10.01.2015 Views

The QCD Quark Propagator in Coulomb Gauge and - Institut für Physik

The QCD Quark Propagator in Coulomb Gauge and - Institut für Physik

The QCD Quark Propagator in Coulomb Gauge and - Institut für Physik

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 3. Remarks on <strong>QCD</strong> <strong>in</strong> <strong>Coulomb</strong> <strong>Gauge</strong> 31<br />

It is possible to show that a conf<strong>in</strong><strong>in</strong>g <strong>Coulomb</strong> potential is necessary for the Wilson<br />

potential to be conf<strong>in</strong><strong>in</strong>g. We proof this statement with the help of group theory, follow<strong>in</strong>g<br />

the derivation <strong>in</strong> [Zwa03]. To this end we exam<strong>in</strong>e the energy of the static qq state <strong>in</strong><br />

<strong>Coulomb</strong> gauge. Explicitly it is<br />

E qq = 〈Φ qq |H|Φ qq 〉 − 〈0|H|0〉 , (3.79)<br />

where H is the <strong>Coulomb</strong> gauge Hamiltonian (3.64). <strong>The</strong> quark <strong>and</strong> antiquark of the qq<br />

pair live <strong>in</strong> the fundamental representation N <strong>and</strong> N of the gauge group SU(N). Our trial<br />

states <strong>in</strong> terms of the wave functionals read<br />

Φ qq [A] = Ψ s qqΨ 0 [A] . (3.80)<br />

<strong>The</strong> state Ψ 0 [A] is the wave functional of the vacuum state <strong>in</strong> the absence of external quarks<br />

<strong>and</strong> the state Ψ s qq belongs to the s<strong>in</strong>glet part of the decomposition N × N = 1 + (N 2 − 1).<br />

For the follow<strong>in</strong>g considerations we use the convenient notation |Φ qq 〉 = |s〉|0〉 A for the<br />

trial state <strong>and</strong> 〈...〉 A = ∫ DA... for the expectation value. <strong>The</strong> <strong>Coulomb</strong> term H Coul <strong>in</strong><br />

the Hamiltonian conta<strong>in</strong>s with the colour-charge density J 0 the external quark fields. <strong>The</strong><br />

<strong>in</strong>f<strong>in</strong>itely massive quark <strong>and</strong> antiquark are treated as po<strong>in</strong>tlike particles sitt<strong>in</strong>g at x <strong>and</strong><br />

y respectively. <strong>The</strong>ir colour charge density is given as<br />

J0 a (z) = λa q δ(z − x) + λa qδ(z − y) , (3.81)<br />

where λ a q <strong>and</strong> λq a can be expressed through the Hermitian generators λ a N of the gauge group<br />

SU(N) <strong>in</strong> the fundamental representation. S<strong>in</strong>ce the total colour charge density is given<br />

as the sum ρ = ρ gl + J 0 , the <strong>Coulomb</strong> term of the Hamiltonian can be written as<br />

H Coul = H gl + H gl qu + H qu qu , (3.82)<br />

where H gl is the Hamiltonian without external quarks, H gl qu is l<strong>in</strong>ear <strong>in</strong> J 0 <strong>and</strong> the last<br />

term is<br />

H qu qu = g0<br />

2 1<br />

2<br />

∑<br />

∫<br />

a,b<br />

dz 1 dz 2 J a 0(z 1 )V ab<br />

Coul(z 1 ,z 2 )J b 0(z 2 ) . (3.83)<br />

<strong>The</strong> first term is responsible for the vacuum energy without external quarks,<br />

〈Φ qq |H gl |0〉 A = E 0 . (3.84)<br />

Because of 〈s|λ a q,q |s〉 = 0 (|s〉 is a colour-s<strong>in</strong>glet state) the second term vanishes. <strong>The</strong> third<br />

term gives the most <strong>in</strong>trigu<strong>in</strong>g contribution, namely<br />

〈Φ qq |H qu qu |Φ qq 〉 = ∑ ∑<br />

〈s|λ a i λb j |s〉〈0|Vab Coul (x,y)|0〉 A . (3.85)<br />

i,j∈{q,q}<br />

a,b

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!