10.01.2015 Views

The QCD Quark Propagator in Coulomb Gauge and - Institut für Physik

The QCD Quark Propagator in Coulomb Gauge and - Institut für Physik

The QCD Quark Propagator in Coulomb Gauge and - Institut für Physik

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 4. <strong>The</strong> <strong>Quark</strong> Dyson-Schw<strong>in</strong>ger Equation 41<br />

holds (α(|p|) is the runn<strong>in</strong>g coupl<strong>in</strong>g). From lattice calculations we can <strong>in</strong>fer the large<br />

distance behaviour [NS06], cf. sections 3.3 <strong>and</strong> 3.6.4. An analytic ansatz, which obeys<br />

both limit<strong>in</strong>g behaviours <strong>and</strong> which we will employ, is the Richardson potential [Ric79]<br />

V C (q) =<br />

12π<br />

(11N c − 2N f ) · ln(1 + q 2 /Λ 2 ) . (4.33)<br />

N f <strong>and</strong> N c are the number of colours <strong>and</strong> the number of flavours respectively. Here we use<br />

the values N f = 3 <strong>and</strong> N c = 3. Λ is a parameter which we can calculate from the str<strong>in</strong>g<br />

tension of lattice calculations by exp<strong>and</strong><strong>in</strong>g V C for large momenta. Def<strong>in</strong><strong>in</strong>g the quark<br />

mass function as motivated <strong>in</strong> section 2.2 as the ratio<br />

M(|p|) := B(|p|)<br />

C(|p|)<br />

(4.34)<br />

<strong>and</strong> perform<strong>in</strong>g the q 0 -<strong>in</strong>tegral analytically we are able to express the equations (4.30) <strong>and</strong><br />

(4.31) as a s<strong>in</strong>gle <strong>in</strong>tegral equation<br />

M(|p|) =<br />

Z 5 m + 2C 1<br />

3π<br />

Z (µ) + 2C 1<br />

3π<br />

∫ ∞<br />

0<br />

dq q 2 M(|q|)<br />

√M 2 (|q|)+q 2 ∫ 1<br />

−1 d(cosθ) 1<br />

|p−q| 2 ·<br />

1<br />

ln(1+|p−q| 2 /Λ 2 )<br />

∫ ∞<br />

dq q<br />

0 2 √ |q|<br />

∫ 1 cos θ 1<br />

d(cosθ) ·<br />

|p| M 2 (|q|)+q 2 −1 |p−q| 2 ln(1+|p−q| 2 /Λ 2 )<br />

, (4.35)<br />

where θ is the angle between p <strong>and</strong> q <strong>and</strong> the abbreviation C 1 =<br />

12π<br />

(11N c−2N f )<br />

was used.<br />

Because the <strong>in</strong>tegral equation is s<strong>in</strong>gular at p = q we <strong>in</strong>troduce a regulator µ IR by us<strong>in</strong>g<br />

the substitution<br />

|p − q| 2 → |p − q| 2 + µ 2 IR (4.36)<br />

for all terms <strong>in</strong> question. In order to calculate the solution for (4.35) we have to solve<br />

the equation for non-vanish<strong>in</strong>g µ IR <strong>and</strong> take the limit µ IR → 0. An analytic proof for<br />

the convergence of such a regularisation was already given <strong>in</strong> [Alk88]. Furthermore we<br />

observe, that both momentum <strong>in</strong>tegrals <strong>in</strong> (4.35) are divergent <strong>in</strong> the ultraviolet. <strong>The</strong><br />

equation obviously has to be renormalised <strong>and</strong> <strong>in</strong> do<strong>in</strong>g so we choose a MOM scheme <strong>and</strong><br />

impose the conditions<br />

where |ν| is the renormalisation po<strong>in</strong>t.<br />

B(|ν|) = m (4.37)<br />

C(|ν|) = 1 , (4.38)<br />

4.4 Numerical results<br />

In figure 4.2 we display the results for the mass function <strong>in</strong> the chiral limit employ<strong>in</strong>g only<br />

the time-time component of the gluon propagator. As a renormalisation po<strong>in</strong>t we choose

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!