10.01.2015 Views

The QCD Quark Propagator in Coulomb Gauge and - Institut für Physik

The QCD Quark Propagator in Coulomb Gauge and - Institut für Physik

The QCD Quark Propagator in Coulomb Gauge and - Institut für Physik

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 4. <strong>The</strong> <strong>Quark</strong> Dyson-Schw<strong>in</strong>ger Equation 37<br />

which leads to the identity<br />

∫<br />

δ(x − y) =<br />

∫<br />

=<br />

d 4 z δη(y) δq(z)<br />

δq(z) δη(x)<br />

d 4 δ 2 Γ δ 2 W<br />

z<br />

δq(z)δq(y) δη(x)δη(z) . (4.12)<br />

Together with the matrix relation<br />

δχ −1<br />

δA<br />

we can rephrase (4.9) <strong>in</strong> the follow<strong>in</strong>g way:<br />

= −χ−1<br />

δχ<br />

δA χ−1 (4.13)<br />

δ 3 W<br />

δη(z)δη(y)δjµ(z a ′ ) = δ [ ]<br />

δ 2 −1<br />

Γ<br />

(4.14)<br />

δjµ<br />

a δq(z)δq(y)<br />

∫<br />

= d 4 δA d ν<br />

u (u [ ]<br />

1) δ δ 2 −1<br />

Γ<br />

1 (4.15)<br />

δjµ(z a ′ ) δA d ν(u 1 ) δq(z)δq(y)<br />

∫<br />

= − d 4 u 1 d 4 u 2 d 4 δ 2 W δ 2 W δ 3 Γ δ 2 W<br />

u 3<br />

δjµ a (z′ )δjν d(u 1) δη(y)δη(u 2 ) δA d ν (u (4.16)<br />

1)δq(u 2 )δq(u 3 ) δη(u 3 )δη(z)<br />

∫<br />

= d 4 u 1 d 4 u 2 d 4 u 3 Dµν ad (z′ − u 1 )S(u 2 − y)Γ d ν (u 1, u 2 , u 3 )S(z − u 3 ) . (4.17)<br />

Perform<strong>in</strong>g a Fourier transform <strong>and</strong> us<strong>in</strong>g the colour structure of the quark-gluon vertex,<br />

which is [AS01]<br />

Γ a µ(k, q, p) = −igt a (2π) 4 δ 4 (k + q − p)Γ µ (q, p) , (4.18)<br />

we arrive at the quark Dyson-Schw<strong>in</strong>ger equation <strong>in</strong> a l<strong>in</strong>ear covariant gauge:<br />

∫<br />

S −1 (p) = Z 2 S0 −1 (p) + g2<br />

16π 4Z 1FC F d 4 q γ µ S(q)Γ ν (q, k)D µν (k) . (4.19)<br />

<strong>The</strong> equation is represented conveniently <strong>in</strong> a graphical way (figure 4.1). In the next<br />

section we derive a version of the renormalised gap equation <strong>in</strong> <strong>Coulomb</strong> gauge, which is<br />

of an analogous structure.<br />

4.2 <strong>The</strong> gap equation <strong>in</strong> <strong>Coulomb</strong> gauge<br />

For a realistic potential these equations are UV divergent <strong>and</strong> have to be renormalised.<br />

Look<strong>in</strong>g at the theory of superconductivity, the gap equation is part of a more general<br />

system of equations for the electron propagator <strong>and</strong> the electron-photon vertex, <strong>in</strong> which<br />

the Ward identity is satisfied [Sch]. <strong>The</strong>refore it seems natural concern<strong>in</strong>g the quark DSE<br />

to proceed <strong>in</strong> an analogous fashion, us<strong>in</strong>g the Ward identities to derive the renormalised

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!