10.01.2015 Views

The QCD Quark Propagator in Coulomb Gauge and - Institut für Physik

The QCD Quark Propagator in Coulomb Gauge and - Institut für Physik

The QCD Quark Propagator in Coulomb Gauge and - Institut für Physik

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

72 6.4. Electromagnetic current operator<br />

For a po<strong>in</strong>tlike axial-vector we have µ 1 + = 2; <strong>and</strong> χ 1 + = 1, which corresponds to an oblate<br />

charge distribution. In addition, equations(6.64)–(6.67) with equations(6.72)–(6.74) realise<br />

the constra<strong>in</strong>ts of reference[BH92], namely, <strong>in</strong>dependent of the values of µ 1 + <strong>and</strong> χ 1 +,<br />

the form factors assume the ratios<br />

G 1+<br />

E (Q2 ) : G 1+ M (Q2 ) : G 1+<br />

Q (Q2 ) Q2 →∞<br />

= (1 − 2 3 τ 1 +) : 2 : −1 . (6.78)<br />

6.4.3 Coupl<strong>in</strong>g to the exchanged quark<br />

Diagram 3 depicts a photon coupl<strong>in</strong>g to the quark that is exchanged as one diquark breaks<br />

up <strong>and</strong> another is formed. While this is the first two-loop diagram we have described, no<br />

new elements appear <strong>in</strong> its specification: the dressed-quark-photon vertex was discussed<br />

<strong>in</strong> section 6.4.1. <strong>The</strong> explicit contribution to the vertex is obta<strong>in</strong>ed with<br />

J ex<br />

µ = −1 2 S(k q)∆ i (k d )Γ i (p 1 , k d )S T (q)ˆΓ quT<br />

µ (q ′ , q)S T (q ′ )¯Γ jT (p ′ 2 , p d)∆ j (p d )S(p q ) , (6.79)<br />

where<strong>in</strong> the vertex<br />

ˆΓ<br />

qu<br />

µ<br />

appeared <strong>in</strong> equation(6.54). <strong>The</strong> full contribution is obta<strong>in</strong>ed by<br />

summ<strong>in</strong>g over the superscripts i, j, which can each take the values 0 + , 1 + .<br />

It is noteworthy that the process of quark exchange provides the attraction necessary <strong>in</strong><br />

the Faddeev equation to b<strong>in</strong>d the nucleon. It also guarantees that the Faddeev amplitude<br />

has the correct antisymmetry under the exchange of any two dressed-quarks. This key<br />

feature is absent <strong>in</strong> models with elementary (noncomposite) diquarks.<br />

6.4.4 Scalar ↔ axialvector transition<br />

This contribution differs from diagram 2 <strong>in</strong> express<strong>in</strong>g the contribution to the nucleons’<br />

form factors ow<strong>in</strong>g to an electromagnetically <strong>in</strong>duced transition between scalar <strong>and</strong> axialvector<br />

diquarks:<br />

[ˆΓdq<br />

ij<br />

Jµ dq = ∆ i (p d ) µ (p d ; k d )]<br />

∆ j (k d )S(k q )(2π) 4 δ 4 (p − k + ηQ) , (6.80)<br />

where [ˆΓ dq<br />

µ (p d ; k d )] i=j = 0, <strong>and</strong> [ˆΓ dq<br />

µ (p d ; k d )] 1,2 = Γ SA , which is given <strong>in</strong> equation(6.81), <strong>and</strong><br />

[ˆΓ dq<br />

µ (p d; k d )] 2,1 = Γ AS . Naturally, the diquark propagators match the l<strong>in</strong>e to which they<br />

are attached.<br />

<strong>The</strong> transition vertex is a rank-2 pseudotensor <strong>and</strong> can therefore be expressed<br />

Γ γα<br />

SA (l 1, l 2 ) = −Γ γα<br />

AS (l 1, l 2 ) =<br />

i<br />

M N<br />

T (l 1 , l 2 ) ε γαρλ l 1ρ l 2λ , (6.81)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!