</strong>sert this expression <strong>in</strong> the partition function, we f<strong>in</strong>d<br />

∫ { ∫ [<br />

Z = DADΠ exp i dx Π i ( A ˙i<br />

− ∂ i A 0 ) − 1 2 (Π2 + B 2 ) + g 0 A µ J<br />

]}δ(∂ µ i A i ) . (3.47)<br />

Perform<strong>in</strong>g the Gaussian <strong>in</strong>tegral over Π we obta<strong>in</strong> the f<strong>in</strong>al result:<br />

∫ { ∫ }<br />

Z = DA exp i Ldx δ(∂ i A i ) , L = − 1 4 F µνF µν + g 0 A µ J µ . (3.48)<br />

Our transformations end with the appearance of the Maxwell Lagrangian <strong>and</strong> the <strong>Coulomb</strong><br />

gauge condition as the only constra<strong>in</strong>t <strong>in</strong> form of a delta function. It is possible to recast<br />

this <strong>in</strong> a way, which emphasises the physical degrees of freedom A ⊥ <strong>and</strong> Π ⊥ . To this end<br />

we start from (3.45) <strong>and</strong> separate the transverse <strong>and</strong> longitud<strong>in</strong>al parts of the Π field,<br />

Π = Π ⊥ − ∇φ. <strong>The</strong> <strong>in</strong>tegration measure thus becomes DΠ ≃ DΠ ⊥ Dφ. Re<strong>in</strong>troduc<strong>in</strong>g<br />

the irrelevant factor Det[−∆], we can use<br />

Det[−∆]δ(∂ i Π i − g 0 J 0 ) = Det[−∆]δ(−∆ −1 φ − g 0 J 0 ) = δ(φ + g 0 ∆ −1 J 0 ) . (3.49)<br />

<strong>and</strong> perform the φ-<strong>in</strong>tegration to obta<strong>in</strong><br />

∫<br />

Z = DA ⊥ DΠ ⊥ exp<br />

{ ∫<br />

i<br />

}<br />

dx(Π ⊥,i Ȧ i − H ⊥ )<br />

, (3.50)<br />

where H ⊥ is the Hamiltonian density (3.34).<br />

3.5 Quantisation of Yang-Mills theory<br />

At this po<strong>in</strong>t we are ready to quantise a non-Abelian gauge theory of the gauge group<br />

SU(N) <strong>in</strong> <strong>Coulomb</strong> gauge.<br />

We start with the Lagrangian density<br />

<strong>The</strong> conjugate momenta are<br />

L = − 1 4 F a µνF µν<br />

a + g 0 A a µJ µ a . (3.51)<br />

Π 0 a = 0 , Πi a = F i0<br />

a , (3.52)<br />

<strong>and</strong> thus we obta<strong>in</strong> a primary constra<strong>in</strong>t as we did <strong>in</strong> (3.7). Postulat<strong>in</strong>g the stability of<br />

this condition gives us the cha<strong>in</strong> of secondary constra<strong>in</strong>ts<br />

Π 0 a = 0 ⇒ [D iΠ i ] a = g 0 J 0 a ⇒ 0 = 0 . (3.53)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!